Quantum Cryptography

Christian Schaffner

ILLC, University of Amsterdam

Centrum Wiskunde & Informatica

Logic, Language and Computation Monday, 21 September 2015

1969: Man on the Moon

http://www.unmuseum.org/moonhoax.htm

How can you prove that you are at a specific location?

What will you Learn from this Talk?

- Classical Cryptography
- Quantum Computation & Teleportation
- Position-Based Cryptography
- Garden-Hose Model

Classical Cryptography

- 3000 years of fascinating history
- until 1970: private communication was the only goal

Modern Cryptography

- is everywhere!
- is concerned with all settings where people do not trust each other

6

- Goal: Eve does not learn the message
- Setting: Alice and Bob share a secret key k

eXclusive OR (XOR) Function

X	y	x⊕y
0	0	0
1	0	1
0	1	1
1	1	0

Some properties:

 $\forall x : x \oplus 0 = x$

 $\forall x: x \oplus x = 0$

 $\Rightarrow \forall x,y : x \oplus y \oplus y = x$

One-Time Pad Encryption

m = 0000 1111
Alice

k = 0101 1011

 $m = c \oplus k = 0000 1111$

- Goal: Eve does not learn the message
- Setting: Alice and Bob share a key k
- Recipe:

$$c = m \oplus k = 0101 \ 0100$$

$$k = 0101 1011$$

$$c \oplus k = 0000 1111$$

$$c \oplus k = m \oplus k \oplus k = m \oplus 0 = m$$

Is it secure?

Perfect Security

m = c ⊕ k = ? Bob

k = ?

- Given that
 - is it possible that
 - Yes, if
 - is it possible that
 - Yes, if
 - it is possible that
 - Yes, if

- $c = 0101 \ 0100,$
- m = 0000 0000?
- k = 0101 0100.
- m = 1111 1111 ?
- $k = 1010 \ 1011.$
- m = 0101 0101 ?
- k = 0000 0001
- In fact, every m is possible.
- Hence, the one-time pad is perfectly secure!

х	У	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Problems With One-Time Pad

- The key has to be as long as the message (Shannon's theorem)
- The key can only be used once.

Information Theory

- 6 ECTS MoL course, given in 2nd block: Nov/Dec 2015
- mandatory for Logic & Computation track
- first lecture: Tuesday, 28 October 2015, 9:00, G3.13
- http://homepages.cwi.nl/~schaffne/courses/inftheory/2015/

Claude Shannon

Mathematician

Claude Elwood Shannon was an American mathematician, electronic engineer, and cryptographer known as "the father of information theory". Shannon is famous for having founded information theory with a landmark paper that he published in 1948. Wikipedia

Born: April 30, 1916, Petoskey, Michigan, United States

Died: February 24, 2001, Medford, Massachusetts, United States

Problems With One-Time Pad

- The key has to be as long as the message (Shannon's theorem)
- The key can only be used once.
- In practice, other encryption schemes (such as <u>AES</u>) are used which allow to encrypt long messages with short keys.
- One-time pad does not provide <u>authentication</u>:
 Eve can easily flip bits in the message

Symmetric-Key Cryptography

- Encryption insures secrecy:
 Eve does not learn the message, e.g. one-time pad
- Authentication insures integrity:
 Eve cannot alter the message
- General problem: players have to exchange a key to start with

Introduction to Modern Cryptography

- 6 ECTS MoL course, usually given in Feb/March
- 2016: probably not
- http://homepages.cwi.nl/~schaffne/courses/crypto/2015/

What to Learn from this Talk?

- Classical Cryptography
- Quantum Computing & Teleportation
- Position-Based Cryptography
- Garden-Hose Model

Quantum Bit: Polarization of a Photon

qubit as unit vector in \mathbb{C}^2

Qubit: Rectilinear/Computational Basis

Detecting a Qubit

Measuring a Qubit

Diagonal/Hadamard Basis

Illustration of a Superposition

Illustration of a Superposition

$$|0\rangle_{+}$$

$$|1\rangle_{+}$$

 \times basis

 $|0\rangle_{\times}$

 $|1\rangle_{>}$

Measurements:

with prob. 1 yields 1

with prob. ½ yields 0

with prob. ½ yields 1

Wonderland of Quantum Mechanics

Quantum is Real!

generation of random numbers

(diagram from idQuantique white paper)

 no quantum computation, only quantum communication required

Can We Build Quantum Computers?

Possible to build in theory, no fundamental theoretical

obstacles have been found yet.

Martinis group (UCSB)
9 qubits

- Canadian company "D-Wave" claims to have build a quantum computer with 1024 qubits. Did they?
- 2014: Martinis group "acquired" by Google
- 2014/15: 135+50 Mio € investment in QuTech centre in Delft
- 2015: QuSoft center in Amsterdam

No-Cloning Theorem

Proof: copying is a non-linear operation

Quantum Key Distribution (QKD)
[Bennett Brassard 84]

technically feasible: no quantum computation required, only quantum communication

EPR Pairs

²⁹ [Einstein Podolsky Rosen 1935]

- "spukhafte Fernwirkung" (spooky action at a distance)
- EPR pairs do not allow to communicate (no contradiction to relativity theory)
- can provide a shared random bit

Quantum Teleportation

30 [Bennett Brassard Crépeau Jozsa Peres Wootters 19

- does not contradict relativity theory
- teleported state can only be recovered once the classical information σ arrives

What to Learn from this Talk?

- ✓ Classical Cryptography
- ✓ Quantum Computing & Teleportation
- Position-Based Cryptography
- Garden-Hose Model

How to Convince Someone of Your Presence at a Location

http://www.unmuseum.org/moonhoax.htm

Position-Based Cryptography

Can the geographical location of a player be used as sole cryptographic credential?

- Possible Applications:
 - Launching-missile command comes from within the military headquarters
 - Talking to the correct country
 - Pizza-delivery problem / avoid fake calls to emergency services
 - . . .

Position-Based Cryptography

Gamer krijgt SWAT-team in z'n nek: swatting

© 29-08-2014, 05:49 AANGEPAST OP 29-08-2014, 05:49

Zit je lekker een oorlogsspel te spelen, valt er ineens een SWAT-team binnen. Dat gebeurde een Amerikaanse gamer. Hij had net in de livestream van z'n spel Counter Strike tegen zijn medespelers 'I think we're being swatted' - toen de deur openbrak en inderdaad een zwaarbewapend arrestatieteam binnenviel.

Dat was allemaal live te zien op de webcam: https://youtu.be/TiW-BVPCbZk?t=117

Basic task: Position Verification

- Prover wants to convince verifiers that she is at a particular position
- no coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers
- assumptions:
- communication at speed of light
- instantaneous computation
- verifiers can coordinate

Position Verification: First Try

distance bounding [Brands Chaum '93]

Position Verification: Second Try

position verification is classically impossible!

[Chandran Goyal Moriarty Ostrovsky: CRYPTO '09]

Equivalent Attacking Game

- independent messages m_x and m_y
- copying classical information
- this is impossible quantumly

Position Verification: Quantum Try

Let us study the attacking game

Attacking Game

- impossible
- but possible with entanglement!!

Entanglement attack

Entanglement attack

- the correct person can reconstruct the qubit in time!
- the scheme is completely broken

more complicated schemes?

- Different schemes proposed by
 - Chandran, Fehr, Gelles, Goyal, Ostrovsky [2010]
 - Malaney [2010]
 - Kent, Munro, Spiller [2010]
 - Lau, Lo [2010]

- Unfortunately they can all be broken!
 - general no-go theorem [Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, S 2014]

Most General Single-Round Scheme

Let us study the attacking game

Distributed Q Computation in 1 Round

- using some form of back-and-forth teleportation,
 players succeed with probability arbitrarily close to 1
- requires an exponential amount of EPR pairs

 Any position-verification protocol can be broken using an exponential number of EPR-pairs

- Question: is this optimal?
- Does there exist a protocol such that:
 - any attack requires many EPR-pairs
 - honest prover and verifiers efficient

Single-Qubit Protocol: SQP_f

Attacking Game for SQP_f

Define E(SQP_f) := minimum number of EPR pairs required for attacking SQP_f

What to Learn from this Talk?

- ✓ Classical Cryptography
- ✓ Quantum Computing & Teleportation
- ✓ Position-Based Cryptography
- Garden-Hose Model

http://arxiv.org/abs/1109.2563 Buhrman, Fehr, S, Speelman

The Garden-Hose Model

- based on their inputs, players connect pipes with pieces of hose
- Alice also connects a water tap

The Garden-Hose Model

Garden-Hose complexity of f:

GH(f) := minimum number of pipes needed to compute f

Demonstration: Inequality on Two Bits

n-Bit Inequality Puzzle

- GH(Inequality) ≤
 - demonstration: 3n
 - challenge: 2n + 1 (first student to email me solution wins)

- world record: ~1.359n [Chiu Szegedy et al 13]
- GH(Inequality) \geq n [Pietrzak '11]

Relationship between E(SQP_f) and GH(f)

$GH(f) \ge E(SQP_f)$

$GH(f) \ge E(SQP_f)$

- using x & y, can follow the water/qubit x, Alice's
- correct water/qubit using all measurement outcomes

y, Bob's telep. keys

telep. keys

$GH(f) = E(SQP_f)$?

- last slide: GH(f) ≥ E(SQP_f)
- The two models are not equivalent:
 - exists f such that GH(f) = n, but $E(SQP_f) \le log(n)$

- Quantum garden-hose model:
 - give Alice & Bob also entanglement
 - research question: are the models now equivalent?

Garden-Hose Complexity Theory

- every f has GH(f) ≤ 2ⁿ⁺¹
- if f in logspace, then GH(f) ≤ polynomial
 - efficient f & no efficient attack ⇒ P≠ L
- exist f with GH(f) exponential (counting argument)
- for $g \in \{\text{equality, IP, majority}\}$: $GH(g) \ge n / \log(n)$
 - techniques from communication complexity

Many open problems!

What Have You Learned from this Talk?

✓ Classical Cryptography

What Have You Learned from this Talk?

✓ Position-Based Cryptography

- Impossible unconditionally, but attack requires unrealistic amounts of resources
- ✓ Garden-Hose Model
 - model of communication complexity

Take on the crypto challenge!

- GH(Inequality) = 2n + 1 pipes
 - the first person to tell me (<u>cschaffner@uva.nl</u>) the protocol wins:

- course "Information Theory"
- see you in the next block on 28 October 2015!

Any f has $GH(f) \leq 2^{n+1}$

$$f(x,y)=0$$

f(x,y)=1

Open Problems

- Is Quantum-GH(f) equivalent to E(SQP_f)?
- Find good lower bounds on E(SQP_f)
- Does P≠L/poly imply f in P with GH(f) > poly ?
- Are there other position-verification schemes?
- Parallel repetition, link with Semi-Definite Programming (SDP) and non-locality.
- Implementation: handle noise & limited precision
- Can we achieve other position-based primitives?

Quantum Operations

- are linear isometries
- lacksquare can be described by a unitary matrix: $UU^\dagger=U^\dagger U=\operatorname{id}$
- examples:

66

- identity
- bitflip (Pauli X): mirroring at $|0\rangle_{ imes}$ axis

Quantum Operations

- are linear isometries
- lacksquare can be described by a unitary matrix: $UU^\dagger=\operatorname{id}$
- examples:
 - identity
 - bitflip (Pauli X): mirroring at $|0
 angle_{ imes}$ axis
 - phase-flip (Pauli Z): mirroring at $|0\rangle_+$ axis

both (Pauli XZ)

- inf-theoretic security against unrestricted eavesdroppers:
 - quantum states are unknown to Eve, she cannot copy them
 - honest players can check whether Eve interfered
- technically feasible: no quantum computation required, only quantum communication

Early results of QIP

- Efficient quantum algorithm for factoring [Shor'94]
 - breaks public-key cryptography (RSA)
- Fast quantum search algorithm [Grover'96]
 - quadratic speedup, widely applicable
- Quantum communication complexity
 - exponential savings in communication
- Quantum Cryptography [Bennett-Brassard'84, Ekert'91]
 - Quantum key distribution