Position-Based Quantum Cryptography

Christian Schaffner

ILLC, University of Amsterdam

Centrum Wiskunde & Informatica

Advances in Quantum Cryptography Workshop Institut Henri Poincaré, Paris Tuesday, 24 March 2015

1969: Man on the Moon

http://www.unmuseum.org/moonhoax.htm

How can you prove that you are at a specific location?

Position-Based Cryptography

ongoing project with:

Harry Buhrman

Serge Fehr

Nicolas Gisin

Adrian Kent

Florian Speelman

Hugo Zbinden

Nishanth Chandran

Ran Gelles

Vipul Goyal

Rafail Ostrovsky

• • •

Outline of the Talk

- Notation & Quantum Teleportation
- Position-Based Cryptography
- No-Go Theorem
- Garden-Hose Model

Quantum Mechanics

with prob. ½ yields 0

with prob. ½ yields 1

No-Cloning Theorem

Proof: copying is a non-linear operation

Quantum Teleportation

7 [Bennett Brassard Crépeau Jozsa Peres Wootters 1993]

- does not contradict relativity theory
- teleported state can only be recovered once the classical information σ arrives

Port-Based Teleportation

- no correction operation required
- works only approximately
- requires 2ⁿ EPR pairs for teleporting n qubits

Outline of the Talk

- ✓ Notation & Quantum Teleportation
- Position-Based Cryptography
- No-Go Theorem
- Garden-Hose Model

How to Convince Someone of Your Presence at a Location

http://www.unmuseum.org/moonhoax.htm

Basic Task: Position Verification

- Prove you are at a certain location:
 - launching-missile command comes from within the military headquarters
 - talking to the correct country
 - pizza delivery problem
 - **...**
- building block for advanced cryptographic tasks:
 - authentication, position-based key-exchange
 - can only decipher message at specific location

Can the geographical location of a player be used as cryptographic credential?

Basic task: Position Verification

- Prover wants to convince verifiers that she is at a particular position
- no coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers
- assumptions:
- communication at speed of light
- instantaneous computation
- verifiers can coordinate

Position Verification: First Try

distance bounding [Brands Chaum '93]

Position Verification: Second Try

position verification is classically impossible!

[Chandran Goyal Moriarty Ostrovsky: CRYPTO '09]

Equivalent Attacking Game

- independent messages m_x and m_y
- copying classical information
- this is impossible quantumly

Position Verification: Quantum Try

Let us study the attacking game

Attacking Game

- impossible
- but possible with entanglement!!

Entanglement attack

Entanglement attack

- the correct person can reconstruct the qubit in time!
- the scheme is completely broken

more complicated schemes?

- Different schemes proposed by
 - Chandran, Fehr, Gelles, Goyal, Ostrovsky [2010]
 - Malaney [2010]
 - Kent, Munro, Spiller [2010]
 - Lau, Lo [2010]
- Unfortunately they can all be broken!
 - general no-go theorem [Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, S 2010]

Most General Single-Round Scheme

Let us study the attacking game

Distributed Q Computation in 1 Round

- tricky back-and-forth teleportation [Vaidman 03]
- using a double exponential amount of EPR pairs,
 players succeed with probability arbitrarily close to 1
- improved to exponential in [Beigi König '11]

Using Port-Based Teleportation

Using Port-Based Teleportation

No-Go Theorem

- Any position-verification protocol can be broken
 - using a double-exponential number of EPR-pairs
 - reduced to single-exponential [Beigi, König'11]

- Question: is this optimal?
- Does there exist a protocol such that:
 - any attack requires many EPR-pairs
 - honest prover and verifiers efficient

Single-Qubit Protocol: SQP_f

Attacking Game for SQP_f

Define E(SQP_f) := minimum number of EPR pairs required for attacking SQP_f

Outline of the Talk

- ✓ Notation & Quantum Teleportation
- ✓ Position-Based Cryptography
- ✓ No-Go Theorem
- Garden-Hose Model

Buhrman, Fehr, S, Speelman: The Garden-Hose Model Innovations in Theoretical Computer Science 2013, arXiv:1109.2563

The Garden-Hose Model

The Garden-Hose Model

- based on their inputs, players connect pipes with pieces of hose
- Alice also connects a water tap

The Garden-Hose Model

Garden-Hose complexity of f:

GH(f) := minimum number of pipes needed to compute f

Demonstration: Inequality on Two Bits

n-Bit Inequality Puzzle

- GH(Inequality) ≤
 - demonstration: 3n
 - [Margalit Matsliah '12]: ~1.547n (using IBM's SAT solver)

- ~1.536n, ~1.505n, ~1.457n [Dodson '12], ~1.448n
- current world-record: ~1.359n [Chiu Szegedy et al 13]
- GH(Inequality) \geq n [Pietrzak '11]

Inequality with 4 Pipes and 6 Inputs

 $x \in \{1, \dots, 6\}$

$$y \in \{1, \ldots, 6\}$$

- Alice knows where water exits if x=y
- yields 4 / log(6) pprox 1.547 pipes per bit

$$x = y$$

$$x \neq y$$

Any f has $GH(f) \leq 2^{n+1}$

$$f(x,y)=0$$

f(x,y)=1

Relationship between E(SQP_f) and GH(f)

$GH(f) \ge E(SQP_f)$

$GH(f) \ge E(SQP_f)$

correct water/qubit using all measurement outcomes

telep. keys telep. keys

$GH(f) = E(SQP_f)$?

- last slide: GH(f) ≥ E(SQP_f)
- The two models are not equivalent:
 - exists f such that GH(f) = n, but $E(SQP_f) \le log(n)$
- Quantum garden-hose model:
 - give Alice & Bob also entanglement
 - research question: are the models now equivalent?

Garden-Hose Complexity Theory

- every f has GH(f) ≤ 2ⁿ⁺¹
- if f in logspace, then GH(f) ≤ polynomial
 - efficient f & no efficient attack ⇒ P≠ L
- exist f with GH(f) exponential (counting argument)
- for $g \in \{\text{equality, IP, majority}\}$: $GH(g) \ge n \log(n)$
 - techniques from communication complexity

- Many open problems!
- recent results by Klauck, Podder in arxiv:1412.4904

What Have You Learned from this Talk?

✓ Port-Based Quantum Teleportation

✓ Position-Based Cryptography

What Have You Learned from this Talk?

- ✓ No-Go Theorem
 - Impossible unconditionally, but attack requires unrealistic amounts of resources
- ✓ Garden-Hose Model
 - Restricted class of single-qubit schemes: SQP_f
 - Easily implementable
 - Garden-hose model to study attacks
 - Connections to complexity theory

Open Problems

- Is Quantum-GH(f) equivalent to E(SQP_f)?
- Find good lower bounds on E(SQP_f)
- Are there other position-verification schemes?
 Connection with non-local games
- Position verification in higher dimensions
- Experimental problems: handle losses and measurement errors
- Can we achieve other position-based primitives?
- ...

EPR Pairs

45 [Einstein Podolsky Rosen 1935]

- "spukhafte Fernwirkung" (spooky action at a distance)
- EPR pairs do not allow to communicate (no contradiction to relativity theory)
- can provide a shared random bit (or other non-signaling correlations)

Quantum Key Distribution (QKD)
[Bennett Brassard 84, Ekert 91]

