Computational Security of Quantum Encryption

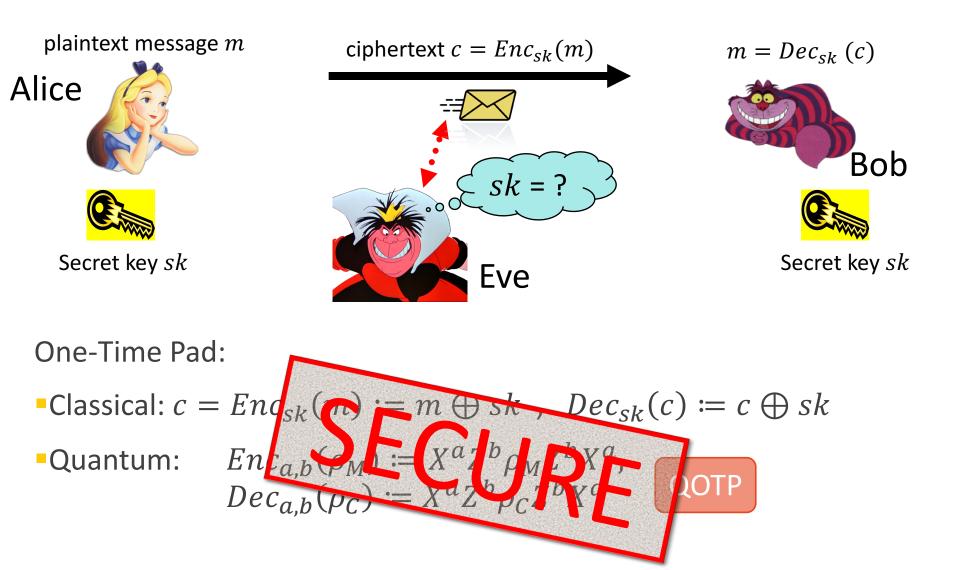
http://arxiv.org/abs/1602.01441

GORJAN ALAGIC, COPENHAGEN ANNE BROADBENT, OTTAWA BILL FEFFERMAN, MARYLAND TOMMASO GAGLIARDONI, DARMSTADT MICHAEL ST JULES, OTTAWA

CHRISTIAN SCHAFFNER, AMSTERDAM

QCrypt 2016. Friday, September 16, 2016. Washington DC, USA

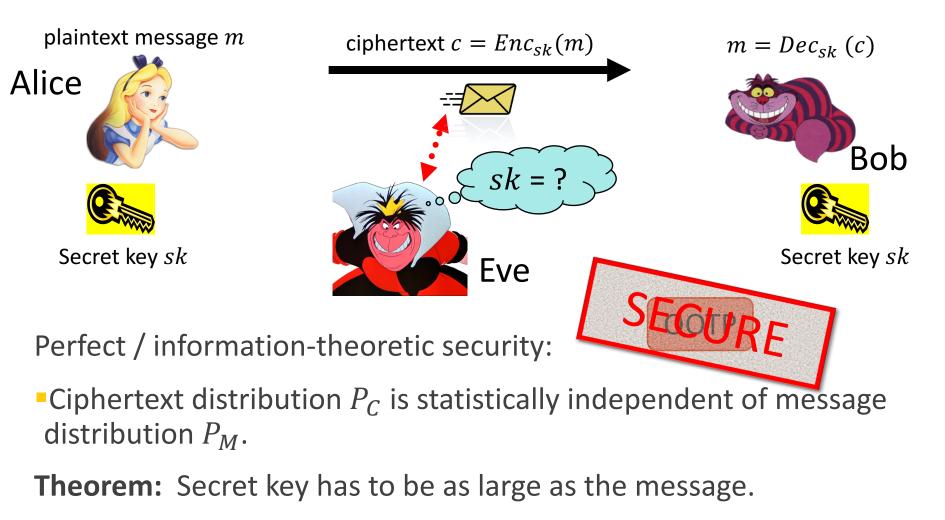
Secure Encryption



End of Talk

Thank you for your attention!

Information-Theoretic Security



Highly impractical, e.g. for encrypting a video stream...

[Shannon 48, Dodis 12, Boykin Roychowdhury 03]

Computational Security

Secret key sk

ciphertext $c = Enc_{sk}(m)$

Eve

 $m = Dec_{sk}(c)$

Threat model:

- Eve sees ciphertexts (eavesdropper)
- Eve knows plaintext/ciphertext pairs
- Eve chooses plaintexts to be encrypted
- Eve can decrypt ciphertexts

Security guarantee:

- c does not reveal sk
- c does not reveal the whole m
- c does not reveal any bit of m
- c does not reveal "anything" about m

Semantic Security

ciphertext $c = Enc_{sk}(m)$

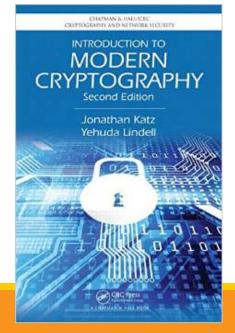
$$m = Dec_{sk}(c)$$

Secret key sk

DEFINITION 3.12 A private-key encryption scheme (Enc, Dec) is semantically secure in the presence of an eavesdropper if for every PPT algorithm \mathcal{A} there exists a PPT algorithm \mathcal{A}' such that for any PPT algorithm Samp and polynomial-time computable functions f and h, the following is negligible:

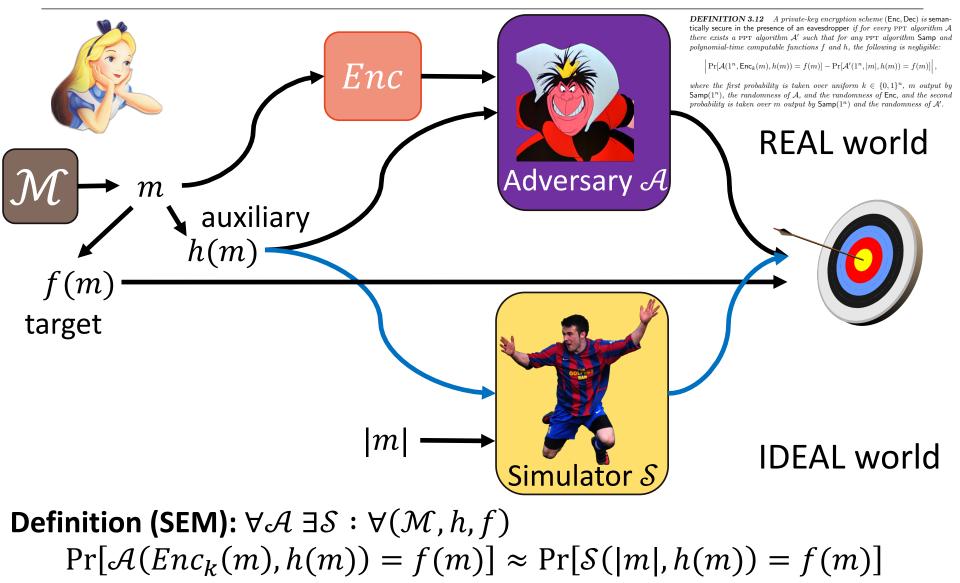
 $\Pr[\mathcal{A}(1^n, \mathsf{Enc}_k(m), h(m)) = f(m)] - \Pr[\mathcal{A}'(1^n, |m|, h(m)) = f(m)] |,$

where the first probability is taken over uniform $k \in \{0,1\}^n$, m output by $\mathsf{Samp}(1^n)$, the randomness of \mathcal{A} , and the randomness of Enc , and the second probability is taken over m output by $\mathsf{Samp}(1^n)$ and the randomness of \mathcal{A}' .



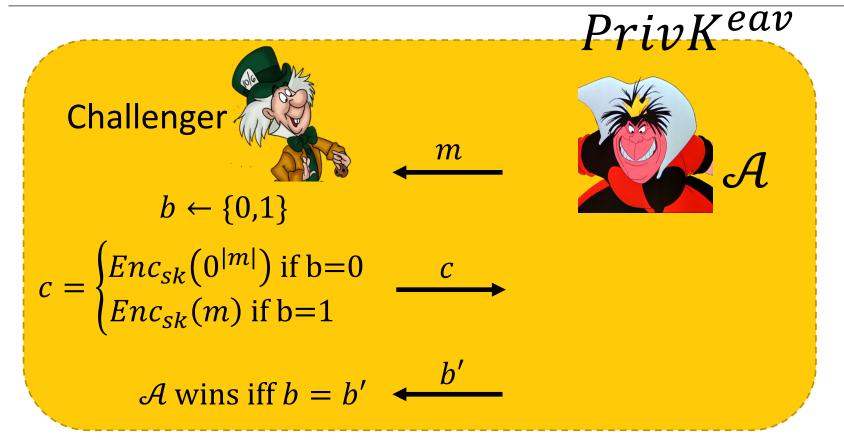
[Goldwasser Micali 84]

Classical Semantic Security



[Goldwasser Micali 84]

Classical Indistinguishability



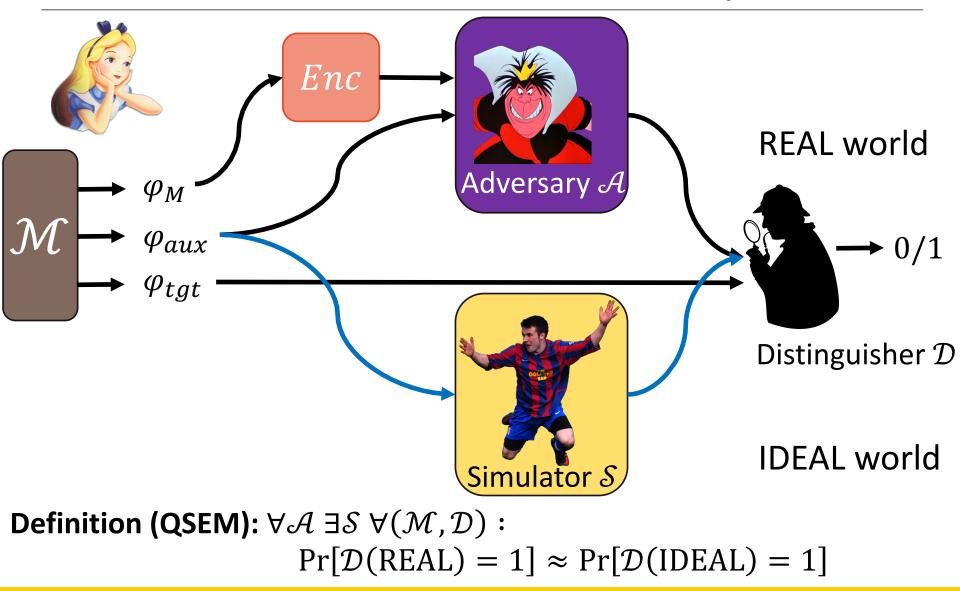
Definition (IND): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } PrivK^{eav}] \leq \frac{1}{2} + negl(n)$ **Theorem:** SEM \Leftrightarrow IND

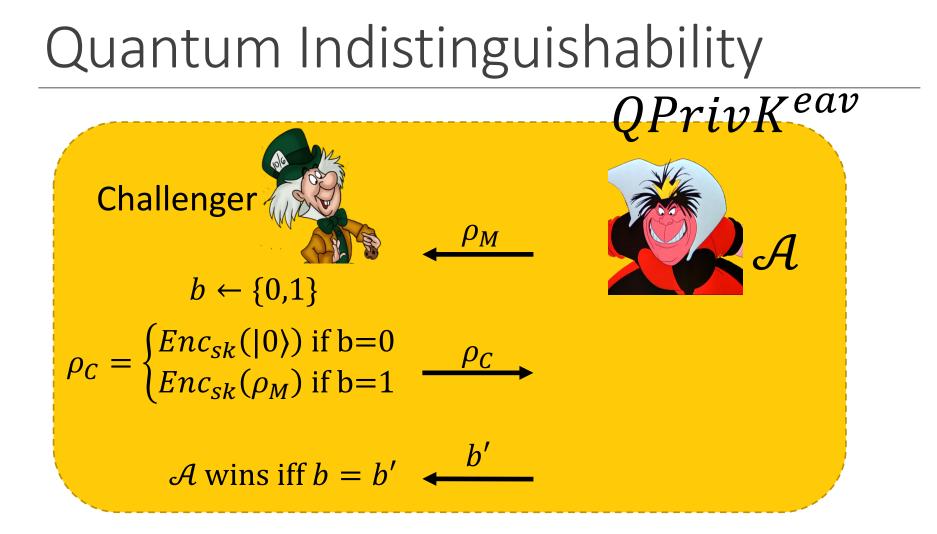
[Goldwasser Micali 84]

Our Contributions

- 1. Formal definition of Quantum Semantic Security
- 2. Equivalence to Quantum Indistinguishability
- 3. Extension to CPA and CCA1 scenarios
- 4. Construction of IND-CCA1 Quantum Secret-Key Encryption from Post-Quantum One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from Post-Quantum One-Way Trapdoor Permutations

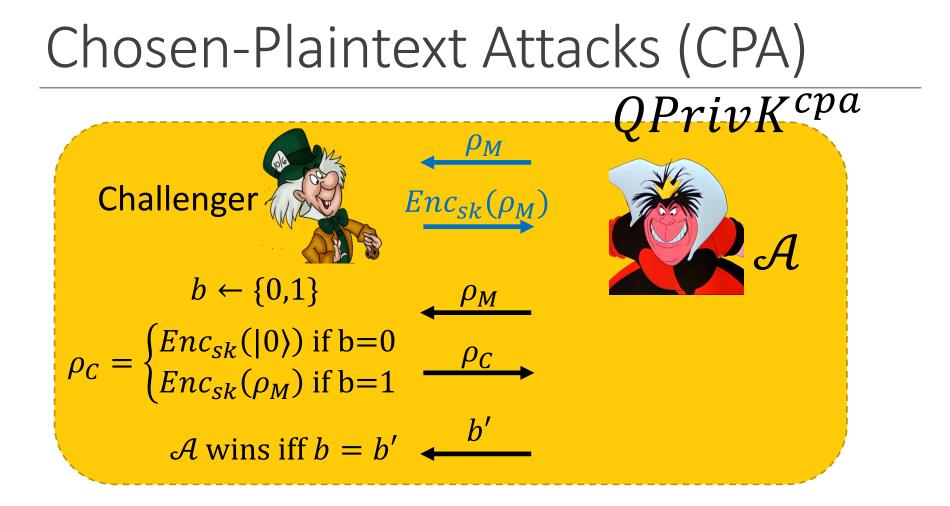
Quantum Semantic Security



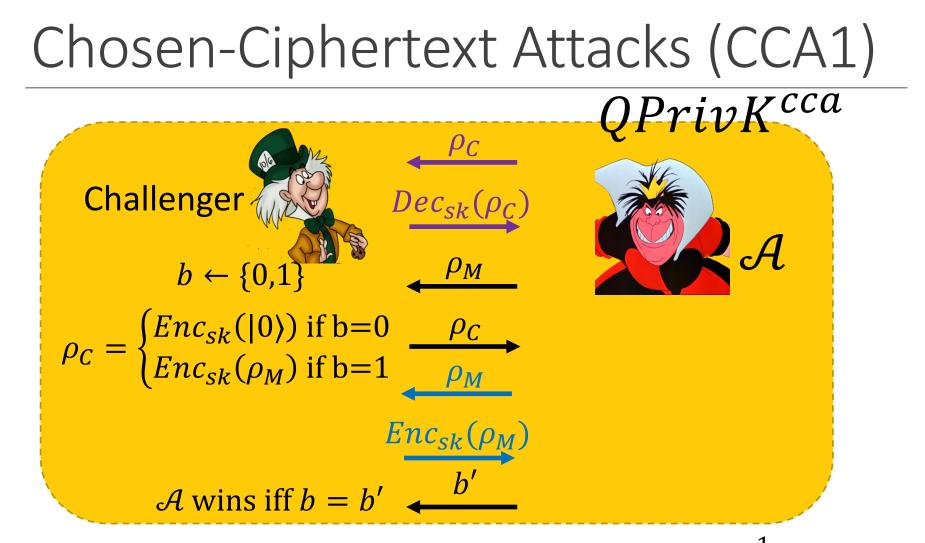


Definition (QIND): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{eav}] \leq \frac{1}{2} + negl(n)$ **Theorem:** QSEM \Leftrightarrow QIND

QIND: [Broadbent Jeffery 15, Gagliardoni Huelsing Schaffner 16]



Definition (QIND-CPA): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{cpa}] \leq \frac{1}{2} + negl(n)$ **Theorem:** QSEM-CPA \Leftrightarrow QIND-CPA **Fact:** CPA security requires **randomized encryption**



Definition (QIND-CCA1): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{cca}] \leq \frac{1}{2} + negl(n)$ **Theorem:** QSEM-CCA1 \Leftrightarrow QIND-CCA1 **Fact:** QSEM-CCA1 $\stackrel{\neq}{\Rightarrow}$ QIND-CPA $\stackrel{\neq}{\Rightarrow}$ QIND ✓ Formal definition of Quantum Semantic Security

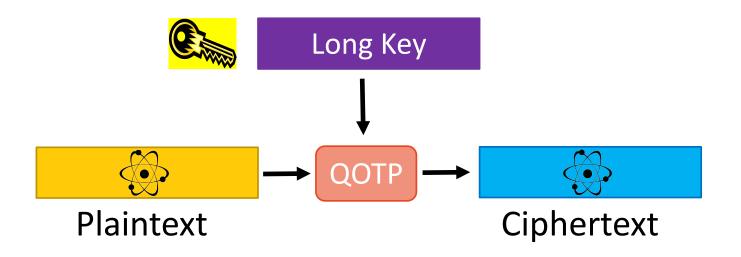
- Equivalence to Quantum Indistinguishability
- Extension to CPA and CCA1 scenarios
- 4. Construction of IND-CCA1 Quantum Secret-Key Encryption from Post-Quantum One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from Post-Quantum One-Way Trapdoor Permutations

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

-quantum one-time pad (QOTP)



Not even CPA secure, scheme is not randomized!

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

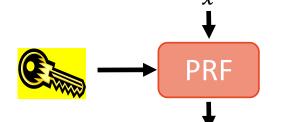
Ingredients:

-quantum one-time pad (QOTP)

-quantum-secure one-way function (OWF)

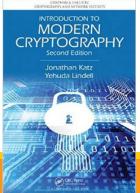
 $f: x \mapsto y$ easy to compute, but hard to invert even for quantum adversaries, e.g. lattice-problems, ...

Theorem: One-Way Function \Rightarrow Pseudo-Random Function



OWF

 ${f_k: x \mapsto y}_k$ is indistinguishable from random function if key k is unknown



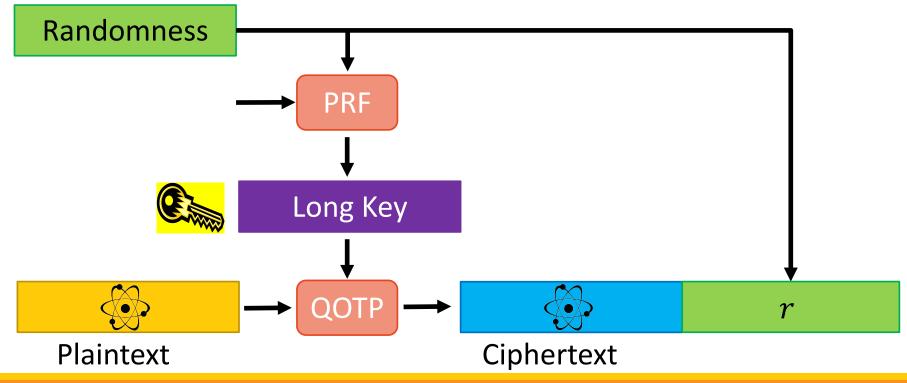
Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

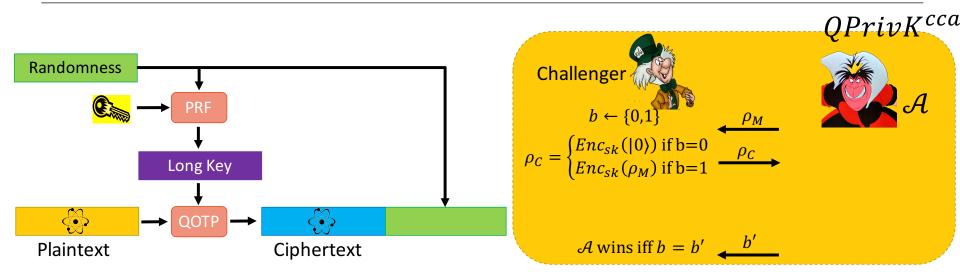
-quantum one-time pad (QOTP)

•quantum-secure one-way function (OWF) \Rightarrow PRF



Classical version: [Goldreich Goldwasser Micali 85]

Intuition of CCA1 security



 $\langle \bullet \rangle$

 r_1

 r_a

 r^*

- 1. Replace pseudo-random function with totally random function
- 2. Encryption queries result in polynomially many ciphertexts with different randomness:
- With overwhelming probability the randomness of the challenge ciphertext will be different from previous r's.

Conclusion and Open Questions

- ✓ Formal definition of Quantum Semantic Security
- Equivalence to Quantum Indistinguishability
- ✓ Extension to CPA and CCA1 scenarios
- ✓ Construction of IND-CCA1 Quantum Secret-Key Encryption from Post-Quantum One-Way Functions
- Construction of Quantum Public-Key Encryption from Post-Quantum One-Way Trapdoor Permutations
- How to define quantum CCA2 security?

Thank you!

http://arxiv.org/abs/1602.01441

Questions

Quantum Public-Key Encryption

