
Sport Ratings

Honours project

Authors:
Joost Hoppenbrouwer
Marysia Winkels

Supervisor:
Christian Schaffner

Contents

1 Introduction 2

2 Algorithms 3
2.1 least squares . 3
2.2 Maximum Likelihood . 5
2.3 Keener . 7
2.4 Elo . 9

3 Data 12
3.1 Windmill Windup . 12
3.2 National Football League . 13
3.3 Dummy data . 13

4 Tools 15
4.1 Correctness checks & Validation 15
4.2 Visualisation . 16
4.3 Hindsight and Foresight . 20

5 Results and Discussion 21
5.1 Advantages and Disadvantages in theory 21
5.2 Results . 22
5.3 Conclusions & Future Research 24

1

1 Introduction

In our current world, sport is one of the biggest businesses. In soccer, for
example, both the players and the coaches are earning millions of euros per
year, clubs are willing to spend millions at transfer periods and a single win
or loss can mean a huge profit or a loss for the club. With these interests,
would it not be great if the ‘best’ team would always win? The problem here
is that a single game (in any sport) is influenced by a lot of factors (such as
condition of the players involved, or the mistakes made by the referee(s)).
This makes predicting the outcomes of sport games almost impossible, but
there do nevertheless exist algorithms that attempt to do exactly that.

During this project, it is our goal to determine what the advantages and
disadvantages are of these so-called sport rating systems. Wikipedia (2013)
describes sport rating systems as follows:
“A sports rating system is a system that analyzes the results of sports com-
petitions to provide objective ratings for each team or player. Rankings are
then derived by sorting each team’s ratings and assigning an ordinal rank to
each team starting with the highest rated team earning the #1 rank.”

Sport rating systems are mathematical models that provide ratings to teams
that indicate their strength relative to each other. Ratings are different from
rankings, as described by Langville and Meyer (2012)1:

– “A ranking of items is a rank-ordered list of the items. Thus, a ranking
vector is a permutation of the integers 1 through n.”

– “A rating of items assigns a numerical score to each item. A rating list,
when sorted, creates a ranking list.”

During this project we took a look at tournaments and leagues that aren’t
of the round-robin2 type, while we are convinced that round-robin formatted
tournaments and competitions are ‘fair’ given a point-based3 system. With
fair we mean that the final ranking of the teams gives a good reflection on
the strength of the teams. This, we think that the #1 ranked team is the
team with the highest rating.

Our second goal is to design some graphical representation which can be used

1For this project, we will use the definitions for rating and ranking given by Langville
and Meyer (2012).

2http://en.wikipedia.org/wiki/Round-robin_tournament
3A point-based system is a system where a team is awarded with an amount of points

dependent on a win, loss or draw.

2

http://en.wikipedia.org/wiki/Round-robin_tournament

to explain to participants of tournaments why their ratings are they way they
are. Several sport rating systems are used today, and during tournaments
and leagues, these systems determine the ratings for each team. The problem
is that the rating system is not always simple to understand. While experts
will understand the ratings, most times players will not. For instance, a
player might ask why a team that has lost a game has a higher rating and is
ranked above a team that has won all their games.4 The goal of the graphical
representation will be to show a team/player why their rating is what it is.

2 Algorithms

We chose to investigate, implement and experiment with five rating systems;
least squares, Maximum Likelihood, Keener, Elo and Elo scorebased. The
first steps toward using these algorithms to experiment with, is to fully un-
derstand the mathematical workings of these rating systems in order to be
able to implement them. We chose to implement these algorithms in Mat-
lab5, a numerical computing environment suitable for matrix manipulations.
The rating systems were all built in such a way that they could receive the
same matrices as input, to allow the user to use the same representation of
the sport data for all algorithms.

In order to understand the mathematical workings of the algorithms, a few
sources provided a basis for our mathematical understanding. Massey (1997)
for the explanation of the least squares algorithm, and chapters 4 and 5
from Langville and Meyer (2012) for Elo and Keener’s method. For our
understanding of maximum likelihood, we mostly relied on three blog articles
written by user “Doug” on site www.pro-football-reference.com;
Doug (2006a), Doug (2006b) and Doug (2006c).

2.1 least squares

2.1.1 Mathematical Background

The first rating system that provides ratings for each team in a competition
is the least squares method. The main assumption that forms the basis of
the least square rating system is that the difference in scores between the

4The first team most likely had stronger opponents.
5http://www.mathworks.com

3

www.pro-football-reference.com
http://www.mathworks.com

winning team and the losing team is directly proportional to the difference
in the ratings of the two teams. Therefore, the least squares rating system
attempts to express the margin of victory as a linear function of the strengths
of the playing teams.

The least squares method provides us with a vector containing the ratings
of each team, by solving the equation Xr = y for r. In this equation, X
is a matrix that contains the played games and the wins and losses within
that game. For example, a row of X might look like

[
1 0 −1 0

]
, which

indicates that team one and team three have played a game against each
other, which team one has won and team three has lost. The value at the
index of the teams that have not played is zero, indicating they were not
involved in the game. The value of the teams that have played are is either a
one (indicating that they have won) or a minus one (indicating that that team
has lost). The matrix X contains a row for each game that has been played
in the competition. Vector y has as many rows as matrix X does, as vector
y stores information about the score differences in the tournament. This
means that a 5 × 4 matrix X contains information about five games played
between four teams. The associated vector y will, as it contains information
on the scores of the played games, therefore also have five rows. The vector
r in the formula is a vector with as many values as there are teams in the
competition. As matrix X and vector y are known after the games have been
played, one would ideally like to find values for r in such a way that matrix
X multiplied by vector r results in the differences in scores that have been
recorded.

The vector of ratings will be a solution to the normal equations XTXr =
XTy. As the equations are dependent, the last row of the resulting matrix
of XTX can be replaced entirely by a row containing the value one at each
index to introduce scale. Additionally, the corresponding value in the vector
that resulted from the multiplication of XT and y should be replaced with a
zero. Replacing this information will cause no loss in information about the
games that have been played, as the information can be found elsewhere in
the XTX matrix, but does allow the results to be scaled. Vector r is found
by solving XTXr = XTy.

2.1.2 Implementation

Our implementation of this rating system was pretty straight-forward. Due
to the nature of the model, it is possible to find the normal equations without
constructing the matrix X. However, as most of the data we have used was

4

small enough to be within the computational capabilities of our system, we
have decided not to alter the system in such a way that the construction of
matrix X would not be necessary.

Although this information is not particularly necessary for the least squares
algorithm, we have built the system in such a way that it can have a matrix
s containing the actual scores scored in the games rather than the score
differences.

2.2 Maximum Likelihood

2.2.1 Mathematical Background

Another possible algorithm that can provide ratings for different teams in a
competition is called maximum likelihood. Using maximum likelihood, one
would like to maximize the ratings in such a way that the probability of what
actually happened in the competition is the highest of all possible outcomes
of the tournament. The probability of the competition’s result (the different
games ending the way they did) is the cumulative product of the probabilities
of the individual games happening the way they did. For example, if in a
competition team i beat team j and team k beat team l, the probability that
should be maximized is the product of the probability that team i beat team
j and the probability that team k beat team l. For this rating system, we
are to assume that the probability of team i beating team j can be seen as
the outcome of ri

ri+rj
, meaning the rating of the winning team i divided by

the sum of the rating of team i and team j.

If there are n teams that have played in the competition, the function P is a
function of n variables. When one attempts to maximize such a function, one
way to do so is to set all the partial derivatives with respect to these variables
to zero and then to solve that system of n equations. However, as these
equations contain products of quotients, the derivatives would be relatively
difficult to determine by hand. Instead, in order to reduce the computational
complexity, one could work with the natural log instead, as the derivative of
P would have the same sign as the derivative of the natural log of P and
they would therefore be maximized at the same place. As we have set these
n equations to zero, this enables us to determine the individual variables (or
team ratings). The easiest way to do this is through iteration. First, set all
the team ratings at a certain value, for example one. Using these set values
as initial ratings, one can calculate what the new rating would be using this

5

value. Then, one should continue to calculate the new ratings based on the
old ratings, until the numbers associated with the variables stop changing.
As these numbers have stopped changing, one has the numbers associated
with each team that solves the n equations and these numbers are the ratings
for the respective teams.

For example, if one has the equation P = i
i+j

∗ j
j+k

∗ k
i+k

∗ i
i+k

, this indicates
that during the tournament, four games have been played: one in which team
i beat team j, one in which team j beat team k, one in which team k beat
team i and one of which in which team i beat team k. As it is computa-
tionally easier to use natural logs, rather than the products of quotients, the
equation becomes:
ln(P) = ln(i)− ln(i+j)+ln(j)− ln(j+k)+ln(k)− ln(i+k)+ln(i)− ln(i+k)
or
ln(P) = 2 ln(i) + ln(j) + ln(k) − (ln(i+ j) + ln(j + k) + 2 ln(i+ c)).
The partial derivative of this equation with respect to team i is
d(ln(P))

di
= 2

i
− 1

i+j
+ 2

i+k
.

As we want to set this partial derivative to zero, this is
0 = 2

i
− 1

i+j
+ 2

i+k
or i = 2

1
i+j

+ 2
i+k

.

Setting the values of the ratings of team i, j and k all to one would mean we
are able to calculate a new value of the rating of team i by filling in all the
numbers: i = 2

1
1+1

+ 2
1+1

= 2
1
2
+1

= 4
3
.

One has to do this for the partial derivatives of the equation with respect to
j and k as well and update the values of the ratings of all the new ratings
have been calculated (in this case, for team j the new value is 1 and for
team k, the new value is 2

3
). Imagine a competition with A-Z teams. The

general pattern of the formula to determine the rating of a particular team
is as follows: Team A = Team A’s wins

Games against Team B
Rating A + Rating B

+...+ Games against Z
Rating A + Rating Z

However, as maximum likelihood initially does not take the margin of vic-
tory into account, the resulting ratings and therefore the probability a team
i might defeat a team j might be higher or lower than an expert would
intuitively suggest. Additionally, using maximum likelihood in the way pre-
viously described means that certain teams can, under certain conditions,
get infinite ratings. Especially for sports in which not all teams play against
each other, such as in American college football, it might be a good idea to
adjust the current use of the maximum likelihood rating system in such a way
that the strength of the schedule is taken into account. By treating a win as
a 99% win and a 1% loss (suppose that if team i beat team j, one treats this

6

as that out of a hundred games played, team i won 99 of these games and
team j won a single one). This fixes the problem the previously mentioned
problem of the maximum likelihood rating system by ensuring that teams
can no longer get an infinite rating (if they have never lost). Additionally,
one could tune the system by altering how a won game is perceived. The
higher the percentage won by the winning game is (the previously mentioned
99%), the more the ratings depends on the wins and losses during the com-
petition. The lower this number is, the more the rating is dependent on the
strength of the schedule.

2.2.2 Implementation

However, sadly enough we were not able to get our version of the maximum
likelihood rating system working in such a way that it could be used. We en-
countered difficulties in determining the different partial derivatives needed.
We were able to make the algorithm work if the competition had a set num-
ber of teams, but unfortunately, this was not enough to work with and we
therefore had to renounce this implementation entirely.

2.3 Keener

2.3.1 Mathematical Background

In 1993, James P. Keener developed and proposed a new method for calculat-
ing sports ratings, called Keener’s method. The method attempt to provide
teams with a measure of their absolute strength, which is dependent on their
relative strength. Langville and Meyer (2012) state:

– “The strength of a team should be gauged by its interactions with
opponents together with the strength of these opponents.”

– “The rating of each team in a given league should be uniformly pro-
portional to the strength of the team. Strength s = λ× rating r with
the same λ for every team.”

The strength of a team i relative to the strength of team j is expressed as
sij = aijrj, where aij is the measure of score difference. This is what we call
the relative strength. The absolute strength of a team i is the sum of all its
relative strengths. The strength vector, containing the absolute strengths of
each team, can be calculated as follows:

7

s = Ar =

a11 a12 ... a1m
a21 a22 ... a2m
...
am1 am2 ... amm

r1
r2
...
rm

After a tournament has been played, matrix A containing aij for all teams i
and j is known. Both the rating vector r as well as the vector containing the
absolute strengths s at that point unknown. However, as s = Ar, it is also
true that s = λr and therefore that Ar = λr. This equation can be solved,
according to Langville and Meyer (2012) by using the power method6 and the
Perron-Frobenius theorem. The power method finds the largest eigenvalue
of A to be λ and the associated eigenvector to be r.

The Perron-Frobenius theorem (“The Perron-Frobenius Theorem and the
Ranking of Football Teams”, Keener“, 1993) says that if A is nonnegative,
meaning all the score differences between two teams are above zero (aij > 0
for all i and j), and irreducible, meaning there is enough competition to get
related ratings, there must be some λ and some vector x both greater than
zero to solve Ax = λx. The λ in this equation is called the Perron value and
the vector x is called Perron vector. In case, the Perron vector will be our
rating vector r.

2.3.2 Implementation

As all our implementations should have the same input, the implementation
of Keener’s method also requires a matrix X and matrix S as input. In
order to convert these wins and losses and scores to useful information for
the Keener’s method, two additional functions had to be implemented; one
to create an O matrix, and one to create an S matrix. The O matrix contains
the all the scores a team has scored against another team. The amount of
points team 1 scored against team 4 is represented by the number in the first
row, on the fourth column. The amount of points team 4, in turn, scored
against team 1 is represented by the number on the fourth row, in the first
column. Matrix S is constructed using matrix O and contains the measure
of score differences. Rather than using a percentage, we – like Keener – have
used aij =

Sij+1

Sij+Sji+2
to calculate this. After O and S have been determined,

6See http://en.wikipedia.org/wiki/Power_iteration

8

http://en.wikipedia.org/wiki/Power_iteration

the implementation makes use of an open-source method to calculate the
Perron vector of S which is the returned rating vector r.

2.4 Elo

2.4.1 Mathematical Background

Another algorithm that provides ratings for the different teams in a com-
petition is the Elo rating system. The Elo rating system was created by
Hungarian-born physicist and chess master Arpad Elo (1903-1992). Initially,
Elo designed the system to rate chess players, but this system soon proved to
be applicable to other two team or two player sports as well. It is currently
one of the most prominent systems for rating two-player (or teams) games.
The advantage of the Elo system is that this system ensures that a player
could play somewhat better or somewhat worse than usual without it hav-
ing major consequences on the player’s rating. Additionally, the Elo system
rewards a weaker player more for defeating a stronger player than it rewards
a stronger player for defeating a weaker opponent.

The initial premise Elo used to design his system was that each chess player’s
performance could be seen as a normally distributed random variable X
whose mean (µ) could gradually change over time. However, the initial
premise that a player’s performance was a normally distributed variable was
reconsidered as more chess data became available and it provided proof that
chess performance is, generally, not normally distributed. The United States
Chess Federation and Fédération Internationale des Échecs, which had ap-
proved of Elo’s rating system in 1960 and 1970 respectively, adopted a version
of the Elo rating system in which it was assumed that the expected scoring
difference between two players is a logistic function of their ratings.

The Elo system, as it is currently used, requires that one starts with an
initial set of ratings for each team or player in the competition. As two
teams or two players play against each other, their previous ratings are used
to determine the new rating for these teams or players. If team i plays team j,
the new rating for team i would be determined using the following formula:
ri(new) = ri(old) + K(Sij − µij). In this formula, ri(old) is the previous
rating held by team i, which will be updated to a newer rating ri(new), and
K is a constant. In the initial version of the Elo rating system as devised by
Arpad Elo, S was a player’s recent performance. In chess, S would be either
one, zero or a half to indicate a win, loss or draw respectively. Performance
might also be measured by scores from a single match or the sum of scores

9

acquired during the tournament, but the most used version of the Elo rating
system sticks to the idea that Sij is, similarly to chess, either one, zero or a
half indicating whether player i has won, lost or played draw against player
j. The advantage of this is that the sum of Sij and Sji is always one and
the ratings are therefore relative, as the Elo ratings will always sum up to
the same constant value, regardless of how often the ratings are updated.
The same would be the case if someone were to use the Elo system where
Sij indicates the number of points a team has scored against another team,
provided that Sij + Sji = 1.

In the above mentioned formula, µij is meant to indicate the expected dif-
ference in scores between team i and team j if those two teams were playing
against each other. It is assumed that the expected score difference between
two playing teams is a logistic function of the difference in their ratings. The
difference in ratings between teams i and j is dij and calculated using the old
ratings: dij = ri(old)−rj(old). A base-ten logistic function is applied on this
difference in ratings between team i and team j, meaning µij can be calcu-
lated as follows: µij = L(dij/ξ) = 1

1+10−dij/400
, where dij = ri(old) − rj(old).

The extra parameter, ξ, is the logistic parameter that determines the spread
of the ratings. For every ξ rating points team i has a higher rating that
team j, the probability that team i beats team j is ten times greater than
the probability that team j manages to defeat team i. Adjusting the logis-
tic parameter ξ is a way to fine-tune the system for a particular sport or
competition.

Another variable that allows for the fine-tuning of the rating system to fit
certain sports or games is the constant value K. The purpose of this constant
is to regulate the deviation between old and new ratings. If K is too large, for
example, a game that results in a team playing slightly better than expected
influences the ratings greatly. If K is too small, however, the Elo rating
system will not be able to account for an improvement or deterioration in
play and the ratings become too stagnant (and most likely remain similar
to the initial ratings the entire time). Therefore, the choice of the value for
K is a method for fine-tuning the rating system for a specific sport or even
a specific competition. In many sports, such as chess and soccer, the raters
allow for a change of the value K over time. Generally speaking, one would
allow for a bigger K in the beginning of the competition until a certain
number of games have been played, so teams or players have the chance
to quickly adjust their initial ratings to ratings more similar to their real
performance level, and gradually lower the value of K later on. Additionally,
the constant value of K allows us to assign importance to certain games or

10

tournaments. In soccer, for example, a team is more likely to perform at its
best during the world cup and more likely to hold back during friendly, or less
important, games. This could be reflected in the algorithm by assigning a
larger value for K when it concerns World Cup games or qualifying matches
and a lower value for K when the games played are of a more friendly nature.

As previously mentioned, Sij could simply indicate either a win, loss or draw
between team i and team j, but it could also incorporate the scores team i
scored against team j. It would be unwise to use the raw scores for Sij. If,
for example, both team i and team j have a strong offense and weak defense,
both Sij and Sji would most likely be very high if one were to take the raw
scores for S. If the opposite scenario were true, and both teams’ defenses
were really good, the scores would be very low in comparison. As the value
of S has an effect on the eventual rating, the large scores of the teams in
the first scenario would have a disproportionate effect on the ratings when
comparing it with the much lower scores of the second scenario. Therefore,
it is better to take the total number of points scored during the game into
account. Let us, therefore, instead define Pij to be the amount of points team

i scores against j. Sij can now be defined as Sij =
Pij+1

Pij+Pji+2
, which ensures

that Sij always has a value between zero and one and the sum of Sij and Sji

is equal to one. This allows us to interpret Sij as the probability that team
i defeats team j.

2.4.2 Implementation

In the implementation of the Elo rating system, we have chosen to have both
a version that takes scores into account as well as a version simply based on
the wins and losses of a team. As initial ratings, we chose to set the ratings
of each team to zero as this ensured that the cumulative ratings and the
mean of the ratings would always be zero. Additionally, we determined we
wanted to set the value of K at 32 and the value of the logistic parameter ξ
at 1000 in both versions of the rating system. The value 32 was chosen, as
it was in line with what several internet gaming sites are currently using as
a value for K and, through trial-and-error, it seemed to be an appropriate
value. The logistic parameter was set at 1000 to provide a good spread in
ratings. The final rankings, which are based on the ratings, are not altered
or heavily influenced by the logistic parameter.

11

3 Data

In order to test whether our implemented algorithms worked correctly and
to draw conclusions, among other things, about the advantages and disad-
vantages of each algorithm and compared to each other, we used data from
multiple sports and tournaments.

3.1 Windmill Windup

The first set of sport data we used was extracted from leaguevine.com,
using the API and a python script provided to us by our supervisor. The
data contains information about tournaments played during the Ultimate
Frisbee tournament Windmill Windup. The six individual data files contain
information about the team ids, the names of the teams that played during
the tournaments, and information about the individual games played during
that tournament, such as the wins and losses and scores for each team.

The Windmill Windup is an Ultimate Frisbee tournament which takes place
over a time period of three days. The tournament features three divisions;
open, mixed and women’s. The Windmill Windup tournament uses a Swiss
Draw format, to ensure that teams are quickly able to play close matches
against opponents of similar strength. The teams are ranked after each round
of play. To determine the strength of the teams, and therefore the rankings,
the Windmill Windup tournament uses the least squares rating system. First,
five rounds are played according the Swiss Draw format. After these five
rounds, two pools are created; a pool for the teams ranked 1 through 8 and a
pool that contains all teams ranked 9 onward. The top ranked teams continue
to play in a standard playoff bracket format (quarter finals, semi finals and
finals), while the rest of the teams continue with three rounds following the
Swiss Draw format.

Ultimate Frisbee itself is a sport in which the two teams play against each
other until one of them reaches a score of fifteen (exceptions are made when
it takes to long for one of the teams to reach a score of 15).

To summarize:

• open division (2012): 40 teams, 160 games.

• mixed division (2012): 26 teams, 104 games.

• women’s division (2012): 14 teams, 56 games.

12

leaguevine.com

• open division (2013): 40 teams, 160 games.

• mixed division (2013): 24 teams, 96 games.

• women’s division (2013): 16 teams, 64 games.

3.2 National Football League

The second set of data we used is data from the National Football League
(NFL), a professional football league in the United States of America. In
total, 32 teams participate in the league. Our data stems from the ’09/’10
season, in which the first game was played 9th of September 2009 and the last
game 7th of February 2010. During this period, 267 games have been played
and recorded. During the first seventeen weeks, all teams have played against
sixteen other teams and have had one week off. After this seventeen-week
period, six teams (four of which are division winners, and two of which have
received wild-cards) compete against each other in the NFL playoffs resulting
in a single winner. Generally, the score differences between scores in games
played in the National Football Leagues are larger than the score differences
in Ultimate Frisbee.

We have used this season’s data specifically, as this exact season’s information
was used in Langville and Meyer (2012) to analyse how well different rating
systems work in comparison to one another in hindsight and foresight (see
section 4.3).

To summarize:

• NFL ’09/’10 season: 32 teams, 267 games.

3.3 Dummy data

Dummy data was created in order to check whether the implementations
of our algorithms worked as they should. The dummy data was designed
to look like results of a round-robin tournament, in which all teams play
in each round and, eventually, all teams will have played against all other
teams. The amount of points a team scored in every game were made to be
equal to the column index of the team. In the matrix containing the wins and
losses of a tournament, the team which is represented by column 1 will in all
games it participated in have a total score of 1 point. The teams represented
by the other columns in the matrix will have scored more points in their

13

games than team 1, and therefore the dummy data represents a tournament
in which team 1 will have lost all games. An example of what a tournament
represented by our dummy data might look like, where the team names are
derived from the column which they are represented by, can be seen in table
1. The advantage of the dummy data, in the first place, was that it was
known beforehand what the ranks of each team should be and allowed us to
check whether all rating systems did “correctly” predict all ranks (see figure
??). Team 1, represented by the first column, is the worst playing team and
should, according to all algorithms, be the lowest ranking team. The team
represented by the last column, in case of the dummy data of table 1 and the
matrices in figure 1 team 4, is the best playing team and should therefore be
the best ranked team.

Round 1
Team 1 Team 2 1–2
Team 3 Team 4 3–4

Round 2
Team 1 Team 3 1–3
Team 2 Team 4 2–4

Round 2
Team 1 Team 4 1–4
Team 2 Team 3 2–3

Table 1: Example dummy data with four teams.

The dummy data was initially intended to be generated using a Matlab
function which requires the amount of teams that compete in the competition
as input. Unfortunately, while our implementation of the algorithm that was
supposed to generate a round-robin tournament7 was correct, the algorithm
itself turned out to be flawed. Instead, Prolog8 was used to generate a round-
robin tournament in which up to twelve teams could participate (in order for
the brute force Prolog script not to overflow).

The output of this function was rewritten to match the data representation of
the other data files (see figure 1), using a matrix W 9 to contain information
about the wins and losses during the tournament, and a matrix s to contain
information about the scores.

7http://stackoverflow.com/questions/6648512/
scheduling-algorithm-for-a-round-robin-tournament

8http://www.swi-prolog.org
9Earlier on referred to as X

14

http://stackoverflow.com/questions/6648512/scheduling-algorithm-for-a-round-robin-tournament
http://stackoverflow.com/questions/6648512/scheduling-algorithm-for-a-round-robin-tournament
http://www.swi-prolog.org

W =

−1 1 0 0
0 0 −1 1
−1 0 1 0
0 −1 0 1
−1 0 0 1
0 −1 1 0

 , s =

1 2
3 4
1 3
2 4
1 4
2 3

Figure 1: The dummy data as input for the Matlab implementations of the
algorithms

4 Tools

To get an insight on whether and how the rating systems work, and how they
performed compared to each other, we have created and made use of a few
tools described in the following subsections.

4.1 Correctness checks & Validation

First of all, it was important to have definite proof that our implementations,
based on the mathematical theory, worked as they should. That is, not only
should they assign ratings, but they should assign the ratings one would
expect the system to assign. For the least squares algorithm, we used Massey
(1997) as a theoretical background and used the example that he used within
his chapter on least squares, which consisted of four teams playing five games
(with no draws), to compare our results to. The ratings that our least squares
rating system assigned to the different teams were identical to the ratings
Massey provided they should have.

As mentioned in section 3.1, the Windmill Windup tournament makes of
the least squares algorithm to determine the ratings for each team. The
site from which the data was extracted, www.leaguevine.com, also con-
tains information about the ratings of the playing teams after a tournament.
Therefore, by comparing the resulting ratings of our least squares algorithm
of the divisions with the ratings on the site of the same divisions, we could
validate whether our implementation worked correctly. This was the case.

The NFL data was chosen specifically as a data set, because Langville and
Meyer (2012), who provided us with a theoretical background of the Elo and

15

www.leaguevine.com

Keener system, also used this data set to provide example ratings as well as
hindsight and foresight accuracies for the Elo algorithm and Keener’s method.
Again, the ratings that our implementations assigned to the different teams
were nearly identical to the ratings the book indicated the teams had when
using either the Elo or Keener method.

The dummy data turned out to be a functional check for hindsight. The
“perfect” tournament that was created should have a hindsight accuracy of
100%, as the best team with the higher rating of the two playing teams does
in fact always win the next game. As the function for hindsight was run on
the dummy data, the hindsight accuracy that was returned was in fact 100%
for all algorithms.

4.2 Visualisation

Visualisation is a powerful tool to show what is happening during a tourna-
ment, as a visual representation of the ratings or rankings of the different
teams are, generally, easier to understand for an outsider than numbers.
An example of this is figure 2, which shows in a manner that is easily in-
terpretable that all four rating systems (least squares, Elo, Elo scorebased,
Keener’s method) give the exact same rankings to the eight teams, provided
with the dummy data input. Additionally, due to the nature of the dummy
data, these are the exact results we would expect. Of course, this same
graph could also be made of tournament data which was not “perfect”, as
the dummy data is, which could show that some algorithms rank more sim-
ilarly than others.

Another graph that gives us insights in the workings of the different rating
systems, is shown as applied on the dummy data of eight teams in igure
3. This figure shows the normalized rating so of each team. Already, using
only the dummy data, one can see the difference between the algorithms that
take the margin of victory into account (least squares, Keener’s method, Elo
scorebased) and the one that does not (Elo), as the first three assign virtually
identical normalized scores, while the Elo curve differs somewhat.

16

Figure 2: A graph illustrating the ranks of the different teams according to
the different algorithms applied on dummy data with 8 teams

Figure 3: A graph illustrating the normalized ratings of the different teams
using dummy data with 8 teams

Additionally, we have implemented a visualisation tool that, given a win-loss
matrix, the corresponding scores and a method of calculating the ratings,
visualizes how the ratings change over time during a tournament. In figure

17

4, you can see what the ratings are after each game and how they change
during the tournament, when the input is the dummy data with the Elo
rating system.10 In figure 5, we have added the information that each round
consists of four games as a parameter to the visualisation tool, meaning
the graph only shows how the rating changes after each round rather than
after each game. For round-robin tournaments, in which multiple teams play
against another team at the same time, this might be a more efficient and
effective visualisation in the case that teams want to know how each round
affected their rating. As shown in figure 6, we have also allowed for the
possibility that the user can specify of which teams it wants to view the
progress throughout the tournament. In figure 6, the ratings that can be
seen are those of team 1, team 2 and team 8. Especially for competitions or
tournaments with a large number of participating teams, this extra feature
can be a useful tool for the individual teams to understand how their ratings
came to be.

Figure 4: Rating changes through dummy tournament, using Elo

10For Elo, of course, the score differences are not necessary

18

Figure 5: Rating changes through dummy tournament, using Elo and viewed
per round

Figure 6: Rating changes through dummy tournament, using Elo, viewed per
round and for team 1, 2, and 8

19

4.3 Hindsight and Foresight

One could judge how well a rating system works in two ways; how well a sys-
tem explains what has happened so far and how well it predicts future games.
How well the rating system explains what has happened is called hindsight.
Hindsight is how well the resulting ratings at the end of the tournament can
explain all games that led to those ratings. To determine what the hind-
sight accuracy is, one should take the ratings at the end of the tournament.
For each game that has been played throughout the tournament, these final
ratings should be able to correctly say which of the two playing teams has
won the game. If the final rating of team i is higher than the final rating
of team j, and these two teams played against each other in the first game,
the ratings suggest that team i should have won that game. The percentage
of games for which the result that the final ratings suggest is equal to the
actual wins and losses in those games, is the hindsight accuracy.

How well a rating system correctly predicts the outcomes of future games
is called foresight. A rating system correctly determines a future game if
it assigns the ratings to the teams in such a way that the rating of the
team that wins the future game is higher than the rating of the team that
loses that game. Additionally, if the rating system takes scores into account,
it should correctly predict the difference between what the winning team
and the losing team scores too. To determine what the foresight accuracy
is of a rating system, based on some tournament data, one would have to
look at how well the ratings predict each game apart from the first one,
as the system has not yet assigned a rating to the teams if the first game
has not been played yet. For each game, one takes the last updated ratings
and, knowing which teams will play the next game, determine what team
the current ratings suggest should win that game. Then, the ratings of each
team after the results of that game have been processed are taken and, again,
one determines which team should theoretically win the game after that one.
This is done until all games, apart from the first played game, have been
predicted. The percentage of games in which the prediction of which team
should theoretically win is the same as the team that actually wins, is the
foresight accuracy. Obviously, if a game ends in a draw and, based on the
rating system, a draw was predicted, this should result in a higher accuracy.

20

5 Results and Discussion

5.1 Advantages and Disadvantages in theory

Based on the mathematics underlying the algorithms and the knowledge
we have about the data these algorithms can be applied to, we can make
some claims that seem plausible which we will then intend to either prove
or disprove. For example, one could suspect that, depending on the sport, it
might be useful to consider the margins of victory in determining the ratings
of the different teams participating in the competition. Margin systems,
such as Elo scorebased, least squares and Keener, are expected to perform
well on the same type of data, while the Elo rating system, will most likely
perform well on a different set of data as it does not take the margin of
victory into account. This could already be seen by looking at figure ??,
where the normalized ratings of the margin systems were nearly identical
while the Elo ratings differed. The margin systems might, for example, have
more trouble with dealing with outliers (extreme results) in scores than a
system that simply bases its ratings the wins and losses. Additionally, we
would expect both the east quares rating system as well as Keener’s method
would allow for faster convergence to the the real strengths than either Elo or
Elo scorebased will do. This is because, using either least squares of Keener’s
method, every new game that is introduced can alter the ratings of all the
teams participating in the competition rather than solely the teams that
have played in the game. Also, we would expect that the ratings determined
by using the least squares algorithm would more easily be able to provide
us with a prediction of what the score difference will be in any given game.
This is because the basic premise of the least-squares algorithm is that the
margin of victory is the difference in ratings between two playing teams.

To summarize, what we will be trying to investigate is the following:

• Does the type of sport influence the performance of a rating system?

• What algorithms converge fastest to the “real” strength?

• Can least squares more easily predict future margins of victory between
teams, in comparison to Keener and Elo (scorebased)?

21

5.2 Results

For the different data sets we had at our disposal, the hindsight accuracies
of the different algorithms are shown in table 2 and the foresight accuracies
are shown in table 3. The first conclusion we can draw is that the algorithms
all, on our specific data sets, perform better in hindsight than in foresight.
As expected, the hindsight accuracy for all the algorithms on the dummy
data set is perfect. The foresight accuracy of the Elo rating system seems
to be much lower from both its hindsight accuracies as well as the foresight
accuracies of the other rating systems. Interestingly enough, the foresight
accuracy of the Elo algorithm on the NFL data set is much less below the
average foresight accuracy on the data set than the foresight accuracies of
the Elo rating system on the different Windmill Windup data sets, which
are all much lower than the average foresight accuracies on those data sets.
This might indeed suggest that our initial suspicion that the type of sport
influences the performance of a rating system. However, we suspect that the
cause of this lower foresight accuracy of Elo might, at least partly, have to do
with the fact that when there is not enough information yet to make accurate
predictions (mainly in the first few games of a tournament), Elo predicts a
lot of draws as a lot of ratings have a value equal to that of another team
and are only altered after a team plays again. This is due to the nature of
the Elo algorithm, which only takes the wins and losses into account and
not the scores. A win is rewarded equally in rating for each playing team
during the first round. The ratings do not change until a team has played a
next round, and therefore remain equal for a longer period of time than they
would using an algorithm in which all games influence all ratings. The Elo
algorithm predicts a draw more often than other methods, as a win or loss is
reflected in the teams rating equally for each team early in the competition,
which decreases the foresight accuracy. That the ratings stay the same value
for a longer amount of time is perhaps most obvious when comparing figure
9 to either figure 8, figure 7 or figure 10.

What can be seen from the graphs representing the ratings of the different
teams throughout the tournament is that the ratings seem to converge to a
certain rating and remain that way much faster for the least squares algorithm
and Keener’s method. Especially when comparing the graph representing
ratings according to the Elo algorithm throughout the tournament of the
dummy data (figure 9) and the graph of the same data using the least squares
algorithm (figure 7, it is apparent that the ranks that the teams eventually
get can be determined using much less information and much earlier in the
tournament using the least squares algorithm than the Elo algorithm. The

22

same seems the case for Keener’s method (figure 8) on the data set, where
most of the ranks apart from the middle two seem to be decided much earlier
on than is the case with Elo’s algorithm. Shuffling the order of the games for
this dummy data, as seen in figure 11 lets the Keener algorithm converge as
fast as the least squares algorithm. NFLThis indicates that the least squares
rating system and Keener’s method converge much faster to the ratings they
will have at the end of the tournament, or to a rating very similar to that,
than the Elo algorithm. This claim is supported by the other data, such as
the NFL season data (see figure 12, figure 13 and figure 14).

least squares Keener Elo Elo scorebased
NFL ’09/’10 72.66 72.28 75.28 71.16
WW open ’12 83.13 78.13 79.378 70.00
WW mixed ’12 76.92 78.85 77.88 74.04
WW women ’12 87.50 85.71 85.71 75.00
WW open ’13 84.38 75.63 77.50 68.13
WW mixed ’13 78.13 79.17 80.21 72.92
WW women ’13 87.50 79.69 81.25 76.56
Dummy 4 teams 100.00 100.00 100.00 100.00
Dummy 6 teams 100.00 100.00 100.00 100.00
Dummy 8 teams 100.00 100.00 100.00 100.00

Table 2: Hindsight accuracy of rating systems for available data sets

least squares Keener Elo Elo scorebased
NFL ’09/’10 57.30 61.44 55.06 59.93
WW open ’12 57.50 54.38 25.63 51.25
WW mixed ’12 53.85 51.92 31.73 48.08
WW women ’12 58.93 60.71 44.64 55.36
WW open ’13 51.88 54.38 35.63 47.50
WW mixed ’13 50.00 48.96 43.75 43.75
WW women ’13 65.63 54.69 39.06 50.00
Dummy 4 teams 50.00 50.00 33.33 50.00
Dummy 6 teams 73.33 66.67 60.00 60.00
Dummy 8 teams 64.29 71.43 42.86 71.43

Table 3: Foresight accuracy of rating systems for available data sets

23

5.3 Conclusions & Future Research

We were able to confirm that the algorithms behave differently and might be
more effective on some data, however, unfortunately, we have not been able
to determine what specific types of data the algorithms are more effective on
in comparison to the other algorithms. It might be interesting to research
what rating systems are better rating providers for specific sports. We do
know that least squares is very effective in general, but does not allow the
user to tune the system in any way. For Keener’s method, however, the
implementation can be altered to fit a specific sport or data set by skewing,
applying LaPlace’s rule of succession and normalization. For Elo, both the
regular algorithm and the scorebased function, the logistic parameter and
constant K can be altered to suit a specific sport. Even though least squares
seems, based on our results, to be a very good rating system, it might be
interesting to investigate whether one of the algorithms can be improved in
such a way that it performs much better on a specific data set, or even a
specific goal (improving hindsight or foresight accuracy, predicting ratings,
predicting rankings).

In order to do this, one would have to have access to more data sets than
we currently had available. As we only had the Windmill Windup and NFL
data sets at our disposal, this could not provide us with enough information
to draw such general conclusions from. During the course of this project,
we have managed to arrange a meeting between ourselves and Infostrada, a
company with a large database of sport information. A collaboration between
the two parties could be beneficial to both. As shuffling the games in a
tournament (meaning the exact same games were played, only the order in
which they were played was different) had an effect on how fast the ratings
determined by Keener’s method converged to the ratings the teams had at the
end of the tournament, it might also be interesting to look at what influence
tournament formats have on the performance of the rating systems.

Another possibility is to take a look at how Elo performs in foresight in
comparison to the other algorithms when the resulting ratings of the first few
games are not taken into account. And as we have not been able to provide
definite proof whether least squares will more easily predict the margin of
victory between two playing teams based on their ratings than the other
algorithms, as might still be worth investigating as well. One would have to
devise a system to predict the margin of victory between two teams based
on the other algorithms, and compare its performance to that of the least
squares algorithm.

24

Lastly, we have not been able to complete our second goal which was to
design some graphical representation that could provide the participants in a
tournament with some insight as to why their ratings are as they are. This is
still something that could be done, especially after seeing how effective simple
visualisation tools as described in section 4.2 were to draw conclusions from.

References

Doug (2006a). Another rating system: maximum likelihood. url: http://
www.pro-football-reference.com/blog/?p=171.
— (2006b). Maximum likelihood, part II. url: http://www.pro-football-
reference.com/blog/?p=206.
— (2006c). Maximum likelihood with home field and margin of victory. url:
http://www.pro-football-reference.com/blog/?p=210.
James P. Keener“ (1993). “The Perron-Frobenius Theorem and the Ranking
of Football Teams”. In: SIAM Review 35.1, pp. 80–93.
Amy N. Langville and Carl D. Meyer (2012). Who’s #1?: The Science of
Rating and Ranking. Princeton, NJ: Princeton University Press.
Kenneth Massey (1997). Statistical Models Applied to the Rating of Sports
Teams.
Wikipedia (2013). Sports Rating System. url: http://en.wikipedia.
org/wiki/Sports_rating_system.

25

http://www.pro-football-reference.com/blog/?p=171
http://www.pro-football-reference.com/blog/?p=171
http://www.pro-football-reference.com/blog/?p=206
http://www.pro-football-reference.com/blog/?p=206
http://www.pro-football-reference.com/blog/?p=210
http://en.wikipedia.org/wiki/Sports_rating_system
http://en.wikipedia.org/wiki/Sports_rating_system

Appendix I

Figure 7: least squares rating system on the dummy data with 8 teams

Figure 8: Keener rating system on the dummy data with 8 teams

26

Figure 9: Elo rating system on the dummy data with 8 teams

Figure 10: Elo scorebased rating system on the dummy data with 8 teams

27

Figure 11: Keener rating systems on shuffled dummy data with 8 teams

Figure 12: least squares rating system on the NFL data

28

Figure 13: Keener rating system on the NFL data

Figure 14: Elo rating system on the NFL data

29

Figure 15: Elo scorebased rating system on the NFL data

For all the other figures, graphs and plots see https://www.dropbox.
com/sh/6ib67xgr3z4zywp/FluVGxu4D2

30

https://www.dropbox.com/sh/6ib67xgr3z4zywp/FluVGxu4D2
https://www.dropbox.com/sh/6ib67xgr3z4zywp/FluVGxu4D2

Appendix II

Rating systems

least squares

1 function [r] = least_squares(W, s)
2 % Cast from int to double if necessary
3 W = double(W);
4 s = double(s);
5 % If s contains scores, calculate score differences.
6 if(size(s, 2) == 2)
7 s = abs(s(:,1) - s(:,2));
8 end
9 %compute

10 X = W’ * W;
11 y = W’ * s;
12 % Scaling
13 y(size(y,1)) = 0;
14 X(size(X,1),:) = ones(1,size(X,1));
15 % Calculate ratings (˜ to supress output)
16 [r, ˜] = lsqr(X,y,[],100);
17 end

Elo

1 function [r] = elo(W)
2 % get amount of games played and amount of teams playing.
3 nog = size(W,1);
4 not = size(W,2);
5

6 % initialise variables
7 r_old = zeros(not,1);
8 r_new = zeros(not,1);
9 mu = zeros(1,not);

10 S = zeros(1,2);
11

12 % set parameters: logistic parameter P and K.
13 P = 1000;
14 K = 32;
15

16 % loop through each game
17 for c = 1:nog,
18 game = W(c,:); % get the individual game
19 playing = find(game ˜= 0); % get array of indices of playing

teams
20 i = playing(1); % define i (index of first playing team)
21 j = playing(2); % define j (index of last playing team)

31

22

23 % get S
24 if(game(i) > game(j))
25 S(i) = 1;
26 S(j) = 0;
27 elseif(game(i) < game(j))
28 S(i) = 0;
29 S(j) = 1;
30 elseif(game(i) == game(j))
31 S(i) = 0.5;
32 S(j) = 0.5;
33 end
34

35 %calculate mu for i and j
36 mu(i) = 1 / (1 + 10ˆ(-1*((r_old(i) - r_old(j)))/P));
37 mu(j) = 1 / (1 + 10ˆ(-1*((r_old(j) - r_old(i)))/P));
38

39 %get new ratings
40 r_new(i) = r_old(i) + (K * (S(i) - mu(i)));
41 r_new(j) = r_old(j) + (K * (S(j) - mu(j)));
42

43 %reset mu and r_old
44 mu = zeros(1,not);
45 r_old = r_new;
46 end
47

48 %return ratings.
49 r = r_new;
50 end

Elo scorebased

1 function [r] = elo_scorebased(W, s)
2 nog = size(W,1);
3 not = size(W,2);
4

5 % get scores, amount of games played and amount of teams playing
.

6 O = createO(W,s);
7 S = createS(O);
8

9 % initialise variables
10 r_old = zeros(not,1);
11 r_new = zeros(not,1);
12 mu = zeros(1,not);
13

14 % set parameters logistic parameter P and K.
15 P = 1000;
16 K = 32;

32

17

18 % loop through each game
19 for c = 1:nog,
20 game = W(c,:); % get the individual game
21 playing = find(game ˜= 0); % get array of indices of playing

teams
22 i = playing(1); % define i (index of first playing team)
23 j = playing(2); % define j (index of last playing team)
24

25 %calculate mu for i and j
26 mu(i) = 1 / (1 + 10ˆ(-1*((r_old(i) - r_old(j)))/P));
27 mu(j) = 1 / (1 + 10ˆ(-1*((r_old(j) - r_old(i)))/P));
28

29 %get new ratings
30 r_new(i) = r_old(i) + (K * (S(i,j) - mu(i)));
31 r_new(j) = r_old(j) + (K * (S(j,i) - mu(j)));
32

33 %reset mu and r_old
34 mu = zeros(1,not);
35 r_old = r_new;
36 end
37

38 %return ratings.
39 r = r_new;
40 end

Keener

1 function [r] = keener(W, s)
2 not = size(W,2);
3

4 % Every point is a win, while it gives less chance on 0 wins
5 O = createO(W,s);
6 S = createS(O);
7

8 % Skewing
9 for i = 1:not,

10 for j = 1:not,
11 S(i,j) = 0.5 + ((sign(S(i,j)-0.5)*sqrt(abs(2*S(i,j)-1)))

/2);
12 end
13 end
14

15

16 % SOLVE R
17 [˜, r] = perron(S);
18

19 end

33

Tools

Visualisation

1 function [] = visual(W, s, method, teams, round_length,
team_names)

2 % if 3 arguments, display all teams with round length one
3 if nargin == 3,
4 teams = ’all’;
5 round_length = 1;
6 end
7

8 % if round_length not set, set at 1
9 if nargin == 4,

10 round_length = 1;
11 end
12

13 % get datamatrix for arguments
14 data = datamatrix(W, s, method, round_length);
15 nor = size(data,2);
16 not = size(data,1);
17

18 % display graph
19 xlabel([’Round consisting of ’ num2str(round_length) ’ game(s)’

])
20 ylabel(’Rating’)
21 title(’Rating per Game’)
22 xlim([1,nor])
23 set(gca, ’XTick’, 1:nor);
24

25 if(strcmp(teams, ’all’) == 1)
26 for j = 1:not
27 hold all
28 plot(data(j,:))
29 end
30 else
31 for i = 1:size(teams,2)
32 hold all
33 plot(data(teams(i),:))
34 end
35 end
36

37 x = 0:1:nor-1;
38 set(gca, ’XTickLabel’, x);
39 if nargin == 6,
40 l = team_names(1);
41 for i = 2:length(team_names)
42 l = [l; team_names(i)];
43 end

34

44 legend(l,’Location’,’NorthEastOutside’)
45 end
46 grid on
47

48 end

Comparison

1 function [] = comparison(W,s)
2 % This function compares al the implemented rating methods by

displaying a
3 % plot with al the final rankings and displaying all the

hindsight and
4 % foresight percentages.
5 not = size(W,2); %number of teams
6

7 % get hindsight scores for all methods
8 hindsight_ls = hindsight(W, s, ’ls’);
9 hindsight_keener = hindsight(W, s, ’keener’);

10 hindsight_elo = hindsight(W, s, ’elo’);
11 hindsight_eloscores = hindsight(W, s, ’eloscores’);
12

13 % display hindsight scores for all methods
14 display(hindsight_ls)
15 display(hindsight_keener)
16 display(hindsight_elo)
17 display(hindsight_eloscores)
18

19 % get all foresight scores
20 foresight_ls = foresight(W, s, ’ls’);
21 foresight_keener = foresight(W, s, ’keener’);
22 foresight_elo = foresight(W, s, ’elo’);
23 foresight_eloscores = foresight(W, s, ’eloscores’);
24

25 % display all foresight scores
26 display(foresight_ls)
27 display(foresight_keener)
28 display(foresight_elo)
29 display(foresight_eloscores)
30

31 ratings = zeros(not,4);
32 ratings(:,1) = least_squares(W,s);
33 ratings(:,4) = keener(W,s);
34 ratings(:,2) = elo(W);
35 ratings(:,3) = elo_scorebased(W,s);
36

37 % Normalization
38 ratings = bsxfun(@minus,ratings,mean(ratings));
39 ratings = bsxfun(@rdivide,ratings,std(ratings));

35

40

41 figure(1)
42 x = 1:not;
43 plot(x, ratings(:,1), x, ratings(:,2), x, ratings(:,3), x,

ratings(:,4))
44 xlim([1, not]);
45 xlabel(’Teams’)
46 ylabel(’Normalized Rating’)
47 set(gca,’XTick’,1:not)
48 leg = legend(’least squares’, ’Keener’, ’ELO’, ’ELO scorebased’)

;
49 set(leg,’Location’,’NorthEastOut’)
50

51 rankings_ls = sort(ratings(:,1), ’descend’);
52 rankings_keener = sort(ratings(:,2), ’descend’);
53 rankings_elo = sort(ratings(:,3), ’descend’);
54 rankings_eloscores = sort(ratings(:,4), ’descend’);
55 rankings = zeros(not,4);
56

57 for i = 1:not
58 index_ls = find(ratings(:,1) == rankings_ls(i));
59 index_keener = find(ratings(:,2) == rankings_keener(i));
60 index_elo = find(ratings(:,3) == rankings_elo(i));
61 index_eloscores = find(ratings(:,4) == rankings_eloscores(i)

);
62 rankings(i,1) = index_ls;
63 rankings(i,2) = index_keener;
64 rankings(i,3) = index_elo;
65 rankings(i,4) = index_eloscores;
66 end
67

68 display(rankings)
69

70 figure(2)
71 x = 1:not;
72 for j = 1:not
73 hold all
74 [indices, ˜] = find(rankings == j);
75 name = sprintf(’Team %d’, j);
76 plot(1:4, indices, ’DisplayName’, name);
77 end
78 xlabel(’Method’)
79 ylabel(’Ranking’)
80 set(gca,’XTick’,1:4)
81 ylim([0,not+1]);
82 set(gca,’YTick’,0:not+1)
83 set(gca,’XTickLabel’,{’least squares’;’ELO’;’ELO scorebased’;’

Keener’})
84 set(gca,’YDir’,’reverse’);

36

85 leg = legend(’-DynamicLegend’);
86 set(leg,’Location’,’NorthEastOut’)
87

88 end

For all code see https://www.dropbox.com/sh/275kj5pgzoov4pd/
QIVtRm0I3E

37

https://www.dropbox.com/sh/275kj5pgzoov4pd/QIVtRm0I3E
https://www.dropbox.com/sh/275kj5pgzoov4pd/QIVtRm0I3E

	Introduction
	Algorithms
	least squares
	Maximum Likelihood
	Keener
	Elo

	Data
	Windmill Windup
	National Football League
	Dummy data

	Tools
	Correctness checks & Validation
	Visualisation
	Hindsight and Foresight

	Results and Discussion
	Advantages and Disadvantages in theory
	Results
	Conclusions & Future Research

