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Example One: A means for transmitting
two messages elther but not both of
which may bhe received.

The uncertainty principle imposes restrictions on the

capaclty of certain types of communication channels. This
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‘ (Randomized) 1-2 Oblivious Transfer
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Example One: A means for transmitting
two messages elther but not both of
which may bhe received.

= complete for 2-party computation
= impossible in the plain (quantum) model
= possible in the Bounded-Quantum-Storage Model
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Outline

= Motivation and Notation

= Quantum Uncertainty Relation

s Contributions
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‘ Quantum Mechanics

x basis

@ + basis

Measurements:

with prob.

1 yields 1
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with prob. "2 yields 0

with prob. 2 yields 1
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‘ Quantum 1-2 OT Protocol
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= Receiver-Security against Dishonest Alice v
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‘ Sender-Security?
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# qubits < n/4

= Sender-Security: one of the strings looks completely
random to dishonest Bob
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‘ Quantum Mechanics 11
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‘ Entanglement-Based Protocol
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= Sender-Security: One of the strings looks completely
random to dishonest Bob
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‘ Entanglement-Based Protocol
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= Sender-Security: One of the strings looks completely
random to dishonest Bob
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‘ Let Bob Act First
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= Sender-Security: One of the strings looks completely
random to dishonest Bob

PA: 2/~ H., (X |0©,p)
[Renner Konig 05, Renner 06]
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‘ Sender-Security <@ Uncertainty Relation

© cg X Egr send
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= Sender-Security: One of the strings looks completely
random to dishonest Bob

PA : 2¢ =~ H (X|@,,0)2 (X\@) # qubits

[Renner Konig 05, Renner 06] =5
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‘ Outline

v Motivation and Notation

= Quantum Uncertainty Relation

s Contributions
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‘ Quantum Uncertainty Relation needed

qubit as unit vector in C?
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Uncertainty Relation for One Qubit

Maassen Uflink 88: Let p; be a 1-qubit state.
©; €r {4+, X}, X; the outcome of measuring p; in basis ©;. Then,

H(X; [ 6:) = 5 (H(X; | ©; = +) + H(X; [ ©; = x) ) >

15/ 24



‘ Quantum Uncertainty Relation needed

Maassen Uflink 88: Let p; be a 1-qubit state.
©; €r {4+, X}, X; the outcome of measuring p; in basis ©;. Then,

H(X; | @i):%(}{(){i |©; = +) +H(X; | ©; = ><)/) >

© cg state
{+.x}"  p
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Ho(X |©)>7
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except with prob SB
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— H (X" 0) "X n-H(X, | 6;) > n/2

XiI:Xl,...,Xi
X =X"=X{,...,X,
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‘ Main Result

Maassen Uflink 88: Let p; be a 1-qubit state.
@ ©; €r {+, x}, X; the outcome of measuring p; in basis ©;. Then,

H(X;|0,)=3(H(X;|0;,=4)+H(X; | 6, = x))> 1.

>1

© cg state
{+, x}"

S
®

H(Xz | @Z)}éz—%l _ Clii_l,@i_l _ 9@'—1) > %

X,; dependent

Quantum Uncertainty Relation: Let
X =(Xq,...,X5,) be the outcome. Then,

H (X [©) Zn/2

@ with € negligible in n.
Ho (X |©)>7?
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Main Technical LLemma

Z1,...,2, (dependent) random variables
with H(Z; | 271 = 2=1) > h.

Then, H._(Z) = n - h with € negligible in n

Proof:

e information theory

e generalized Chernoff bound (Azuma inequality)
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Proof of Quantum Uncertainty Relation
Thm: H(Z; | Z""' =2) > h = H_(Z") > hn
MU: p 1-qubit state: H(X, | ©9) > % @
Z; = (X;,60y)
HZ | Z" P =2)=H(X; |0, 2" =2)+ H(O; | 2" = 2)
>14+1=h
H. (X |©)~H_(Z")—Hy(®) Z2n/2+n—n

© cgr state
[+, x}n 0 Quantum Uncertainty Relation: Let

X =(Xq,...,Xn) be the outcome. Then,
S

'/@ H (X [©) 2 n/2

with € negligible in n.
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Tight?
MU: p 1-qubit state: H(X, | ©g) > % @
H(X [0) =3 (HX |[0=+) +H(X |0 =x)) =3

+ - X

For the pure state |0)®", the X are independent and we know
n—oo

that HE_(X | ©) "2 H(X | ©) = n/2.

—

© cp state
{+. x}"  p

/@ 8
‘/@ @ H (X |©)2>n/2
@ with € negligible in n.
D

Quantum Uncertainty Relation: Let
X =(Xq,...,X5,) be the outcome. Then,
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‘ Outline

v Motivation and Notation

v’ Quantum Uncertainty Relation

s Contributions
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Contributions I: Uncertainty Relations

= classical general lemma:
H(Z; | Z"'=2)>h = H_(Z") =2 hn

= instantiate it for various quantum codings:

{f if}{n state = conjugate coding / BB84:
’ HE(X | ©) > n/2

S
®

D
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Contributions I: Uncertainty Relations

= classical general lemma:
H(Z; | Z"'=2)>h = H_(Z") =2 hn

= instantiate it for various quantum codings:

@ €ER state
X, O

@/Q/Q
® 0/ +

= conjugate coding / BB84:
H (X [©) > n/2

s three bases / six-state:

H: (X | ©) > 2n

D
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Contributions II: Applications

= Bounded-Quantum-Storage Model:
Non-interactive, practical protocols for 1-2 OT and
BC secure according new composable security
definitions.

= Quantum Key Distribution: Security proofs in
realistic setting of a quantum-memory bounded
eavesdropper. Tolerate higher error rates than

against unbounded adversaries.

= Composition of certain Quantum Ciphers:
key-uncertainty adds up in terms of min-entropy.
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Entropies
Z random variable over {0,1}"

name definition
Ho(Z) log |{z | Pz(z) > 0}

H(Z) —>.,Pz(z)log(Pz(z))
Ho(Z) —log (max, Pz(z))

lowerbound on H #% lowerbound on H.g

Z
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‘ Smooth Min-Entropy

Z random variable over {0,1}"

name definition

Ho(Z) log|{z| Pz(z) >0}
H(Z) —>.,Pz(z)log(Pz(2)) = n
Hoo(Z) —log(max, Pz(z)) n/2

H: (Z
() | max Hoo(Z€)
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‘ Open Questions

= two-way post processing

= QKD with more bases

= In higher-dimensional (non-binary) systems
= using less randomness: avoid sifting stage
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Smooth Min-Entropy [Renner Wolf 05]

Z random variable over {0,1}"

© — (2
e (7) = mox Hao(Z8)

in rule, sub-additivity,
~H (Z2V) —Ho(V)

e many Shannon-like properties:
monotonicity, e.g. HS_(

n—oo

o for Z; iid: H°_(Z™) "~ H(Z")=H(Z) n

e Privacy Amplification: HS_(Z | V) is the optimal amount
of extractable randomness
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‘ Comparison to Previous Bound
© cg state

{+n’ Xn} P Prev10us There exists an event £ with
Pr|€] 2 5 such that

N2

Hoo(X | €,0) > n/2.

© cr  state New: H. (X | ©) = n/2 with negligible €

VO e {+, x}"
J event £ with 27" ), Pr|&y| ~ 1 and

Hoo(X | £9,0 =0) = n/2.
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