Random Oracles in a Quantum World

Dan Boneh, Mark Zhandry (Stanford)
Özgür Dagdelen, Marc Fischlin (TU Darmstadt)
Anja Lehmann (IBM Zürich)

Christian Schaffner (University of Amsterdam \& CWI)

CWI
Séminaire de Crypto de l'ENS
Paris, 27 février 2012
(based on slides by Özgür and Mark)

Post-Quantum Crypto

Post-Quantum Crypto

- Cryptosystems based on the hardness of factoring or discrete logarithms are broken by quantum computers

Post-Quantum Crypto

- Cryptosystems based on the hardness of factoring or discrete logarithms are broken by quantum computers
- Remaining assumptions:
- lattices (e.g. NTRU)
- codes (e.g. McEliece, Niederreiter)

- hashes (Merkle's hash-tree signatures)
- multi-variate polynomials

Post-Quantum Crypto and the Random-Oracle Model (ROM)

- Several lattice-based schemes have been proven secure in the classical ROM:
- Signatures [GPV08, GKVI0, BFII]
- Encryption [GPV08]
- Identification [CLRSIO]
- Are they really secure in the

Quantum-Accessible Random Oracles

classical

Quantum-Accessible Random Oracles

classical

Quantum-Accessible Random Oracles

classical

Quantum-Accessible Random Oracles

classical

quantum

Quantum-Accessible Random Oracles

classical

quantum

Quantum-Accessible Random Oracles

classical

quantum

Quantum-Accessible Random Oracles

classical

quantum

"quantum adversary may query RO in superposition"

Quantum-Accessible Random Oracles

classical

quantum

"quantum adversary may query RO in superposition"

- Does security in CROM imply security in QROM ?

One Quantum Bit

$|1\rangle=\binom{0}{1}$

One Quantum Bit

classical bits:
$0 / 1$
quantum state:

One Quantum Bit

classical bits:
$0 / 1$
quantum state:

One Quantum Bit

classical bits:
quantum state:

$$
\begin{aligned}
& 0 / \mathbf{l} \\
& |\varphi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta} \in \mathbb{C}^{2}
\end{aligned}
$$

$$
|1\rangle=\binom{0}{1}
$$

$$
\longrightarrow|0\rangle=\binom{1}{0}
$$

One Quantum Bit

classical bits:
quantum state:

0 /

$$
|\varphi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta} \in \mathbb{C}^{2}
$$

$$
\alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

complex amplitudes: $\alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1$

Two Qubits

$$
|\varphi\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}
$$

Two Qubits

two classical bits: $00,01,10,1 \mid$ quantum state:

$$
|\varphi\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}
$$

Two Qubits

two classical bits: $00,01,10,1 \mid$ quantum state:

$$
|\varphi\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}
$$

$|\varphi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle=$

$$
\left(\begin{array}{l}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right) \in \mathbb{C}^{4}
$$

Two Qubits

two classical bits: $00,01,10,1 \mid$ quantum state:

$$
|\varphi\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}
$$

8
$|\varphi\rangle=0$
10

$$
|01\rangle=|0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Two Qubits

two classical bits: $00,01,10,1 \mid$ quantum state: $|\varphi\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$
complex amplitudes: $\alpha_{x} \in \mathbb{C}, \sum_{x \in\{00,01,10,11\}}\left|\alpha_{x}\right|^{2}=1$

$$
\begin{aligned}
& |\varphi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle=\left(\begin{array}{l}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right) \in \mathbb{C}^{4} \\
& |01\rangle=|0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

n-Qubit States

classical n -bit strings: $x \in\{0,1\}^{n}$
n-qubit state:

$$
|\varphi\rangle=\sum_{x} \alpha_{x}|x\rangle \in \mathbb{C}^{2^{n}}
$$

complex amplitudes: $\quad \alpha_{x} \in \mathbb{C}, \quad \sum_{x}\left|\alpha_{x}\right|^{2}=1$

$$
|x\rangle=\left|x_{1} x_{2} \ldots x_{n}\right\rangle=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \ldots \otimes\left|x_{n}\right\rangle
$$

Quantum Operations

linear unitary transformations on n qubits: \mathbf{U}

- $2^{n} \times 2^{n}$ dimensional matrix
- $U^{*} \cdot U=$ id, i.e. rows and columns of U form orthonormal bases
- U preserves inner products

$$
\begin{aligned}
U: \mathbb{C}^{2^{n}} & \rightarrow \mathbb{C}^{2^{n}} \\
|x\rangle & \mapsto U|x\rangle
\end{aligned}
$$

Quantum Oracles

classical RO:

$$
\begin{aligned}
O:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x & \mapsto O(x)
\end{aligned}
$$

Quantum Oracles

classical RO:

$$
\begin{aligned}
O:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x & \mapsto O(x)
\end{aligned}
$$

quantum-accessible RO:

$$
U:|x\rangle|y\rangle \mapsto|x\rangle|y \oplus O(x)\rangle
$$

Quantum Oracles

classical RO:

$$
\begin{aligned}
O:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x & \mapsto O(x)
\end{aligned}
$$

quantum-accessible RO:

$$
\begin{aligned}
U:|x\rangle|y\rangle & \mapsto|x\rangle|y \oplus O(x)\rangle \\
U \sum_{x} \alpha_{x}|x\rangle\left|0^{n}\right\rangle & =\sum_{x} \alpha_{x}|x\rangle|O(x)\rangle
\end{aligned}
$$

Quantum Oracles

classical RO:

$$
\begin{aligned}
O:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x & \mapsto O(x)
\end{aligned}
$$

quantum-accessible RO:

$$
\begin{aligned}
U:|x\rangle|y\rangle & \mapsto|x\rangle|y \oplus O(x)\rangle \\
U \sum_{x} \alpha_{x}|x\rangle\left|0^{n}\right\rangle & =\sum_{x} \alpha_{x}|x\rangle|O(x)\rangle
\end{aligned}
$$

- oracle can be accessed "in superposition"

Quantum Oracles

classical RO:

$$
\begin{aligned}
O:\{0,1\}^{n} & \rightarrow\{0,1\}^{n} \\
x & \mapsto O(x)
\end{aligned}
$$

quantum-accessible RO:

$$
\begin{aligned}
U:|x\rangle|y\rangle & \mapsto|x\rangle|y \oplus O(x)\rangle \\
U \sum_{x} \alpha_{x}|x\rangle\left|0^{n}\right\rangle & =\sum_{x} \alpha_{x}|x\rangle|O(x)\rangle
\end{aligned}
$$

- oracle can be accessed "in superposition"
- a single quantum query can involve $O(x)$

Quantum Measurements

- quantum states need to be measured to extract classical information from them

Quantum Measurements

- quantum states need to be measured to extract classical information from them
- outcome is probabilistic

Quantum Measurements

- quantum states need to be measured to extract classical information from them
- outcome is probabilistic
- example: measuring $\sum_{x} \alpha_{x}|x\rangle|O(x)\rangle$
(in the computational basis) gives outcome x with probability $\left|\alpha_{x}\right|^{2}$

Quantum Measurements

- quantum states need to be measured to extract classical information from them
- outcome is probabilistic
- example: measuring $\sum_{x} \alpha_{x}|x\rangle|O(x)\rangle$
(in the computational basis) gives outcome x with probability $\left|\alpha_{x}\right|^{2}$
- quantum computers can not perform exponentially many classical computations in parallel!

Results in Quantum Information Processing

- Factoring: Given \mathbf{N}, find its prime factors
- classical: General Number Field Sieve: $e^{\left(O\left((\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)\right.}$
- quantum: Shor's algorithm: $O\left((\log N)^{3}\right)$

Results in Quantum Information Processing

- Factoring: Given N , find its prime factors
- classical: General Number Field Sieve: $e^{\left(O\left((\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)\right.}$
- quantum: Shor's algorithm: $O\left((\log N)^{3}\right)$
- Search in unstructured database with N entries
- classical: brute force, requires $\Omega(\mathrm{N})$ lookups
- quantum: Grover's algorithm: $O(\sqrt{N})$ lookups

Results in Quantum Information Processing

- Factoring: Given N , find its prime factors
- classical: General Number Field Sieve: $e^{\left(O\left((\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)\right.}$
- quantum: Shor's algorithm: $O\left((\log N)^{3}\right)$
- Search in unstructured database with N entries
- classical: brute force, requires $\Omega(\mathrm{N})$ lookups
- quantum: Grover's algorithm: $O(\sqrt{N})$ lookups
- Collision search for an r-to-I function f with domain size N
- classical: requires $\Theta(\sqrt{N / r})$ evaluations of f
- quantum: Brassard et al: $O(\sqrt[3]{N / r})$ evaluations

Roadmap

- What's the problem?
- Separation of QROM from CROM
- Secure Schemes in the QROM
- Open Problems

Potential Problems in QROM

Potential Problems in QROM

- Adaptive Programmability

$$
\xrightarrow[\sum_{x} \alpha_{x}|x\rangle|O(x)\rangle]{\sum_{x} \alpha_{x}|x\rangle}
$$

- quantum adversary can query oracle on exponentially values right at the beginning

Potential Problems in QROM

- Adaptive Programmability

- quantum adversary can query oracle on exponentially values right at the beginning
- Extractability / Preimage Awareness
- classical simulator learns exact pre-images which interest the adversary

Potential Problems in QROM

- Adaptive Programmability
- quantum adversary can query oracle on exponentially values right at the beginning
- Extractability / Preimage Awareness
- classical simulator learns exact pre-images which interest the adversary
- Efficient Simulation
- lazy-sampling does not carry over

Potential Problems in QROM

- Adaptive Programmability
- quantum adversary can query oracle on exponentially values right at the beginning
- Extractability / Preimage Awareness
- classical simulator learns exact pre-images which interest the adversary
- Efficient Simulation
- lazy-sampling does not carry over
- Rewinding / Partial Consistency
- unnoticed changing of hash values is difficult

QROM vs CROM

- Are these two models different? Yes!

QROM vs CROM

- Are these two models different? Yes!
- We present an identification scheme which is

secure
in the
classical ROM

QROM vs CROM

- Are these two models different? Yes!
- We present an identification scheme which is

secure
in the
classical ROM
in the
quantum ROM

QROM vs CROM

- Are these two models different? Yes!
- We present an identification scheme which is

Identification Protocol

Verifier

Identification Protocol

- (Public-Key) Identification Protocol between Prover P and Verifier V

Identification Protocol

- (Public-Key) Identification Protocol between Prover P and Verifier V
- P and V perform protocol π. Then, V accepts or rejects.

Identification Protocol

- (Public-Key) Identification Protocol between Prover P and Verifier V
- P and V perform protocol π.Then, V accepts or rejects.
- Security: No adversary who first interacts with the real prover can later make the verifier accept with nonnegligible probability.

Identification Protocol

- (Public-Key) Identification Protocol between Prover P and Verifier V
- P and V perform protocol π. Then, V accepts or rejects.
- Security: No adversary who first interacts with the real prover can later make the verifier accept with nonnegligible probability.

Quantum Adversary pk

Identification Protocol

- (Public-Key) Identification Protocol between Prover P and Verifier V
- P and V perform protocol π. Then, V accepts or rejects.
- Security: No adversary who first interacts with the real prover can later make the verifier accept with nonnegligible probability.

Identification Protocol

- (Public-Key) Identification Protocol between Prover P and Verifier V
- PandV perform protocol π.Then, V accepts or rejects.
- Security: No adversary who first interacts with the real prover can later make the verifier accept with nonnegligible probability.

Separating QROM from CROM

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding
- "prepend" a collision-finding stage to a quantum-secure identification scheme π

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding
- "prepend" a collision-finding stage to a quantum-secure identification scheme π
key for hash fct

Prover

Q Adversary

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding
- "prepend" a collision-finding stage to a quantum-secure identification scheme π

> key for hash fct
search for collision

Prover

Q Adversary

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding
- "prepend" a collision-finding stage to a quantum-secure identification scheme π
wait for
time $t$$\xrightarrow{\text { key for hash fct }}$ search for collision

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding
- "prepend" a collision-finding stage to a quantum-secure identification scheme π
wait for
time $t$$\xrightarrow{\text { key for hash fct }}$ collision search for collision

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding
- "prepend" a collision-finding stage to a quantum-secure identification scheme π

Separating QROM from CROM

- Idea: exploit the quantum speedup in collision finding
- "prepend" a collision-finding stage to a quantum-secure identification scheme π
- verifier accepts if prover succeeds in one of the two
repeat r times $\int_{\begin{array}{l}\text { wait for } \\ \text { time } t\end{array}}^{\text {tasks. }} \xrightarrow[\text { collision }]{\text { key for hash fct }}$ time $t \quad$ collision
if enough collisions found or π accepts

search for collision

Separating QROM from CROM

Separating QROM from CROM

- choose t such that collision-searcher with quantum access succeeds, but one with classical black-box access fails

Separating QROM from CROM

- choose t such that collision-searcher with quantum access succeeds, but one with classical black-box access fails
- secure in classical ROM

Separating QROM from CROM

- choose t such that collision-searcher with quantum access succeeds, but one with classical black-box access fails
- secure in classical ROM
- insecure in quantum ROM

Separating QROM from CROM

- choose t such that collision-searcher with quantum access succeeds, but one with classical black-box access fails
- secure in classical ROM
- insecure in quantum ROM
- insecure under any instantiation

Consequence

- All Post-Quantum cryptosystems proven in the RO model need to be revisited

Consequence

- All Post-Quantum cryptosystems proven in the RO model need to be revisited

Consequence

- All Post-Quantum cryptosystems proven in the RO model need to be revisited
- Good news:
- Digital Signatures Schemes with "history-free" reductions are secure in the QROM
- Encryption Schemes: CPA security of [BR93] and CCA security of hybrid encryption [BR93]

Roadmap

What's the problem?
Separation of QROM and CROM

- Secure Schemes in the QROM

Open Problems

[GPV08] signatures

- Hash-and-sign principle:
- Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{l}}{ }_{\text {sk }}(\mathrm{H}(\mathrm{m}))$
- Vrfypk (m, σ) accepts if and only if $f_{p k}(\sigma)=H(m)$

[GPV08] signatures

- Hash-and-sign principle:
- $\operatorname{Sign}_{\mathrm{sk}}(\mathrm{m})=\mathrm{f}^{\mathrm{f}} \mathrm{sk}(\mathrm{H}(\mathrm{m}))$
- Vrfypk (m, σ) accepts if and only if $f_{p k}(\sigma)=H(m)$

Theorem: Suppose ($\mathrm{G}, \mathrm{f}, \mathrm{f}^{-1}$) is a quantum-secure preimage-sampleable function and quantumaccessible PRFs exist, then GPV signatures are secure in the QROM.

Preimage Sampleable Trapdoor Functions (PSF)

- Key Generation: $\mathrm{G}\left(\mathrm{I}^{\mathrm{n}}\right)=(\mathrm{sk}, \mathrm{pk})$
- $f_{p k}(x)$ is efficiently computable and uniformly distributed for random x

Preimage Sampleable Trapdoor Functions (PSF)

- Key Generation: G(In) = (sk,pk)
- $f_{p k}(x)$ is efficiently computable
 and uniformly distributed for random x
- f^{-1} sk (y) samples randomly from those x with $f_{p k}(x)=y$

Preimage Sampleable Trapdoor Functions (PSF)

- Key Generation: $\mathrm{G}\left(\mathrm{I}^{\mathrm{n}}\right)=(\mathrm{sk}, \mathrm{pk})$
- $f_{p k}(x)$ is efficiently computable
 and uniformly distributed for random x
- $f^{\prime}{ }^{\text {sk }}(y)$ samples randomly from those x with $f_{p k}(x)=y$
- (G,f,f-1) is secure if it is one-way, collision-resistant and has high preimage min-entropy

Preimage Sampleable Trapdoor Functions (PSF)

- Key Generation: $\mathrm{G}\left(\mathrm{I}^{\mathrm{n}}\right)=(\mathrm{sk}, \mathrm{pk})$
- $f_{p k}(x)$ is efficiently computable
 and uniformly distributed for random x
- $f^{\prime}{ }^{\text {sk }}(y)$ samples randomly from those x with $f_{p k}(x)=y$
- (G,f,f-l$)$ is secure if it is one-way, collision-resistant and has high preimage min-entropy
- secure construction from lattices [GPV08]

Quantum-Accessible PseudoRandom Functions (PRF)

- efficiently computable function family such that for all efficient quantum distinguishers D:

$$
\left|\operatorname{Pr}\left[D^{P R F(k, \cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{O(\cdot)}\left(1^{n}\right)=1\right]\right|
$$

is negligible.

However, currently

Quantum-Accessible PseudoRandom Functions (PRF)

- efficiently computable function family such that for all efficient quantum distinguishers D:

$$
\left|\operatorname{Pr}\left[D^{P R F(k, \cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{O(\cdot)}\left(1^{n}\right)=1\right]\right|
$$

is negligible.
quantum access
However, currently
are known

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then

 Sign $_{\text {sk }}(m)=f^{\mathrm{f}}$ sk $(\mathrm{H}(\mathrm{m}))$ is secure in the CROM
Sign-Adv

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then

 Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{I}} \mathrm{sk}(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Sign-Adv

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then

 Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{I}} \mathrm{sk}(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Sign-Adv

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then

 Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{-1}{ }_{\text {sk }}(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Classical ROM Proof

Theorem: Suppose ($\left.G, f, f^{\prime}\right)$ is a PSF, then Sign $_{\text {sk }}(m)=f^{\prime}{ }_{\text {sk }}(H(m))$ is secure in the CROM

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{\mathrm{I}}$ sk $(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Sign-Adv

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{\mathrm{f}}$ sk $(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Sign-Adv

Classical ROM Proof

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=\mathrm{f}^{\mathrm{I}}$ sk $(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Classical ROM Proof

Theorem: Suppose ($\mathrm{G}, \mathrm{f}, \mathrm{f}^{\prime}$) is a PSF, then $\operatorname{Sign}_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{I}} \mathrm{sk}^{\mathrm{s}}(\mathrm{H}(\mathrm{m})$) is secure in the CROM

m_{0}	s_{0}	$o_{0}=f_{p k}\left(s_{0}\right)$
m_{I}	s_{I}	$o_{\mathrm{I}}=f_{\mathrm{pk}}\left(s_{\mathrm{I}}\right)$
\ldots	\ldots	\ldots
m_{i}	s_{i}	$o_{i}=f_{p k}\left(s_{\mathrm{i}}\right)$
\ldots	\ldots	\ldots

Classical ROM Proof

Theorem: Suppose ($\mathrm{G}, \mathrm{f}, \mathrm{f}^{\prime}$) is a PSF, then Signsk $_{\text {sk }}(m)=f^{\mathrm{l}}{ }_{\text {sk }}(\mathrm{H}(\mathrm{m})$) is secure in the CROM

m_{0}	s_{0}	$o_{0}=f_{p k}\left(s_{0}\right)$
m_{I}	s_{I}	$o_{\mathrm{I}}=f_{\mathrm{pk}}\left(s_{\mathrm{I}}\right)$
\ldots	\ldots	\ldots
m_{i}	s_{i}	$o_{i}=f_{p k}\left(s_{\mathrm{i}}\right)$
\ldots	\ldots	\ldots

Classical ROM Proof

Theorem: Suppose ($\mathrm{G}, \mathrm{f}, \mathrm{f}^{\prime}$) is a PSF, then $\operatorname{Sign}_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{I}} \mathrm{sk}^{\mathrm{s}}(\mathrm{H}(\mathrm{m})$) is secure in the CROM

m_{0}	s_{0}	$o_{0}=f_{p k}\left(s_{0}\right)$
m_{I}	s_{I}	$o_{\mathrm{I}}=f_{\mathrm{pk}}\left(s_{\mathrm{I}}\right)$
\ldots	\ldots	\ldots
m_{i}	s_{i}	$o_{\mathrm{i}}=f_{\mathrm{pk}}\left(s_{\mathrm{i}}\right)$
\ldots	\ldots	\ldots

$\xrightarrow{\left(m^{*}, \sigma^{*}\right)}$ look up $m^{*}=m_{i^{*}}$

Classical ROM Proof

Theorem: Suppose ($\mathrm{G}, \mathrm{f}, \mathrm{f}^{\prime}$) is a PSF, then Signsk $_{\text {sk }}(m)=f^{\prime}{ }_{\text {sk }}(H(m))$ is secure in the CROM B $\quad \downarrow \mathrm{pk}$

Classical ROM Proof

Theorem: Suppose ($\mathrm{G}, \mathrm{f}, \mathrm{f}^{\prime}$) is a PSF, then Signsk $_{\text {sk }}(m)=f^{\prime}{ }_{\text {sk }}(H(m))$ is secure in the CROM B $\quad \downarrow \mathrm{pk}$

m_{0}	s_{0}	$o_{0}=f_{p k}\left(s_{0}\right)$
m_{I}	s_{I}	$o_{\mathrm{I}}=f_{p k}\left(s_{\mathrm{I}}\right)$
\ldots	\ldots	\ldots
m_{i}	s_{i}	$o_{i}=f_{p k}\left(s_{\mathrm{i}}\right)$
\ldots	\ldots	\ldots

$\xrightarrow{\left(m^{*}, \sigma^{*}\right)}$ look up $\mathrm{m}^{*}=\mathrm{m}_{i^{*}}$
collision of $\mathrm{f:}\left(\mathrm{~s}_{*}^{*}, \sigma^{*}\right)$

Modified GPV Reduction

Theorem: Suppose ($\left.G, f, f^{\prime}\right)$ is a PSF, then Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{I}}{ }_{\text {sk }}(\mathrm{H}(\mathrm{m})$) is secure in the CROM

Sign-Adv

Modified GPV Reduction

Theorem: Suppose (G,f,f f^{-1}) is a PSF, then Sign $_{s k}(m)=f^{-1}{ }_{\text {sk }}(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose ($\left.G, f, f^{\prime}\right)$ is a PSF, then Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{I}}{ }_{\text {sk }}(\mathrm{H}(\mathrm{m})$) is secure in the CROM

Sign-Adv

Modified GPV Reduction

Theorem: Suppose (G,f,f f^{-}) is a PSF, then Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{\mathrm{l}} \mathrm{sk}(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Sign-Adv

O_{c}

Modified GPV Reduction

Theorem: Suppose (G,f,f f^{-1}) is a PSF, then Sign $_{\text {sk }}(\mathrm{m})=\mathrm{f}^{-1}{ }_{\text {sk }}(\mathrm{H}(\mathrm{m}))$ is secure in the CROM

Sign-Adv

Modified GPV Reduction

Theorem: Suppose (G,f,f ${ }^{-}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose (G,f,f ${ }^{-}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then

 Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose (G,f,f f^{-1}) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

Modified GPV Reduction

 Theorem: Suppose (G,f,f ${ }^{-1}$) is a PSF, then Sign $_{\text {sk }}(m)=f^{-1}$ sk $(H(m))$ is secure in the CROM

History-Free (Classical) Reduction

B

Sign-Adv

History-Free (Classical) Reduction

B

Sign-Adv
O_{c}

History-Free (Classical) Reduction

Sign-Adv
Oc_{c}

History-Free (Classical) Reduction

History-Free (Classical) Reduction

Sign-Adv
Oc_{c}

History-Free (Classical) Reduction

Sign-Adv
O_{c}

History-Free (Classical) Reduction

Sign-Adv

History-Free (Classical) Reduction

Sign-Adv
O_{c}

History-Free (Classical) Reduction

Sign-Adv
O_{c}

History-Free (Classical) Reduction

History-Free Security

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

History-Free Security

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

B
 Sign-Adv

O_{c}

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Proof

Theorem:Assume that quantum-accessible PRFs exist, then a signature scheme with history-free reduction is secure in the QROM.

Other History-Free Reductions

- Signatures from claw-free permutations: - Full-Domain Hash [Coron00]
- Katz-Wang Signatures [KW03]

Encryption

- history-freeness is complicated by the challenge query. Easier to prove security in QROM directly.

Encryption

- history-freeness is complicated by the challenge query. Easier to prove security in QROM directly.
- CPA-security of Bellare-Rogaway encryption [BR93]:

$$
E_{p k}(m)=f_{p k}(r) \| m \oplus O(r)
$$

where r random and f is a trapdoor permutation.

Encryption

- history-freeness is complicated by the challenge query. Easier to prove security in QROM directly.
- CPA-security of Bellare-Rogaway encryption [BR93]:

$$
E_{p k}(m)=f_{p k}(r) \| m \oplus O(r)
$$

where r random and f is a trapdoor permutation.

- CCA-security of hybrid encryption scheme:

$$
E_{p k}(m)=f_{p k}(r) \| E_{O(r)}^{\mathrm{sym}}(m)
$$

where f is a trapdoor permutation and $E^{\text {sym }}$ is a CCA-secure private-key encryption

Summary

Summary

- Explanation of "querying oracles in superposition"

Summary

- Explanation of "querying oracles in superposition"

- In general, classical security reductions do not carry over to the quantum world

Summary

- Explanation of "querying oracles in superposition"

- In general, classical security reductions do not carry over to the quantum world
- Restricted classes of classical security proofs do imply quantum security

Summary

- Explanation of "querying oracles in superposition"

- In general, classical security reductions do not carry over to the quantum world
- Restricted classes of classical security proofs do imply quantum security
- GPV signatures and BR encryption are secure in the QROM

Open Problems

- Generic Full-Domain Hash

Open Problems

- Generic Full-Domain Hash
- lattice-based identity-based encryption [GPV08]

Open Problems

- Generic Full-Domain Hash
- lattice-based identity-based encryption [GPV08]
- Signatures from Identification Protocols [Fiat Shamir 86]

Open Problems

- Generic Full-Domain Hash
- lattice-based identity-based encryption [GPV08]
- Signatures from Identification Protocols [Fiat Shamir 86]
- is history-freeness necessary?

Open Problems

- Generic Full-Domain Hash
- lattice-based identity-based encryption [GPV08]
- Signatures from Identification Protocols [Fiat Shamir 86]
- is history-freeness necessary?
- CCA-security from weaker security notions [Fujisaki Okamoto 99]

Open Problems

- Generic Full-Domain Hash
- lattice-based identity-based encryption [GPV08]
- Signatures from Identification Protocols [Fiat Shamir 86]
- is history-freeness necessary?
- CCA-security from weaker security notions [Fujisaki Okamoto 99]
- Quantum-accessible PRFs from one-way functions

Thank you! Questions?

http://arxiv.org/abs/l008.093 I http://eprint.iacr.org/2010/428

Thank you! Questions?

$$
\frac{(-3)}{\sum_{x} \alpha_{x}|x\rangle}
$$

http://arxiv.org/abs/ 008.093 I http://eprint.iacr.org/2010/428

