Quantum Cryptography

Christian Schaffner

Research Center for Quantum Software

Institute for Logic, Language and Computation (ILLC) University of Amsterdam

Centrum Wiskunde & Informatica

QuSoft Seminar Friday, 22 January 2016

1969: Man on the Moon

http://www.unmuseum.org/moonhoax.htm

How can you prove that you are at a specific location?

What will you learn from this Talk?

- Introduction to Quantum Mechanics
- Quantum Key Distribution
- Position-Based Cryptography

Quantum Bit: Polarization of a Photon

qubit as unit vector in \mathbb{C}^2

Qubit: Rectilinear/Computational Basis

Measuring a Qubit

Diagonal/Hadamard Basis

Measuring Collapses the State

Measuring Collapses the State

 $|0\rangle_{+}$

 $|1\rangle_{+}$

 \times basis

 $|0\rangle_{\times}$

 $|1\rangle_{\times}$

Measurements:

with prob. 1 yields 1

with prob. ½ yields 0

with prob. ½ yields 1

Wonderland of Quantum Mechanics

EPR Pairs

[Einstein Podolsky Rosen 1935]

- "spukhafte Fernwirkung" (spooky action at a distance)
- EPR pairs do not allow to communicate (no contradiction to relativity theory)
- can provide a shared random bit

Quantum Teleportation

14 [Bennett Brassard Crépeau Jozsa Peres Wootters 19

- does not contradict relativity theory
- Bob can only recover the teleported qubit after receiving the classical information σ

Demonstration of Quantum Technology

generation of random numbers

(diagram from idQuantique white paper)

 no quantum computation, only quantum communication required

What will you Learn from this Talk?

- ✓ Introduction to Quantum Mechanics
- Quantum Key Distribution
- Position-Based Cryptography

No-Cloning Theorem

Proof: copying is a non-linear operation

Quantum Key Distribution (QKD)

[Bennett Brassard 84]

- Offers an quantum solution to the key-exchange problem which does not rely on computational assumptions (such as factoring, discrete logarithms, etc.)
- Puts the players into the starting position to use symmetric-key cryptography (encryption, authentication etc.).

technical difficulty (€)

Post Quantum Crypto

Quantum Cryptography Landscape

attackers systems	efficient classical attacks	efficient quantum attacks	everlasting security (store and break later)
AES	confident	longer keys	brute force
SHA	confident	longer outputs	brute force
RSA, DiscLogs	confident	Shor	brute force
Hash-Based Sign	probably	probably	brute force
McEliece	probably	probably	brute force
Lattice-based	probably	probably	brute force
QKD			
physical security			

20

- Quantum states are unknown to Eve, she cannot copy them.
- Honest players can test whether Eve interfered.

 technically feasible: no quantum computer required, only quantum communication

Quantum Hacking

What will you Learn from this Talk?

- ✓ Introduction to Quantum Mechanics
- ✓ Quantum Key Distribution
- Position-Based Cryptography

Position-Based Cryptography

- Typically, cryptographic players use credentials such as
 - secret information (e.g. password or secret key)
 - authenticated information

biometric features

Can the geographical location of a player be used as cryptographic credential?

Position-Based Cryptography

Can the geographical location of a player be used as sole cryptographic credential?

- Possible Applications:
 - Launching-missile command comes from within your military headquarters
 - Talking to the correct assembly
 - Pizza-delivery problem / avoid fake calls to emergency services
 - . . .

Basic task: Position Verification

- Prover wants to convince verifiers that she is at a particular position
- no coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers
- (over)simplifying assumptions:
 - communication at speed of light
 - instantaneous computation
 - verifiers can coordinate

Position Verification: First Try

distance bounding [Brands Chaum '93]

Position Verification: Second Try

position verification is classically impossible!

[Chandran Goyal Moriarty Ostrovsky 09]

The Attack

Position Verification: Quantum Try

Can we brake the scheme now?

Attacking Game

- Impossible to cheat due to no-cloning theorem
- Or not?

Quantum Teleportation

Bennett Brassard Crépeau Jozsa Peres Wootters 19

- does not contradict relativity theory
- Bob can only recover the teleported qubit after receiving the classical information σ

Teleportation Attack

- It is possible to cheat with <u>entanglement</u>!!
- Quantum teleportation allows to break the protocol perfectly.

No-Go Theorem

[Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner 2010] [Beigi Koenig 2011]

 Any position-verification protocol can be broken using an exponential number of entangled qubits.

Question: Are so many quantum resources really necessary?

- Does there exist a protocol such that:
 - honest prover and verifiers are efficient, but
 - any attack requires lots of entanglement

What Have You Learned from this Talk?

Quantum Mechanics

Qubits

No-cloning

Entanglement

Quantum Teleportation

What Have You Learned from this Talk?

Quantum Key Distribution (QKD)

✓ Position-Based Cryptography

Thank you for your attention!

check http://arxiv.org/abs/1510.06120 for a survey about quantum cryptography beyond key distribution

