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Abstract

Local simultaneous state discrimination (LSSD) is a recently introduced problem. The
classical form of LSSD is a non-local game played by non-communicating players against
a referee. The referee generates one value for each of the players and one they keep for
themselves. The players have to guess the referee’s value and win if they all do so. In this
thesis, we are interested in the winning probabilities, for certain LSSD settings, when we
allow the players to share no-signalling resources versus classical resources.

We start by showing numerically that when there are three players and binary values,
no-signalling resources can not provide any improvement over classical resources. We
also take a look at a specific LSSD example defined by a binary symmetric channel,
and find that when multiple simultaneous copies are played, no-signalling resources can
improve on the optimal winning probability. Good classical strategies for this game
can be defined by codes, and good no-signalling strategies by list-decoding schemes. We
expand this example game to a class of games defined by an arbitrary channel and extend
the idea of using codes and list decoding to define strategies for multiple simultaneous
copies of these games. Finally, we give an expression for the limit of the exponent of
the classical winning probabilities, and show that no-signalling strategies based on list-
decoding schemes achieve the same limit.
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1. Introduction

Quantum mechanics is fundamental to our understanding of the universe and introduces
new and very useful areas within mathematics and computer science, like quantum com-
puting and quantum information theory. Research into quantum mechanics is important
to expand our knowledge within these fields.

One topic that is often looked at in quantum research are non-local games. These
games form small and isolated examples of how quantum resources (entanglement) can
improve on classical resources (shared and local randomness). A non-local game is a
game played by multiple non-communicating players against a referee. The referee asks
each player a question in the form of a value. The players each give an answer to the
referee, who then decides if the players win based on some pre-determined win conditions.

In researching non-local games we are mainly interested in optimal winning probabili-
ties when we allow the players access to quantum resources. We are especially interested
in whether quantum resources provide an improvement over classical resources. How-
ever, in this thesis we concern ourselves with no-signalling resources instead of quantum
resources. No-signalling resources are stronger and easier to analyse than quantum re-
sources, and therefore provide a good idea as to when quantum resources might outper-
form classical resources.

Local simultaneous state discrimination (LSSD) is a problem that was recently in-
troduced by Majenz, Ozols, Schaffner and Tahmasbi [12]. In its simplest form, it is a
non-local game played by two players, Alice and Bob, against a referee. The referee picks
three values x, a and b according to some distribution PXAB (which is known to Alice and
Bob) and gives a to Alice and b to Bob, while keeping x for themselves. Alice and Bob
try to guess the value x and win if they both succeed. As usual, Alice and Bob are not
allowed to communicate, but they are allowed to share some resources.

In their paper, Majenz et al. give an explicit example of an LSSD game where the
optimal winning probability using classical resources is strictly smaller than when using
quantum resources, which in turn is smaller than the winning probability using no-
signalling resources. They also showed that when x, a and b are all binary, the optimal
winning probabilities for each of the types of shared resources are always the same.

In this thesis, we analyse some more LSSD settings, mainly focussing on the following
questions: what are optimal classical and no-signalling strategies? And do no-signalling
resources offer improvement in terms of winning probability versus classical resources?
In Chapter 2 we discuss the necessary background information to understand this thesis.
Next, in Chapter 3, we formally introduce the LSSD problem, including its quantum
version. In Chapter 4, 5 and 6 we discuss our contributions to the LSSD problem, which
are summarized below.
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Our contributions In Chapter 4 we start by stating some results on optimal strategies.
These results are extensions and generalizations of some results in the paper by Majenz
et al. We make use of these results when we numerically show that in an LSSD game
with three players and binary inputs, no-signalling resources cannot improve the winning
probability of the players.

In chapter 5 we discuss an example of LSSD introduced by Majenz et al. In this exam-
ple, the referee sends a bit x over a binary symmetric channel to Alice and Bob. We first
show, in Theorem 5.1, that under certain conditions there is always an optimal classical
strategy that is symmetric. We use this result to numerically find optimal classical strate-
gies for two and three copies of the game. We also give optimal no-signalling strategies
for two and three copies. Finally, we generalize the strategies to n simultaneous copies
and argue how they can be defined by codes and list-decoding schemes.

In Chapter 6 we introduce channel games, which are an extension of the game in Chap-
ter 5. We show that we can define classical strategies based on codes and no-signalling
strategies based on list-decoding schemes. In Theorem 6.1 we provide an expression for
the limit of the exponent of the classical winning probability, where we make use of
strategies based on codes. In Theorem 6.4 we show that no-signalling strategies based
on list-decoding schemes achieve the same limit as classical strategies. This last result
makes use of Conjecture 6.5, which we leave unproven in this thesis. Finally, in Theo-
rem 6.8 we show that the limit of the exponent of the no-signalling winning probability
is equal to the classical limit. This result implies that no-signalling strategies based
on list-decoding schemes are asymptotically optimal in the game defined by the binary
symmetric channel.
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2. Preliminaries

In this chapter, we will give some background information on certain mathematical topics
necessary to fully understand this thesis. The background information on quantum is only
necessary to understand the quantum version of LSSD, but is not used for any results.
The concept of no-signalling is used throughout this whole thesis. Linear programming
is used in Chapter 4 and Chapter 5, but only necessary to understand Chapter 4. Lastly,
information theory is used in Chapter 5 and Chapter 6.

Notation For n ∈ N, we denote the set {0, . . . , n − 1} by [n] and the set of all per-
mutations σ : [n] → [n] by Sn. By δ we denote the indicator function, which is 1 if its
argument is true and 0 otherwise. In this thesis, by log we mean log2. We denote by ⊕
the bitwise XOR operator on bitstrings and finally, by 0n and 1n we denote the all-zero
and all-one bitstrings of length n.

For a distribution PX over X , we denote by P×n
X = (PX)

×n the probability distribution
defined by

P×n
X (xn) :=

n∏
i=1

PX(xi),

where xn is an element of X n. We sometimes omit writing the subscript in PX, when it
is obvious over which set P is a distribution. Lastly, for A ⊂ X , we denote by PX(A)
the probability of random variable X taking on a value in A:

PX(A) =
∑
x∈A

PX(x).

2.1. Quantum

We mention only the necessary information. Interested readers are advised to read “Quan-
tum Computing and Quantum Information” by Nielsen and Chuang [14], probably the
best source on quantum information.

Quantum systems are described by a complex (finite-dimensional) Hilbert space, which
is to say a complete complex inner product space. If we choose an orthonormal basis for a
Hilbert space H of dimension d, we can identify it with the Hilbert space Cd. Therefore,
we will think of elements in H as vectors in Cd.

We denote vectors in Cd by |ψ⟩ and define ⟨ψ| = |ψ⟩† (the complex conjugate trans-
pose). With this notation, we can write the inner product and outer product of two
vectors as ⟨ψ1|ψ2⟩ and |ψ1⟩⟨ψ2| respectively.
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We denote the set of linear operators on a Hilbert space H as L(H). Let {|ei⟩} be an
orthonormal basis for H. For X ∈ L(H) the trace of X is given by

tr(X) =
∑
i

⟨ei|X|ei⟩.

We say that X ∈ L(H) is positive semi-definite if it is hermitian (X = X†) and has non-
negative eigenvalues. The set of quantum states D(H) is defined as the set of positive
semi-definite matrices whose trace is equal to 1. We call a state ρ a pure state if we can
write ρ = |ψ⟩⟨ψ| and a classical state if we can write

ρ =
∑
i

P (i)|ei⟩⟨ei|,

Where P is a probability distribution on {1, . . . , d}.
We define a measurement (POVM) M on a quantum system as a set of positive semi-

definite matrices {M1, . . . ,Mn} whose sum is the identity matrix:
∑n

i=1Mn = I. When
measuring a state ρ with measurementM , the probability of getting outcome i ∈ {1, . . . , n}
is given by tr(ρMi). We denote by M(Cd) the set of all measurements (the number of
outcomes will always be clear).

Finally, we can combine quantum systems into a bigger quantum system using the
tensor product. Let A and B be two matrices, the tensor product A⊗ B of A and B is
defined by

A⊗B :=

A1,1B · · · A1,mB
...

. . .
...

An,1B · · · An,mB

 .

We call states in a combined system bipartite, tripartite etc. depending on how many
systems are combined.

2.2. Non-locality and no-signalling

In the introduction it was mentioned that quantum and no-signalling resources can im-
prove on classical resources in terms of winning probabilities in non-local games. It turns
out that this effect occurs because quantum and no-signalling resources can achieve non-
locality. In this section we will explain what this means and what no-signalling exactly
is, taking inspiration from a paper by Barrett et al. [1, Section 2].

2.2.1. The local polytope

We can describe the actions of two parties in a non-local game by a conditional probability
distribution QXY|AB, called correlations or boxes, over X ×Y ×A ×B. Here, A and B
are the input sets for Alice and Bob respectively and X and Y the output sets. In this
case Q(x, y|a, b) is the probability of Alice and Bob outputting x and y on inputs a and b.
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We call the distribution QXY|AB local if we can write

QXY|AB =
∑
λ

P (λ)QX|A(λ)QY|B(λ). (2.1)

In other words, the distribution can be achieved by shared and local randomness. The
shared randomness comes in the form of a variable λ with probability distribution P (λ),
and the local randomness comes in the form of two conditional probability distribu-
tions QX|A(λ) and QY|B(λ), describing Alice’s and Bob’s actions depending on the shared
randomness λ.

In fact, if we say that Alice and Bob are allowed to share classical resources, we mean
that they are allowed to use shared and local randomness. Therefore, the set of all
local correlations consists exactly of those correlations achievable by sharing classical
resources. It is known that this set is a convex polytope (see Section 2.3) and it is often
called the local polytope [1].

2.2.2. The no-signalling polytope

Using quantum resources it is possible to achieve correlations that cannot be written as in
formula (2.1), we call these non-local correlations. In this thesis, however, we will not be
considering quantum resources. Instead, we look at the strictly larger set of no-signalling
correlations. This set contains all correlations achievable without communication between
the parties, i.e., the correlations must satisfy the following no-signalling constraints:

∀y, a, a′, b :
∑
x∈X

QXY|AB(x, y|a, b) =
∑
x∈X

QXY|AB(x, y|a′, b), (2.2)

∀x, a, b, b′ :
∑
y∈Y

QXY|AB(x, y|a, b) =
∑
y∈Y

QXY|AB(x, y|a, b′). (2.3)

Since
∑

xQXY|AB(x, y|a, b) = QY|AB(y|a, b), these constraints basically mean that the
output of Bob does not depend on the input of Alice and vice versa. The set of all no-
signalling correlations also form a convex polytope. This last fact will become obvious
in Section 2.3.

It is not hard to see that local correlations satisfy the no-signalling constraints:∑
x∈X

QXY|AB(x, y|a, b) =
∑

x∈X ,λ

P (λ)QX|A(λ)(x|a)QY|B(λ)(y|b)

=
∑
λ

P (λ)QY|B(λ)(y|b)
∑
x∈X

QX|A(λ)(x|a)

=
∑
λ

P (λ)QY|B(λ)(y|b).

The final expression does not depend on a, so (2.2) is satisfied. This observation means
that the set of local correlations is a subset of the set of no-signalling correlations. In fact,
apart from some trivial cases, the sets of correlations achievable by classical, quantum
and no-signalling resources are strict subsets of each-other.
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2.2.3. Multi-partite no-signalling correlations

Up until now, we have only looked at correlations between two parties. However, the
concepts of locality and no-signalling can be extended to any finite number of parties.
We show how to do this extension for no-signalling.

In the case of more than two parties, a correlation is no signalling if no subset of
parties J can collectively signal to the rest of the parties I. So the output of the parties
indexed by I cannot depend on the input to the parties indexed by J . This is worded
formally in the next definition.

Definition 2.1. [2, Definition 11] An m-partite correlation QX1···Xm|A1···Am
on X1×· · ·×

Xm × A1 × · · · × Am is called no-signalling if for any index set I ⊂ {1, . . . ,m} and its
complement J = {1, . . . ,m} \ I it holds that∑

xJ∈XJ

Q(xI , xJ
∣∣aI , aJ) = ∑

xJ∈XJ

Q(xI , xJ
∣∣aI , a′J) (2.4)

for all xI ∈ XI , aI ∈ AI and aJ , a′J ∈ AJ .

The next lemma states that we can loosen the constraints a little and still be left with
an equivalent definition of no-signalling. Specifically, it states that it is enough to require
that any single party can not signal to the rest.

Lemma 2.2. Suppose Q is a m-partite correlation satisfying (2.4) for all index sets I
such that their complements J have cardinality 1 and for all xI ∈ XI , aI ∈ AI and
aJ , a

′
J ∈ AJ . Then Q is a no-signalling correlation.

Proof. We prove this by induction on the cardinality of the complement J of an index
set I. If |J | = 1, condition (2.4) holds by assumption. Now suppose |J | = n, and
let xI ∈ XI , aI ∈ AI and aJ , a′J ∈ AJ . Take j ∈ J and let J ′ = J \ {j}. We now find∑

xJ∈XJ

Q(xI , xJ
∣∣aI , aJ) = ∑

xJ′∈XJ′

∑
xj∈Xj

Q(xI , xJ ′ , xj
∣∣aI , aJ ′ , aj)

(i)
=

∑
xJ′∈XJ′

∑
xj∈Xj

Q(xI , xJ ′ , xj
∣∣aI , aJ ′ , a′j)

(ii)
=

∑
xJ′∈XJ′

∑
xj∈Xj

Q(xI , xJ ′ , xj
∣∣aI , a′J ′ , a′j)

=
∑

xJ∈XJ

Q(xI , xJ
∣∣aI , a′J),

where (i) follows by assumption on Q and (ii) by induction (we are free to exchange the
sums).
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2.3. Linear programming

Linear programming is a technique in which we optimize a linear function over a domain
that is a convex polytope. A polytope is a generalization of a polygon to any number
of dimensions. There are two ways of describing a convex polytope: by giving its ex-
treme points (and rays), called the vertex representation (V-representation), or by linear
constraints, called the half-space representation (H-representation).

The H-representation of a convex polytope is a collection of (closed) half-spaces, such
that their intersection is the convex polytope. A half-space can be described by a linear
inequality

a1x1 + · · ·+ anxn ≤ c. (2.5)

Using this description, the convex polytope can be represented as a system of linear
inequalities, which can be written as a matrix inequality

Ax ≤ d.

Here, A is the matrix containing all factors ai and d the vector containing all constants c,
for all inequalities as in (2.5) representing the polytope. Sometimes we include linear
equalities as well, since they could also be described by two opposite inequalities.

We have already seen an example of a convex polytope described by linear (in)equalities:
the no-signalling polytope. The variables, in this case, are each of the probabilities
Q(x, y|a, b), and must satisfy the no signalling constraints in (2.2) and (2.3) (or, more
generally, (2.4)). The variables must also satisfy Q(x, y|a, b) ≥ 0 for all x, y, a, b and
finally,

∀a, b :
∑
x,y

Q(x, y|a, b) = 1.

Given a V-representation, the corresponding convex polytope is the convex hull of the
extreme points. The convex hull of a set of points is the smallest convex set that contains
all the points, or simply the set of all convex combinations of the points (i.e., all weighted
averages). This representation is especially interesting, since a linear function always has
a global maximum in (at least) one of the extreme points of a convex polytope. We make
use of this fact in Section 4.2.

2.4. Information theory

The definitions in this section are largely based on the book by Csiszár and Körner [4].
Information theory is the study of communicating and storing information. The sim-

plest setting in information theory is one with a single sender and a single receiver. The
goal of the sender and the receiver, which could be separated by space or time, is to
communicate information from the sender to the receiver in such a way that the receiver
can be sure that the message they received was the message that was sent, up to some
probability of error.
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The communication between the sender and the receiver happens over a channel. A
channel is a probabilistic function between two sets X and A , represented by a con-
ditional probability distribution PA|X. Here PA|X(a|x) is the probability of the channel
outputting a on input x. We call a channel memoryless if consecutive uses of the chan-
nel do not change its probability distribution. We can model n consecutive uses of a
memoryless channel PA|X by the channel P×n

A|X.
Communication over a memoryless channel happens as follows: the sender has a mes-

sage set M of possible messages (sometimes we denote the message set by [M ] instead,
where M is the number of messages); they pick one message m ∈ M to send; they en-
code m as an element xn of X n, the codeword, using a function Enc: M → X n; next,
they transmit each of the symbols xi of this codeword to the receiver by consecutive
uses of the channel; the receiver receives an an in A n and decodes it to a message m′,
using a function Dec: A n → M . The communication was successful if m = m′. The
encoding and decoding function together form a code (also called an n-block code, or
error-correcting code).

The average success probability of a code is given by

ω :=
1

|M |
∑
m∈M

P×n
A|X(Dec−1(m)|Enc(m));

the minimum winning probability of a code is given by

α := min
m∈M

P×n
A|X(Dec−1(m)|Enc(m))

and the rate of a code is R = 1
n log |M |.

Definition 2.3. We call a code (Enc,Dec) for a channel PA|X an (n, 2nR, α) code if

Enc: [2nR] → X n;

Dec: A n → [2nR];

P×n
A|X(Dec−1(m)|Enc(m)) ≥ α.

(Note that Dec−1(m) might be a set.)

There is another form of decoding, called list-decoding (described in the paper by
Merhav [13]), that will prove to be useful in this thesis. In list decoding, the decoder
outputs a set (list) of messages of size L, instead of a single message. The decoding is
successful if the list contains the message that was sent. We denote the list outputted
by the decoder on input an as Can . The average success probability of a list-decoding
scheme is given by

ω :=
1

|M |
∑
m∈M

an∈A n: Can∋m

P×n
A|X(a

n|Enc(m))

and the minimum winning probability by

α := min
m∈M

∑
an∈A n: Can∋m

P×n
A|X(a

n|Enc(m)).
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Definition 2.4. We call a list code a (n, 2nR, L, α) code if Dec maps elements an of A n

to subsets Can of [2nR] of size L and

Enc: [2nR] → X n;∑
an∈A n: Can∋m

P×n
A|X(a

n|Enc(m)) ≥ α.

Next, we take a look at an example of a channel, the binary symmetric channel, and
some codes for this channel.

2.4.1. Binary symmetric channel

The binary symmetric channel (BSC) is probably the most well known example of a
channel. It is a channel from {0, 1} and {0, 1}, which takes an input bit x, flips it with
probability α ∈ [0, 1/2] and outputs the result. A schematic is shown in Figure 2.1.

1

0

1

0

(1− α)

(1− α)

α

α

Figure 2.1.: Schematic of the binary symmetric channel.

The simplest code for this channel, called the repetition code, encodes two messages 0
and 1 to 0n and 1n respectively. Decoding works by taking the output a from the BSC
and outputting the bit that occurs the most in a. This scheme is well-defined for odd n
and has average success probability

∑(n−1)/2
i=0

(
n
i

)
αi(1− α)n−i.

Hamming code Another code for the BSC, perhaps the most famous one, is the
(7,4)-Hamming code, introduced by Richard Hamming [9]. This code encodes bit-
strings d1d2d3d4 of length 4 as bitstrings of length 7 by appending three parity bits:
d1d2d3d4p1p2p3. These bits represent the parity (XOR) of three of the original 4 bits
(See Figure 2.21).

Decoding works by checking if the parity bits are still correct (still equal to the parity
of the corresponding 3 bits). If this is the case, we just remove the last three bits of the
received bitstring. Now suppose an error occurred in exactly one bit.

• If the error occurred in d4, all the parity bits are incorrect.

• If the error occurred in d1, d2 or d3, two of the parity bits are incorrect (p1 and p2
for d1, p1 and p3 for d2 and p2 and p3 for d3).

1Image by Cburnett on Wikipedia: https://nl.wikipedia.org/wiki/Hamming-code
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• If the error occurred in one of the parity bits, only that parity bit will be incorrect.

Using the above, we can perfectly deduce in which bit the error occurred and correct it
accordingly. If more than one error occurs, this method never decodes correctly.

Figure 2.2.: The Hamming code visualized: The bitstring d1d2d3d4 is encoded by ap-
pending the parity bits p1, p2 and p3, where each parity bit represents the
parity of the three bits inside their circle. A single error in one of the seven
bits can be perfectly detected by checking which parity bits are incorrect.

Since the Hamming code corrects exactly 0 or 1 error, we can write the average success
probability of this code as

(1− α)7 + 7α(1− α)6.

Nearest neighbour decoding Nearest neighbour decoding is based on the concept
of Hamming distance. The hamming distance d(x, y) between two bitstrings x and y (of
the same length) is the number of positions in which they differ:

d(x, y) = |{i | xi ̸= yi}|.

In nearest neighbour decoding, we decode a bitstring a to the message whose codeword x
has the smallest Hamming distance to a. Since a bit sent through a BSC is more likely
to stay the same than to flip, nearest neighbour decoding optimizes the average success
probability of a code. Now the question becomes: To which codewords do we send
our messages such that the average success probability is maximized. Intuition suggests
that we want to pick the codewords as far apart from each other, in terms of Hamming
distance, as possible.

It is easy to see that if d is the minimal distance between any two codewords, nearest
neighbour decoding can correct up to ⌊(d− 1)/2⌋ bits. We call a code using nearest
neighbour decoding an (n, k, d) code, if the encoding function maps messages from {0, 1}k
to codewords in {0, 1}n, such that the minimal distance between any two codewords is
at least d. We can lower bound the average success probability of an (n, k, d) code by

⌊(d−1)/2⌋∑
i=0

(
n

i

)
αi(1− α)n−i.
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List decoding for the BSC To create a list decoding scheme for the binary symmetric
channel, we can expand the idea of nearest neighbour decoding: the decoder outputs the
L messages whose codewords are closest to the received bitstring. Note that when the
message set is {0, 1}n, this corresponds to outputting the Hamming ball, with at most L
elements, around the received bitstring. If there exists a radius d, such that the size of
the corresponding Hamming ball is exactly L, this decoding scheme has average success
probability

d∑
i=0

(
n

i

)
αi(1− α)n−i.

2.4.2. Entropy

In this section we quickly go over all definitions regarding entropy. However, since entropy
only plays a small part in this thesis, we keep it quite concise. For a more in-depth
explanation of entropy, one could look at “Elements of Information Theory” by Cover
and Thomas [3, Chapter 2].

Let P be a probability distribution over X and let X be a random variable distributed
according to P . We define the entropy H(X) = H(P ) of X as

H(X) := −
∑
x∈X

P (x) log(P (x))

(wherever P (x) = 0, we say P (x) log(P (x)) = 0). Note that H(P ) ∈ [0, log |X |]. The
entropy of a distribution can be seen as a measure of uncertainty, or of its information
contents: the higher the entropy, the lower its information contents.

Now let X and Y be two random variables with joint probability distribution PXY. We
define the joint entropy as H(X,Y ) = H(PXY) and the conditional entropy H(X|Y ) as

H(X|Y ) :=
∑
y

PY(y)H(X|Y = y).

It is not hard to show that H(X|Y ) = H(X,Y )−H(Y ).
For two random variables X,Y , we define the mutual information I(X;Y ) as

I(X;Y ) := H(X) +H(Y )−H(X,Y ).

Next, for two probability distributions P and Q over X we define the relative entropy
D(P∥Q) as

D(P∥Q) :=
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.

Finally, let P 1
X|Y and P 2

X|Y be two conditional distributions and let QY be a distribution.
We define the conditional relative entropy D(P 1

X|Y∥P
2
X|Y | QY ) as

D(P 1
X|Y∥P

2
X|Y | QY ) :=

∑
y∈Y

QY(y)D(P 1
X|Y=y∥P

2
X|Y=y).
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3. LSSD

In this chapter we deal with the definition of LSSD and the different forms of strategies
(classical and no-signalling). We only discuss the case of two players, Alice and Bob, but
all definitions can easily be generalized to any number of players.

The inputs to Alice and Bob can either be classical or quantum. In the first case,
we denote by X ,A and B the sets of possible inputs for the referee, Alice and Bob
respectively. When the inputs are quantum, we need to consider quantum systems. We
denote by X = CX ,A = CA and B = CB the quantum systems underlying the registers
X,A and B, belonging to the referee, Alice and Bob.

3.1. Definitions

In the most general setting, an LSSD game played by two players is defined by a cqq
state ρXAB, which means that register X is classical, while registers A and B can be
quantum. Such a state is of the form

ρXAB =
∑
x∈X

PX(x)|x⟩⟨x|X ⊗ ρxAB,

where PX is a probability distribution over X and ρxAB are bipartite quantum states. The
referee gives register A to Alice and B to Bob and keeps register X for themselves. Alice
and Bob know the state ρXAB and will try to guess the value x based on their received
states. We denote their guesses by xA and xB. Alice and Bob are allowed to share some
resources, but are not allowed to communicate with each other. Finally, they win the
game if both guesses are correct: xA = xB = x.

In most of this thesis we are going to be looking at the case where ρXAB is completely
classical. Meaning that there exist orthonormal bases {|a⟩ | a ∈ A } and {|b⟩ | b ∈ B}
for A and B respectively, that are independent of x ∈ X , and probability distributions
P x
AB over A × B such that

ρxAB =
∑
a∈A
b∈B

P x
AB(a, b)|a⟩⟨a|A ⊗ |b⟩⟨b|B.

In this case, it is useful to reword the problem. Instead of the game being described by
a cqq state, we can now describe it by a probability distribution PXAB on X × A × B.
The referee picks elements x ∈ X , a ∈ A and b ∈ B according to this distribution and
gives a and b to Alice and Bob respectively. Alice and Bob know the distribution PXAB

and both try to guess the value x. Again, they can share some resources, but are not
allowed to communicate, and they win if they both guess correctly. A schematic of LSSD
is shown in Figure 3.1.
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Figure 3.1.: A schematic of the LSSD game. On inputs a and b Alice and Bob make
guesses xA and xB respectively, and win if x = xA = xB.

3.2. Strategies

In this section we will describe the different types of strategies based on the different
possible shared resources: classical and no-signalling.

3.2.1. Classical strategies

Using classical resources, the players are allowed to share some randomness. However,
sharing randomness does not help in increasing the winning probability. This can easily
be seen by realizing that after a random value is generated, what is left is a strategy that
does not depend on that randomness any more. So instead of using the randomness, the
players can just use the strategy that achieves the highest winning probability. In the
following, we assume that the players do not use shared randomness.

In the quantum case of the LSSD game (meaning that the game is described by a quan-
tum state ρXAB), a strategy is completely defined two measurements M = {Mx | x ∈ X }
and N = {Nx | x ∈ X }. Alice and Bob perform measurements M and N respectively
on their subsystem, which gives them their guess. Given the measurements M and N
their winning probability is given by∑

x∈X

PX(x) tr[ρ
x
AB(Mx ⊗Nx)]

and the optimal winning probability is denoted by

ωc(X|A;B)ρ := sup
M∈M(A)
N∈M(B)

∑
x∈X

PX(x) tr[ρ
x
AB(Mx ⊗Nx)].

In case ρXAB is purely classical and described by a probability distribution PXAB, the
strategy of Alice and Bob is given by two conditional probability distributions QXA|A and
QXB |B describing their local behaviour. The winning probability is then given by∑

x∈X
a∈A ,b∈B

PXAB(x, a, b)QXA|A(x|a)QXB |B(x|b).
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The optimal winning probability can now be obtained by maximizing over all conditional
probabilities. However, we can restrict this optimization to maximizing over all deter-
ministic strategies, i.e., strategies that can be described by two functions f : A → X
and g : B → X . Similarly to shared randomness, Alice and Bob can condition any local
randomness on the realization that maximizes their probability of winning. Now, the
optimal winning probability is given by

ωc(X|A;B)P = max
f,g

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)δ[f(a) = g(b) = x].

3.2.2. No-signalling strategies

For no-signalling strategies we only look at the classical version of LSSD, i.e. games
defined by a probability distribution PXAB.

Using no-signalling resources, a strategy is given by a conditional probability distribu-
tion QXAXB |AB on X ×X ×A ×B satisfying the no-signalling constraints. The winning
probability of such a strategy is given by:∑

x∈X
a∈A ,b∈B

PXAB(x, a, b)QXAXB |AB(x, x|a, b).

The optimal winning probability can be found by taking the supremum over all possible
no-signalling strategies:

ωns(X|A;B)P := sup
QXAXB |AB

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)QXAXB |AB(x, x|a, b)

Important to note here is that the winning probability given a no-signalling strategy
is a linear function in the values QXAXB |AB(xA, xB|a, b). This observation, together with
the fact that the set of no-signalling correlations form a convex polytope, means that we
can use linear programming to find the optimal no-signalling winning probability of an
LSSD game. It also means that there is always an optimal strategy at one of the extreme
points of the no-signalling polytope.

This last fact is what Majenz et al. used to prove that there exists no probability distri-
bution PXAB with binary x, a and b, such that the corresponding LSSD game can be won
with higher probability using no-signalling strategies [12, Proposition 3.3]. They showed
that none of the no-signalling correlations at the extreme points of the no-signalling poly-
tope could ever perform better than the simple classical strategy of outputting the most
likely value for x. We do something similar in the next chapter. However, it turns out
that this argument is not enough in the tripartite case, so we have to turn to numerical
analysis to finish the argument.
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4. Three-party binary LSSD

In this chapter, we will show (partially numerically) that there exist no probability dis-
tribution PXABC, where x, a, b and c are all binary, such that the corresponding LSSD
game can be won with higher probability using no-signalling strategies than with classi-
cal strategies. We will do this by showing that none of the no-signalling correlations at
the extreme points of the no-signalling polytope can ever perform better than classical
strategies.

In the next section we discuss some results on optimal classical and no-signalling
strategies. These results allow us to discard some no-signalling strategies of which we
know that they cannot perform better than classical strategies. For the strategies that are
left, we turn to linear programming to numerically show that they also cannot perform
better than classical.

4.1. Some results on optimal strategies

This first lemma is an extension of the classical part of Lemma 3.2 in the paper by
Majenz et al. [12]. It gives a list of all deterministic strategies (or more accurately:
winning probability thereof) we need to consider in finding the optimal classical winning
probability. The proof of this lemma relies on the relatively simple observation that the
players should have equal output sets (sets consisting of all things they could possibly
output according to their strategy).

Lemma 4.1. Let PXABC be a probability distribution over X × A × B × C with A =
B = C = {0, 1} and X = [d], d ≥ 2. The classical winning probability for PXABC is
given by

ωc(X
∣∣A;B;C)P = max

s,t
s ̸=t

max


PX(s),

PXABC(s, 0, 0, 0) + PXABC(t, 1, 1, 1),
PXABC(s, 1, 0, 0) + PXABC(t, 0, 1, 1),
PXABC(s, 0, 1, 0) + PXABC(t, 1, 0, 1),
PXABC(s, 0, 0, 1) + PXABC(t, 1, 1, 0)

 (4.1)

Proof. First, remember that we only have to consider deterministic strategies (see Subsec-
tion 3.2.1). Any deterministic strategy can be represented by three functions f, g, h : {0, 1} →
X . Given such a strategy, the probability of winning is given by∑
x,a,b,c

PXABC(x, a, b, c)δ[f(a) = g(b) = h(c) = x] =
∑
a,b,c

PXABC(f(a), a, b, c)δ[f(a) = g(b) = h(c)].

(4.2)
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Notice that there is always an optimal strategy such that {f(0), f(1)} = {g(0), g(1)} =
{h(0), h(1)}. Suppose, for example, that for some a∗, we have that f(a∗) /∈ {g(0), g(1)}.
It follows that δ[f(a∗) = g(b) = h(c)] = 0 for all b, c. Changing Alice’s output on
input a∗, such that f(a∗) ∈ {g(0), g(1)}, causes δ[f(a∗) = g(b) = h(c)] to possibly be
equal to 1 for some b, c. This introduces non-negative terms in the sum of (4.2), while
not losing any others, thereby increasing the winning probability.

There are 5 possible ways in which we have {f(0), f(1)} = {g(0), g(1)} = {h(0), h(1)}.
The first is that all players ignore their input and always output some fixed s. In this
case, the probability of winning is given by∑

a,b,c

PXABC(s, a, b, c) = PX(s).

This gives the first term in formula (4.1) The other 4 possibilities are when they all take
their input into account:

• f(0) = g(0) = h(0) and f(1) = g(1) = h(1) or,

• f(1) = g(0) = h(0) and f(0) = g(1) = h(1) or,

• f(0) = g(1) = h(0) and f(1) = g(0) = h(1) or,

• f(0) = g(0) = h(1) and f(1) = g(1) = h(0).

defining f(0) =: s and f(1) =: t, the winning probability in each of these cases is equal
to a term in formula (4.1).

Whereas the previous lemma reduced the number of interesting deterministic strate-
gies, the next lemma and its corollary will do so for no-signalling strategies.

Lemma 4.2. Let P be a probability distribution over X ×A1 × · · · ×Am with |X | = d
and d ≥ 2. Let Q be a no-signalling strategy for which

Q(x, . . . , x
∣∣a1, . . . , am) ≤ 1

d

holds for all x ∈ X and a1 ∈ A1, . . . , am ∈ Am. Then its winning probability in the
LSSD game defined by P is at most the best classical winning probability:∑

x∈X
a1∈A1,...,am∈Am

P (x, a1, . . . , am)Q(x, . . . , x
∣∣a1, . . . , am) ≤ ωc(X

∣∣A1; . . . ;Am)P

Proof. The proof relies on the simple fact that the m players can always use deterministic
strategies to win with at least probability 1/d by ignoring their inputs and guessing the
value of x to be the one most likely in P . The probability that the referee picks a certain
value x is given by P (x) =

∑
a∈A1×···×Am

P (x, a) and since
∑

x P (x) = 1, there exists
an x∗ ∈ X such that P (x∗) ≥ 1/d. We conclude that ωc(X

∣∣A1; . . . ;Am)P ≥ 1/d.
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We use the previous argument to finish the proof:∑
x∈X

a1∈A1,...,am∈Am

P (x, a1, . . . , am)Q(x, . . . , x
∣∣a1, . . . , am)

≤1

d

∑
x∈X

a1∈A1,...,am∈Am

P (x, a1, . . . , am) =
1

d
≤ ωc(X

∣∣A1; . . . ;Am)P .

Corollary 4.3. Consider an LSSD problem with m players defined by a distribution P
for which ωc(X|A1; . . . ;Am)P < ωns(X|A1; . . . ;Am)P . There is an optimal no-signalling
strategy Q at one of the vertices of the no-signalling polytope, such that there exist x ∈ X ,
with |X | = d, and a1 ∈ A1, . . . , am ∈ Am for which Q(x, . . . , x

∣∣a1, . . . , am) > 1/d.

Proof. Since the set of all no-signalling strategies is a convex polytope, and the winning
probability of a no-signalling strategy is a linear function, we know that the optimal
winning probability is achieved by a strategy Q at one of the vertices of the polytope
(see Section 2.3). We also know that there exist x ∈ X and a1 ∈ A1, . . . , am ∈ Am such
that Q(x, . . . , x|a1, . . . , am) > 1/d, because otherwise this strategy would not achieve
winning probability higher than ωc(X|A1; . . . ;Am)P by Lemma 4.2.

In the case of two players, we would now be done in showing that there is no binary
LSSD game with a gap between no-signalling and classical winning probabilities, since all
no-signalling correlations at the extreme points of the no-signalling polytope satisfy the
conditions of Lemma 4.1 [1, Theorem 1]. We will see in the next section that for three
players, this is not the case. However, Corollary 4.3 is still very useful as it eliminates
many of the no-signalling strategies.

4.2. No gap

In this section, our goal is to show that ωns(X|A;B;C)P = ωc(X|A;B;C)P for all proba-
bility distributions PXABC over binary numbers (see the code for this thesis [10]). This is
obviously equivalent to showing that

sup
P
ωns(X|A;B;C)P − ωc(X|A;B;C)P = 0.

Now we have turned the problem into an optimization problem. It is, however, not
possible to solve this problem using a single linear program, since the target function
is not linear: the target function is the maximum of the difference between two sets.
Luckily, using Corollary 4.3 and some smart tricks, we can solve this problem using
multiple linear programs.

First of all, it should be noted that the set of all probability distributions PXABC form
a convex polytope in Rn. The polytope is defined by the following linear constraints:

∀x, a, b, c PXABC(x, a, b, c) ≥ 0,
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and ∑
x,a,b,c

PXABC(x, a, b, c) = 1.

Apart from the variables that describe a probability distribution, we also add two vari-
ables cd and cns to the linear program, which represent ωc(X|A;B;C)P and ωns(X|A;B;C)P
respectively. These two variables should satisfy the following constraints:

cd ≥
∑
x,a,b,c

PXABC(x, a, b, c)Qd(x, x, x|a, b, c)

for all deterministic strategies Qd and

cns ≥
∑
x,a,b,c

PXABC(x, a, b, c)Qns(x, x, x|a, b, c) (4.3)

for all no-signalling strategies Qns at the vertices of the no-signalling polytope.
Now, the problem is to maximize cns−cd, which is a linear function in two variables, so

we can use a linear program. However, since we have not put an upper bound on cns, this
problem is obviously unbounded. We can work around this issue by setting one of the
constraints of (4.3) to an equality constraint. Solving the linear program with one of these
constraints set to an equality constraint gives us the maximum gap under the assumption
that the corresponding no-signalling strategy is the best strategy. By considering all no-
signalling strategies in this way we can find the maximum gap between classical and
no-signalling winning probabilities.

All that is left is to find the no-signalling strategies at the extreme points of the no-
signalling polytope. We can find them using a python package called cddlib, which is
based on a C package under the same name [7]. Similar to linear programs, we can
define some linear constraints and then this package provides all the exact vertices of the
corresponding polytope. In this case we need constraints on some strategy Q to be a
conditional probability distribution on X 3 ×A ×B ×C and constraints such that Q is
no-signalling (where we can use Lemma 2.2 to omit redundant constraints). We find that
this no-signalling polytope has 53856 extreme points, which is in line with the findings
of the paper by Pironio et al. [15, Section 2.2].

Since the number of no-signalling strategies is quite large, we would like to reduce this
number to reduce the number of linear programs we need to solve. Using Corollary 4.3,
we can greatly reduce the number of relevant no-signalling strategies, since we know that
there are always optimal strategies of a specific form. Corollary 4.3 reduces the number
of relevant no-signalling strategies from 53856 to 174. We can also use Lemma 4.1 to
reduce the number of relevant deterministic strategies from 26 = 64 to 10.

Finally we have everything we need to find the maximum gap between classical and
no-signalling probabilities. Solving the linear programs gives us numerical evidence that
the maximum gap is 0, meaning that there is no binary LSSD game for three players
such that no-signalling resources can improve the winning probability.

One could possibly prove this last statement by analysing each of the 174 remaining no-
signalling strategies and arguing that they can never achieve higher winning probabilities
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than classical strategies. One argument could be to give an explicit classical strategy that
performs better than the no-signalling strategy. However, such a classical strategy could
depend on the specific probability distribution defining the LSSD game. For the purposes
of this thesis, we are satisfied with the numerical argument.
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5. The BSC game

In this chapter we will take a closer look at the BSC game, a specific example of a
classical LSSD game described in the paper by Majenz et al. [12, Example 1]. Here we
give a different but equivalent description of the game. The referee starts by generating
a random bit x (0 or 1, both with probability 1/2). The referee sends this bit to Alice
and Bob over two identical and independent binary symmetric channels, so both with
the same error probability α. Alice and Bob’s inputs are the outputs of their binary
symmetric channel.

The optimal winning probability for this game is given by: [12]

ωc(X|A;B) = ωns(X|A;B) =

{
(1− α)2 0 ≤ α ≤ 1− 1√

2
1
2 1− 1√

2
≤ α ≤ 1

2

The winning probability in the first segment α ∈ [0, 1 − 1/
√
2] is achieved by Alice and

Bob guessing x to be the same as their input. This strategy is not surprising, since
when α is small, both their bits are likely to not have been flipped. In fact, if Alice were
to be playing this game alone, this strategy would be optimal for all α ≤ 1/2. However,
Alice and Bob should not just strive to be correct individually, but also simultaneously.
That is the reason why, for α ∈ [1 − 1/

√
2, 1/2], the optimal strategy is to both output

some fixed bit, regardless of the input.
Even more interesting things start happening when we play multiple simultaneous

copies of this game, where the players need to win all of them. Playing n simultaneous
copies can be thought of as the referee uniformly generating a bitstring x of length n
and sending it to Alice and Bob by n consecutive uses of their channels. Remember from
Section 2.4 that multiple consecutive uses of a channel PA|X can be modelled by a new
channel P×n

A|X.
Majenz et al. have shown that when playing two of these games simultaneously, Alice

and Bob can attain a better winning probability than playing two games consecutively. In
the next sections we analyse the optimal classical and no-signalling winning probabilities
for two and three simultaneous copies. We then discuss good classical and no-signalling
strategies for n copies. To do these analyses, we first mention a useful result on optimal
classical strategies. By a symmetric strategy we mean that Alice and Bob follow the
same local strategy.
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Theorem 5.1. Let PXAB be a distribution over X × A × B, with A = B, satisfying
the following:

(i) The marginal distribution PX over X is uniform.

(ii) PAB|X = PA|XPB|X.

(iii) PA|X = PB|X.

Then there is a symmetric deterministic strategy which is optimal for the classical LSSD
game defined by PXAB.

Proof. Let two functions f : A → X and g : B → X define a deterministic strategy.
We prove that either Alice and Bob both performing f or both performing g can only
increase the winning probability. Note that Alice and Bob can perform the same strategy,
since A = B.

The winning probability of the strategy defined by f and g is given by∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)δ[f(a) = g(b) = x]

(i)
=

1

|X |
∑
x∈X

a∈A ,b∈B

PAB|X(a, b|x)δ[f(a) = g(b) = x]

(ii)
=

1

|X |
∑
x∈X

(∑
a∈A

PA|X(a|x)δ[f(a) = x]

)(∑
b∈B

PB|X(b|x)δ[g(b) = x]

)
(iii)
=

1

|X |
∑
x∈X

PA|X(f
−1(x)|x)PA|X(g

−1(x)|x).

(f−1(x) and g−1(x) might be sets.)
Now write qf (x) := PA|X(f

−1(x)|x) and qg(x) := PA|X(g
−1(x)|x). Notice that qf and

qg are vectors indexed by x ∈ X , so we can write the winning probability as an inner
product of these vectors:

1

|X |
⟨qf , qg⟩ . (5.1)

The Cauchy-Schwarz inequality tells us that

| ⟨qf , qg⟩ |2 ≤ ⟨qf , qf ⟩ ⟨qg, qg⟩ ,

so we cannot have ⟨qf , qg⟩ > ⟨qf , qf ⟩ and ⟨qf , qg⟩ > ⟨qg, qg⟩. Therefore, we can conclude
that Alice and Bob either both performing f or both performing g does not decrease
the winning probability given in formula (5.1). Now suppose we picked f and g to form
an optimal strategy, then by the previous statement, we immediately find a symmetric
deterministic strategy that is also optimal.
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5.1. Two copies

In this section we compare the winning probability for no-signalling strategies for two
copies of the game to the deterministic winning probability. We calculated the winning
probabilities numerically and the result is shown in Figure 5.1. Most notable is that
both the graph with the winning probabilities for deterministic strategies and for no-
signalling strategies consist of three segments (instead of two) and in the middle segment
for no-signalling, there is a gap between classical and no-signalling winning probabilities.

0.0 0.1 0.2 0.3 0.4 0.5

α

0.2

0.4

0.6

0.8

1.0

ω

Figure 5.1.: This graph shows the optimal classical (blue) and no-signalling (red) win-
ning probabilities for two copies of the BSC game. The results were found
by brute-forcing over all symmetric strategies for the classical winning prob-
ability and solving a linear program for the no-signalling winning probability
(see code [10]).

The first segment of both graphs completely overlaps. In this segment the best strategy
for Alice and Bob is to output their input. Again, this strategy is not so surprising, since
with low noise, one expects their input to be the initially chosen bitstring x. The winning
probability in this segment is exactly the probability that no bits were flipped for either
party, which happens with probability (1− α)4.

For large α (close to 1/2), both the classical and no-signalling winning probabilities
are equal to 1/4. Just like when playing one copy, the strategy that achieves this winning
probability is to output some fixed bitstring regardless of the input.

The middle segments of both graphs are the most interesting. We start with the
classical case. In this segment it turns out that the best strategy is to output 00 if the
input contains a 0 and 11 otherwise. The winning probability of this strategy is given

26



by [12, Example 1]
1

4
(1− α2)2 +

1

4
(1− α)4.

Notice that for small α, the input of the players gives a lot of information on x, so the
players take their input into account. As α grows larger, the input bitstrings contain
less information on x, so it becomes more important for the players to output the same
thing, while taking their input into account less. Following this reasoning, it becomes
more intuitive as to why this strategy is optimal in segment 2.

In the second segment of the no-signalling graph, the best strategy is given by

Q2(x, y|a, b) =
{

1
3 when (x = y or x⊕ b = 11 = y ⊕ a) and (x⊕ a ̸= 11 ̸= y ⊕ b)
0 otherwise.

(5.2)

This strategy has winning probability (1 − α2)2/3 (see Section 5.3.2, where we discuss
this strategy more).

5.2. Three copies

Now let us consider three simultaneous copies of the BSC game. Expanding the problem
to three copies creates problems in finding the best deterministic strategy. Even consid-
ering just symmetric strategies, there are 88 = 224 possibilities. This enormous number
makes it very slow to find an optimal deterministic strategy for any given α, let alone a
large subset of possible α’s. Therefore, we first consider no-signalling strategies. These
can be efficiently found using a linear program. We will then use the results to hand-pick
values for α for which we will find the best deterministic strategies.

Again, we can find the winning probabilities numerically. The results of this search
are shown in figure 5.2. This time there are 4 distinct segments.

In the first segment the best strategy is still to output one’s input and the best strat-
egy in the last segment is to output a fixed bitstring. These strategies have winning
probability (1− α)6 and 1/8 respectively.

In the second segment we found two no-signalling strategies that achieved the same
winning probability. We were unable to find an expression for these strategies, but in
Section 5.3.2 we discuss a no-signalling strategy that also achieves the same winning
probability. However, there is also a deterministic strategy that achieves this winning
probability. In this deterministic strategy both players output the all-one string if they
receive an input with more zeros than ones, and they output the all-zero string otherwise.
The winning probability in this segment is

1

4

(
(1− α)3 + 3α(1− α)2

)2
.

(See Section 5.3.1.)
Notice that the deterministic strategy just discussed is very similar to the one in

segment two of the two-copy case. Only, in that case we had an even number of bits, so
when there were an equal amount of ones as zeros, we picked the output to be 00.
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Figure 5.2.: The winning probabilities of no-signalling strategies in three simultaneous
copies of the BSC game as a function of the error probability α ∈ [0.2, 0.5]
(see code [10]).

In segment three we found a no-signalling strategy very similar to the one we found
for two copies of the game:

Q3(x, y|a, b) =
{

1
7 when (x = y or x⊕ b = 111 = y ⊕ a) and (x⊕ a ̸= 111 ̸= y ⊕ b)
0 otherwise.

(5.3)

This strategy achieves winning probability (1−α3)2/7. In this segment, we were unable
to find a deterministic strategy that achieves the same winning probability. So, again,
there is likely a gap between the classical and no-signalling winning probabilities.

5.3. n Copies

In this section, we will look to find classes of good strategies, both classical and no-
signalling, for n simultaneous copies of the BSC game.

5.3.1. Classical strategies

We have already seen some similarities in classical strategies between one, two and three
copies of the game. For small α, the best strategy is always to output the input (identity
strategy). For α close to 1/2 the best strategy is to output some fixed bitstring regardless
of the input (constant strategy). The winning probabilities of these strategies for n copies
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are (1 − α)2n and 2−n. For two and three copies, we also found similar strategies “in
between” the identity and constant strategies. These strategies can also be extended to n
copies: outputting 0n if the input contains at least as many zeros as ones and outputting
1n otherwise (majority strategy). For odd n, the winning probability of the majority
strategy is given by

1

2n−1

(n−1)/2∑
i=0

(
n

i

)
αi(1− α)n−i

2

. (5.4)

Notice how the majority strategy is very similar to the repetition code for the BSC
described in Section 2.4.1. In fact, the majority strategy is exactly the same as first de-
coding and then encoding the result, or in other words, decoding directly to the codeword.
Also, the term in between brackets in (5.4) is exactly the average success probability of
this code.

In the next example we explore the idea of using error-correcting codes to define
classical strategies some more, by considering the hamming code for 7 simultaneous
copies of the BSC game.

Example 5.2. Consider the following strategy for 7 copies of the BSC game based on
the Hamming code: both players perform the correction part of the Hamming code on
their input and output the result (this is the same as decoding and then encoding again).
It is obvious that the players win if and only if the initial bitstring x is in the range of
the encode function and the decoding of both players was successful. This observation
results in the following winning probability:

24

27
(
(1− α)7 + 7α(1− α)6

)2
.

It turns out that this Hamming code strategy is strictly better for a large range of α
than the identity, constant and majority strategy for 7 copies of the game. This confirms
the idea that error correcting codes define good classical strategies. In general, an (n, k, d)
code for the BSC defines a classical strategy that achieves winning probability of at least

2k

2n

⌊(d−1)/2⌋∑
i=0

(
n

i

)
αi(1− α)n−i

2

.

5.3.2. No-signalling strategies

For two and three copies of the BSC game, we found the optimal no-signalling strate-
giesQ2 andQ3 (described in (5.2) and (5.3)). We can extend these no-signalling strategies
to n copies as follows:

Q(x, y|a, b) =
{

1
2n−1 when (x = y or x⊕ b = 1n = y ⊕ a) and (x⊕ a ̸= 1n ̸= y ⊕ b)

0 otherwise.
(5.5)
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There is, however, a more intuitive way to describe this no-signalling correlation. Alice
and Bob both have a set of possible outputs, which consists of every bitstring apart from
the one opposite of their input. We then create pairs of elements of their output sets
(each pair consists of an element of Alice’s output set and an element of Bob’s output
sets), such that each element occurs in exactly one pair and every element that occurs in
both sets is paired up with itself. We then uniformly pick one of the pairs to be Alice’s
and Bob’s guesses. An example of this process is shown in Figure 5.3.

Figure 5.3.: An example of a pairing of elements between the output sets of Alice and
Bob, for three simultaneous copies. Each line represents a pair, and at the
end of the process on pair is chosen uniformly.

This formulation makes it obvious that we can define a more general class of no-
signalling strategies: instead of the output sets consisting of everything apart from the
opposite of the input, we can let the output sets consist of all bitstrings within Hamming
distance d from the input. We can then pair up the elements from the output sets and
say that each of those pairs is output with equal probability. Again, if an element occurs
in both lists, we pair it with itself. This description defines a no-signalling strategy, since
Alice and Bob always output each of the elements of their output sets with the same
probability, regardless of the input of the other. We denote a no-signalling strategy for
n copies of the BSC game defined by Hamming distance d by Qd

n. Note that for d ∈
{1, . . . , n − 2} the strategy Qd

n is not unique, but they all achieve the same winning
probability.

Let us find the winning probability of a strategy Qd
n. Suppose that x is the bitstring

generated by the referee. The only way the players could output the combination (x, x)
is if both d(x, a) ≤ d and d(x, b) ≤ d, in which case it is outputted with probabil-

ity
(∑d

i=0

(
n
d

))−1
, since the sum is the size of their output sets. The probability that a

lies within distance d from x is
∑d

i=0

(
n
i

)
αi(1 − α)n−i. We conclude that the winning

probability of Qd
n is given by

1∑d
i=0

(
n
i

) ( d∑
i=0

(
n

i

)
αi(1− α)n−i

)2

.
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It turns out that all the optimal winning probabilities for one, two and three simul-
taneous copies of the BSC game can be achieved by a strategy of the form Qd

n. If we
pick d = 0 we get exactly the identity strategy. If we pick d = n, we get the average of all
possible constant strategies (and by linearity, this achieves the same winning probability
as a constant strategy). If we pick d = n−1, we get exactly the strategy defined in (5.5).
This strategy achieves winning probability

1

2n − 1

(
n∑

i=0

(
n

i

)
αi(1− α)n−i − αn

)2

=
1

2n − 1
(1− αn)2 .

We are left with segment two for three copies. The strategy Q1
3 achieves winning

probability
1

4

(
(1− α)3 + 3α(1− α)2

)2
.

This probability is exactly the same winning probability as the majority strategy, which
we found to be optimal in this segment. We conclude that all optimal winning proba-
bilities for one, tow and three copies of the game can be achieved by a strategy of the
form Qd

n

Notice that this class of no-signalling strategies is very similar to list decoding: on their
input, both players create a list of bitstrings that were most likely sent. The eventual
output is just one element of this list.

In the next chapter, we consider LSSD games defined by a general channel PA|X.
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6. Channel games

In the previous chapter, we have seen how the BSC defines an LSSD game. In this
chapter, we will see that any channel defines an LSSD game. For n simultaneous copies
of these games, we will discuss classical strategies based on error-correcting codes and
no-signalling strategies based on list-decoding schemes. We will also take a look at what
happens when the number of simultaneous copies approaches infinity. For this last part
it is important to note that for any non-local game, with optimal no-signalling winning
probability smaller than 1, the winning probability when playing n simultaneous copies
goes to 0 exponentially [2, Theorem 16]. This is why we will be considering the limit of
the exponent of the winning probability.

Let X and A be finite sets and let PA|X be a channel from X to A . The channel
game defined by this channel is given by the probability distribution

PXAB = PXPA|XPB|X

with PX the uniform distribution over X , A = B, and PB|X = PA|X. Playing n simulta-
neous copies of this channel game is the same as playing the channel game defined by the
channel P×n

A|X, which can be thought of as the referee generating a string xn ∈ X n and
sending it to Alice and Bob by n uses of their channels. Note that channel games satisfy
the conditions of Theorem 5.1, which means that we only need to consider symmetric
deterministic strategies.

Throughout this chapter, we assume that all encoding functions are injective.

6.1. Classical strategies

Let us now expand the idea of using codes to define classical strategies for multiple
simultaneous copies, just like we did for the BSC game, to this more general channel
game. Let (Enc,Dec) be an (n,M,α) code for the PA|X channel, which means that for
each m ∈ [M ] we have∑

an∈A n:
Dec(an)=m

P×n
A|X(a

n|Enc(m)) = P×n
A|X(Dec−1(m)|Enc(m)) ≥ α (6.1)

We define the strategy f , for n copies of the channel game, used by both players as
f := Enc ◦Dec. This strategy can be interpreted as the players decoding directly to the
codeword of a message instead of to the message itself.
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Using (6.1) and some analysis we did in Theorem 5.1, we can find a lower bound on
the winning probability of the strategy given by f :

1

|X |n
∑

xn∈X n

P×n
A|X(f

−1(xn)|xn)2 = 1

|X |n
∑

xn∈X n

 ∑
an∈A n:f(an)=xn

P×n
A|X(a

n|xn)

2

(6.2)

(6.1)

≥ 1

|X |n
∑

xn∈Im(Enc)

α2 =
M

|X |n
α2. (6.3)

Notice that there is a trade-off between the success probability and the number of
messages. We simultaneously want the success probability and the number of messages
to be large. However, Increasing one necessarily means decreasing the other.

The lower bound given in (6.3) is useful for the proof of the result in the next section.

6.2. Limit behaviour of classical strategies

In this section we give an explicit expression for the limit of the exponent of the optimal
classical winning probabilities for n simultaneous copies of a channel game.

Theorem 6.1. Let PA|X be a channel and let P×n
XAB be the probability distribution defining

the channel game corresponding to the channel P×n
A|X. We have

lim
n→∞

log(ωc(X
n|An;Bn)P×n)

n
= max

QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX)− log(|X |)

To prove Theorem 6.1, we need two lemmas. The first lemma will help us prove
achievability of the limit. We leave its proof to Appendix A. The second lemma is a
lemma from Dueck and Körner [5, Lemma 5], and will help us prove that the limit is
optimal.

Lemma 6.2. Let PA|X be a channel, QXA a probability distribution over X × A and
δ > 0. For large enough n, there exists an(

n, 2n(I(X;A)Q−δ),
2−nD(QA|X∥PA|X|QX)

poly(n)

)

code for the channel PA|X.

Lemma 6.3. For any (n, 2nR, 2−nζ) code for PA|X, we have

ζ ≥ min
QXA

D(QA|X∥PA|X | QX) + max{R− I(X;A)Q, 0}+ o(1).

Proof of Theorem 6.1. We first prove achievability of the limit using Lemma 6.2. After
this part, we prove optimality using Lemma 6.3.
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Let QXA be a distribution over X × A and δ > 0. By Lemma 6.2, for large enough
n, there exists an

(
n, 2n(I(X;A)Q−δ), 2

−nD(QA|X∥PA|X|QX)

poly(n)

)
code for PA|X. Let f = Enc ◦Dec

be the strategy defined by this code. The winning probability of this strategy is at most
the optimal classical winning probability, so by using (6.3) we find

ωc(X
n|An;Bn)P×n ≥ 2n(I(X;A)Q−δ−D(QA|X∥PA|X|QX))

|X |n poly(n)

and therefore

log(ωc(X
n|An;Bn)P×n)

n
≥ I(X;A)Q − δ − 2D(QA|X∥PA|X | QX)− log(|X |)− log(poly(n))

n
.

(6.4)

Since (6.4) holds for any QXA and δ > 0, and limn→∞
log(poly(n))

n = 0 (irrespective of
the polynomial), we conclude

lim
n→∞

log(ωc(X
n|An;Bn)P×n)

n
≥ max

QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX)− log(|X |)

Now we prove the inverse inequality. By Theorem 5.1, We can assume that Alice and
Bob use the same strategy f : A n → X n. For xn ∈ X n, we define

q(xn) := P×n
A|X(f

−1(xn)|xn).

(f−1(xn) might be a set.) We can write the winning probability of the strategy defined
by f by (see the proof of Theorem 5.1)

1

|X |n
∑

xn∈X n

q(xn)2. (6.5)

Let δ > 0, for each i ≥ 0, we define

Ri := {xn ∈ X n | 2−nδ(i+1) ≤ q(xn) < 2−nδi}.

We define a code (Enci,Deci) by Enci : Ri → X n, x 7→ x (so the messages are the
elements of Ri) and

Deci(a
n) =

{
f(an) if f(an) ∈ Ri

x̂n otherwise,

for some x̂n ∈ Ri. For xn ∈ Ri, we have P×n
A|X(Dec−1

i (xn)|Enci(xn)) ≥ q(xn) ≥ 2−nδ(i+1),
so this code is an (n, |Ri|, 2−nδ(i+1)) code. Now, according to Lemma 6.3, we have

δ(i+ 1) ≥ min
QXA

D(QA|X∥PA|X | QX) + max

{
log |Ri|
n

− I(X;A)Q, 0

}
+ o(1).

Suppose that q(xn) > 0, then there exists an an ∈ A n such that q(xn) ≥ P×n
A|X(a

n|xn),
which means that there exist x ∈ X and a ∈ A such that q(xn) ≥ (PA|X(a|x))n. We
conclude that q(xn) ≥ 2−nµ where µ = maxx,a:PA|X(a|x)>0− log(PA|X(a|x)).
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From the above, it follows that if i ≥ t := ⌊µδ ⌋, then Ri is empty. Now we find

∑
xn∈X n

q(xn)2 =

t∑
i=0

∑
xn∈Ri

q(xn)2

≤
t∑

i=0

|Ri|2−2nδi

≤
t∑

i=0

2
n
(

log |Ri|
n

−2minQXA

(
D(QA|X∥PA|X|QX)+max

{
log |Ri|

n
−I(X;A)Q,0

})
+o(1)+δ

)

=
t∑

i=0

2
n
(

log |Ri|
n

+maxQXA

(
2min

{
I(X;A)Q− log |Ri|

n
,0
}
−2D(QA|X∥PA|X|QX)

)
+o(1)+δ

)

≤
t∑

i=0

2
n
(

log |Ri|
n

+maxQXA

(
min

{
I(X;A)Q− log |Ri|

n
,0
}
−2D(QA|X∥PA|X|QX)

)
+o(1)+δ

)

≤
t∑

i=0

2n(maxQXA(I(X;A)Q−2D(QA|X∥PA|X|QX))+o(1)+δ)

= (t+ 1)2n(maxQXA(I(X;A)Q−2D(QA|X∥PA|X|QX))+o(1)+δ)

≤
(µ
δ
+ 1
)
2n(maxQXA(I(X;A)Q−2D(QA|X∥PA|X|QX))+o(1)+δ).

Since the previous holds for any strategy f and using (6.5), we find, with δ = 1/n,

ωc(X
n|An;Bn)P×n ≤ 1

|X |n
(nµ+ 1) 2n(maxQXA(I(X;A)Q−2D(QA|X∥PA|X|QX))+o(1)+1/n).

Now we have

log(ωc(X
n|An;Bn)P×n)

n
≤ max

QXA

(
I(X;A)Q − 2D(QA|X∥PA|X | QX)

)
−log |X |+o(1)+log(nµ+ 1) + 1

n
.

Obviously, log(nµ+1)+1
n + o(1) goes to 0 as n goes to infinity, so we find

lim
n→∞

log(ωc(X
n|An;Bn)P×n)

n
≤ max

QXA

(
I(X;A)Q − 2D(QA|X∥PA|X | QX)

)
− log |X |,

which concludes our proof.

Next, we take a look at no-signalling strategies.

6.3. No-signalling strategies

Let us define no-signalling strategies in terms of list-decoding schemes. Let (Enc,Dec) be
an (n,M,L, α) code, where Dec maps elements an ∈ A n to subsets Can ⊂ [M ] of size L.
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On inputs an and bn, we generate two output sets C ′
an := Enc(Can) and C ′

bn := Enc(Cbn)
for Alice and Bob respectively. Next, we create a pairing of elements in the sets C ′

an and
C ′
bn , where elements that are in both sets are always paired up. This process results in

a set {(xA, xB) | xA ∈ C ′
an , xb ∈ C ′

bn}, where each element of C ′
an and C ′

bn occurs in
exactly one pair. Finally, we choose the output of Alice and Bob according to a uniform
distribution over the set of pairs. Since each player outputs a uniform element from
their output set, regardless of the input to the other player, this strategy is obviously
no-signalling. See Section 5.3.2 and specifically Figure 5.3, for an example of such a
strategy.

Using this strategy, the players win if xn ∈ C ′
an ∩ C ′

bn and the pair (xn, xn) is chosen
(with xn, an and bn the values in the LSSD game). It follows that the winning probability
of a no-signalling strategy defined by a list-decoding scheme is given by

1

L|X |n
∑

xn,an,bn:
xn∈C′

an∩C
′
bn

P×n
A|X(a

n|xn)P×n
A|X(b

n|xn) (6.6)

=
1

L|X |n
∑
xn

 ∑
an:C′

an∋xn

P×n
A|X(a

n|xn)

 ∑
bn:C′

bn∋xn

P×n
A|X(b

n|xn)

 (6.7)

=
1

L|X |n
∑
xn

 ∑
an:C′

an∋xn

P×n
A|X(a

n|xn)

2

. (6.8)

Note that when L = 1, the list-decoding scheme is just a regular error-correcting code,
so the corresponding no-signalling strategy is the same as the classical strategy of the
error correcting code.

This time, there is a trade-off between three things: the success probability of the code,
the size of the lists and the number of messages. We want the list size to be small, to
increase the probability of picking the right pair, but a smaller list size means a smaller
success probability. Similarly, we want the number of messages to be large, but a larger
number of messages means a smaller success probability.

6.4. Limit behaviour of no-signalling strategies based on
list-decoding schemes

In this section we prove that no-signalling strategies based on list-decoding schemes do
not achieve a better winning probability exponent when n→ ∞ than classical strategies.
To this extent, let ω′

ns(X
n|An;Bn)P×n be the optimal winning probability in n copies of

a channel game using only no-signalling strategies based on list-decoding schemes.

Theorem 6.4. Let PA|X be a channel and let P×n
XAB be the probability distribution defining

the channel game corresponding to the channel P×n
A|X. We have

lim
n→∞

log(ω′
ns(X

n|An;Bn)P×n)

n
= max

QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX)− log(|X |)
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Again, we need a result to prove that this limit is the highest attainable. We conjecture
that we can expand Lemma 5 from Dueck and Körner [5] (Lemma 6.3 in this thesis).
Although we do not have a formal proof, we do have a strong suspicion that Conjecture 6.5
is true.

Conjecture 6.5. For any (n, 2nR, 2nRL , 2−nζ) code for PA|X, we have

ζ ≥ min
QXA

D(QA|X∥PA|X | QX) + max{R−RL − I(X;A)Q, 0}+ o(1).

Proof of Theorem 6.4. Note first that, since classical strategies based on error-correcting
codes are a subset of the no-signalling strategies based on list-decoding schemes, we have

lim
n→∞

log(ω′
ns(X

n|An;Bn)P×n)

n
≥ lim

n→∞

log(ωc(X
n|An;Bn)P×n)

n
= max

QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX)− log(|X |)

For the inverse inequality, we follow the optimality part of the proof of Theorem 6.1
closely. Suppose Alice and Bob use a strategy defined by a list-decoding scheme (Enc,Dec),
where Enc is injective and Dec maps an to the set Can of size L. We define

q(xn) :=
∑

an:C′
an∋xn

P×n
A|X(a

n|xn).

(Remember that C ′
an = Enc(Can).) By (6.8), we can write the winning probability of

the strategy as
1

L|X |n
∑
xn

q(xn)2.

Let δ > 0, for each i ≥ 0, we define

Ri := {xn ∈ X n | 2−nδ(i+1) ≤ q(xn) < 2−nδi}.

We define a list-decoding scheme (Enci,Deci) as follows: Enci : Ri → X n is the identity
function and

Deci(a
n) = C ′

an ∩Ri.

Note that intersecting C ′
an with Ri only decreases the size of the list, making the code

weaker. This observation means that we will still be able to use Conjecture 6.5 for a list
decoding with list size L. For each xn ∈ Ri, we have∑

an: Deci(an)∋xn

P×n
A|X(a

n|xn) ≥ q(xn) ≥ 2−nδ(i+1),

so (Enci,Deci) defines a (n, |Ri|, L, 2−δ(i+1)) code. By Conjecture 6.5, we have

δ(i+ 1) ≥ min
QXA

D(QA|X∥PA|X | QX) + max

{
log |Ri|
n

− log(L)

n
− I(X;A)Q, 0

}
+ o(1).
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Just like in the proof of Theorem 6.1, we find that if q(xn) > 0, then q(xn) ≥ 2−nµ,
with µ := maxx,a:P (a|x)>0− log(P (a|x)) and if i ≥ t := ⌊µδ ⌋, then Ri is empty. Now, we
find

1

L

∑
xn∈X n

q(xn)2 =
t∑

i=0

∑
xn∈Ri

1

L
q(xn)2

≤
t∑

i=0

|Ri|
L

2−2nδi

≤
t∑

i=0

2
n
(

log |Ri|
n

− log(L)
n

−2minQXA

(
D(QA|X∥PA|X|QX)+max

{
log |Ri|

n
− log(L)

n
−I(X;A)Q,0

})
+o(1)+δ

)

≤
t∑

i=0

2n(maxQXA(I(X;A)Q−2D(QA|X∥PA|X|QX))+o(1)+δ).

From this point, the proof is exactly the same as in Theorem 6.1.

6.5. Exponent for the BSC game

We return to the game defined by a binary symmetric channel. We first show that in
the BSC game, the expression in Theorem 6.4 also holds if we allow any kind of no-
signalling strategies. This result means that, asymptotically, no-signalling strategies do
not perform better than classical strategies. We then calculate what the value of the
expression is. Throughout this section, PA|X is a BSC.

6.5.1. Optimality of the exponent

Throughout this subsection, we denote by x, y, a, b elements of {0, 1}n. The next two
lemmas tell us that there is always an optimal strategy of a certain form. This fact will
help us prove Theorem 6.8.

Lemma 6.6. For n simultaneous copies of the BSC game, defined by P×n
XAB, there is

always an optimal no-signalling strategy Q such that

∀s ∈ {0, 1}n : Q(x⊕ s, y ⊕ s|a⊕ s, b⊕ s) = Q(x, y|a, b). (6.9)

Proof. Let Q be an optimal strategy and s ∈ {0, 1}n. Consider the strategy Qs defined by
Qs(x, y|a, b) = Q(x⊕s, y⊕s|a⊕s, b⊕s). The strategyQs has the same winning probability
as Q, since P×n

XAB(x, a, b) = P×n
XAB(x ⊕ s, a ⊕ s, b ⊕ s) (the probability P×n

XAB(x, a, b) only
depends on Hamming distances d(x, a) and d(x, b)). We define

Q̂ :=
1

2n

∑
s∈{0,1}n

Qs.
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The strategy Q̂ satisfies (6.9):

Q̂(x⊕ t, y ⊕ t|a⊕ t, b⊕ t) =
1

2n

∑
s∈{0,1}n

Qs(x⊕ t, y ⊕ t|a⊕ t, b⊕ t)

=
1

2n

∑
s∈{0,1}n

Q(x⊕ t⊕ s, y ⊕ t⊕ s|a⊕ t⊕ s, b⊕ t⊕ s)

=
1

2n

∑
r∈{0,1}n

Q(x⊕ r, y ⊕ r|a⊕ r, b⊕ r)

=
1

2n

∑
r∈{0,1}n

Qr(x, y|a, b)

= Q̂(x, y|a, b).

Finally, by linearity of the winning probability, Q̂ also achieves the same winning
probability as Q, which means that it is optimal.

For the next lemma we introduce some notation: for a permutation σ ∈ Sn and a
bitstring x ∈ {0, 1}n we denote by σ(x) ∈ {0, 1}n the bitstring obtained from x by
permuting its bits according to σ. We omit the proof of the next lemma, as it is completely
analogous to the proof of the previous lemma.

Lemma 6.7. For n simultaneous copies of the BSC game, defined by P×n
XAB, there is

always an optimal no-signalling strategy Q such that

∀σ ∈ Sn : Q(σ(x), σ(y)|σ(a), σ(b)) = Q(x, y|a, b). (6.10)

Now suppose that Q is an optimal strategy satisfying (6.10) and let Q̂ be the con-
structed from Q, according to the proof of Lemma 6.6, satisfying (6.9). We show that Q̂
still satisfies (6.10). Let σ ∈ Sn, then

Q̂(σ(x), σ(y)|σ(a), σ(b)) = 1

2n

∑
s∈{0,1}n

Q(σ(x)⊕ s, σ(y)⊕ s|σ(a)⊕ s, σ(b)⊕ s)

=
1

2n

∑
s∈{0,1}n

Q(σ(x)⊕ σ(s), σ(y)⊕ σ(s)|σ(a)⊕ σ(s), σ(b)⊕ σ(s))

=
1

2n

∑
s∈{0,1}n

Q(σ(x⊕ s), σ(y ⊕ s)|σ(a⊕ s), σ(b⊕ s))

=
1

2n

∑
s∈{0,1}n

Q(x⊕ s, y ⊕ s|a⊕ s, b⊕ s)

= Q̂(x, y|a, b).

We conclude that there is always an optimal strategy satisfying both (6.9) and (6.10).
We use this to prove the following theorem.
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Theorem 6.8. Let P×n
XAB define n copies of the BSC game. Then

lim
n→∞

log(ωns(X
n|An;Bn)P×n)

n
= max

QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX)− log(|X |)

Proof. Let Q be an optimal strategy satisfying (6.9) and (6.10). From these two prop-
erties, it follows that the marginal distributions Q(x|a) and Q(y|b) only depend on the
hamming distances d(x, a) and d(y, b) respectively (by picking the right σ ∈ Sn and
s ∈ {0, 1}n, one can show Q(x|a) = Q(0n|0n−d(x,a)1d(x,a))). We can write the winning
probability of Q as follows:∑

x,a,b

P×n
XAB(x, a, b)Q(x, x|a, b) =

n∑
i,j=0

∑
x,a,b:

d(x,a)=i
d(x,b)=j

P×n
XAB(x, a, b)Q(x, x|a, b). (6.11)

Since the winning probability of Q is equal to ωns(X
n|An;Bn)P×n and there are (n+1)2

terms in the first sum of the RHS of (6.11), we know that there exist i, j such that∑
x,a,b

d(x,a)=i
d(x,b)=j

P×n
XAB(x, a, b)Q(x, x|a, b) ≥ ωns(X

n|An;Bn)P×n

(n+ 1)2
. (6.12)

Now consider the following strategy Q̃:

• on input (a, b) Alice and Bob generate (x, y) according to Q;

• Alice checks if d(x, a) = i and if not, uniformly generates a new output x̃ such that
d(x̃, a) = i;

• Bob checks if d(y, a) = j and if not, uniformly generates a new output ỹ such that
d(ỹ, a) = j;

This strategy is no-signalling and has winning probability of at least ωns(Xn|An;Bn)P×n

(n+1)2
, by

(6.12). We also have that Q̃(x|a) is uniform over Ca := {x | d(x, a) = i}, since Q(x|a)
only depends on d(x, a). Similarly, Q̃(y, b) is uniform over Db := {y | d(y, b) = j}.

Defining LA = |Ca| and LB = |Db| (these sizes are independent of a and b), we find

ωns(X
n|An;Bn)P×n

(n+ 1)2
≤
∑
x,a,b

P×n
XAB(x, a, b)Q̃(x, x|a, b)

≤
∑
x,a,b

P×n
XAB(x, a, b)min{Q̃(x|a), Q̃(x|b)}

≤ 1

max{LA, LB}
∑
x,a,b

P×n
XAB(x, a, b)δ(x ∈ Ca)δ(x ∈ Db)

=
1

max{LA, LB}|X |n
∑
x

( ∑
a: Ca∋x

P×n
A|X(a|x)

) ∑
b: Db∋x

P×n
A|X(b|x)

 .
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Now define

qA(x) :=
∑

a: Ca∋x
P×n
A|X(a|x);

qB(x) :=
∑

b: Db∋x
P×n
A|X(b|x).

Using a similar argument as in the proof of Theorem 5.1, we can choose that qA = qB,
which also means we can choose Ca = Da for all a. This results in an upper bound on
the winning probability That is similar to the winning probability of strategies based on
list decoding schemes (see (6.8)). In other words, this upper bound is achievable by a
no-signalling strategy based on a list-decoding scheme. From this observation it follows
that

ωns(X
n|An;Bn)P×n

(n+ 1)2
≤ ω′

ns(X
n|An;Bn)P×n . (6.13)

Combining (6.13) with Theorem 6.4 and using that limn→∞
log((n+1)2)

n = 0, we find

lim
n→∞

log(ωns(X
n|An;Bn)P×n)

n
≤ lim

n→∞

log(ω′
ns(X

n|An;Bn)P×n)

n
= max

QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX)− log(|X |).

The opposite inequality holds by Theorem 6.1, which concludes the proof.

6.5.2. Calculating the exponent

We calculate, for the binary symmetric channel, the value of the limit of the exponent
in theorems 6.1 and 6.8: maxQXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |). To this
extent, let QXA be a distribution over {0, 1} × {0, 1}. Now let us calculate the exponent
one step at a time. First of all, we have

I(X;A)Q = H(X)Q +H(A)Q −H(X,A)Q.

We have

H(X)Q = −
1∑

x=0

QX(x) log(QX(x)) = −
1∑

x=0

(
1∑

a=0

QXA(x, a)

)
log

(
1∑

a=0

QXA(x, a)

)
.

We can find H(A)Q in a similar way. We also have

H(X,A)Q = −
1∑

x,a=0

QXA(x, a) log(QXA(x, a)).

Now let us find the value of D(QA|X∥PA|X | QX):

D(QA|X∥PA|X | QX) =

1∑
x=0

QX(x)D(QA|X=x∥PA|X=x)

=
1∑

x=0

(
1∑

a=0

QXA(x, a)

)(
1∑

a=0

QA|X(a|x) log
(
QA|X(a|x)
PA|X(a|x)

))
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Using numerical analysis we found that the maximum maxQXA
I(X;A)Q−2D(QA|X∥PA|X |

QX)−log(|X |) is always achieved by a distributionQXA for whichQXA(0, 0) = QXA(1, 1) =:
c and QXA(0, 1) = QXA(1, 0) =: d. Using this property, we have

H(X)Q = H(A)Q = −2(c+ d) log(c+ d)

and
H(X,Y )Q = −2c log(c)− 2d log(d).

We also find

D(QA|X∥PX|A | QX) = 2

(
c log

(
c

(c+ d)(1− α)

)
+ d log

(
d

(c+ d)α

))
Combining the expressions above, we find the value I(X;A)Q−2D(QA|X∥PA|X | QX)−

log(|X |). Note that for QXA to be a distribution, we need d = 1
2 − c. This observation

means that we only need to maximize with respect to the variable c (we see α as a
constant). We can do this by calculating the derivative, setting it to 0 and solving for c.
Using a computer algebra system, we find

max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX)− log(|X |) = log(1− 2(1− α)α). (6.14)

In Figure 6.1 we plotted this expression together with exponent of the optimal winning
probability achieved by the strategies Qd

n for some n (see Section 5.3.2). We can clearly
see how this exponent approaches the limit calculated in (6.14).

Figure 6.1.: This figure shows log(ω)/n for different values of n and the limit of this ex-
pression, given by (6.14), against α. We calculated ω as the optimal winning
probability achieved by the strategies Qd

n (see Section 5.3.2).
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7. Conclusion

In Chapter 4, we extended a result from Majenz et al., stating that there is no gap in
winning probabilities using no-signalling resources versus classical resources when there
are two players and all values are binary, to the case of three players. We achieved this
result by numerical calculations, but could this also be done analytically? Another open
problem is whether this result holds for any number of players. However, extending our
numerical analysis to a larger number of players requires enumerating over all extrema
of the corresponding no-signalling polytope. This polytope will quickly grow in number
of vertices, making the analysis very slow.

In Chapter 5, we discussed an example of an LSSD game. We numerically found
optimal classical and no-signalling strategies for two and three simultaneous copies of this
game. We found that the strategies could be defined by (list-) decoding schemes and used
that observation to define strategies for any number of simultaneous games. In Chapter 6
we showed that these strategies are asymptotically optimal (for no-signalling, this result
depended on Conjecture 6.5). We also showed that classical and no-signalling strategies
achieve the limit of the exponent of the success probability. Although the classical and
no-signalling winning probabilities are the same when the number of simultaneous games
approaches infinity, we found examples of a finite number of games where there is a gap
between the optimal winning probabilities.

Again, we ask whether the numerically found optimal strategies could be proven to
be optimal. We also suggest examining exactly when there is a gap between the no-
signalling and classical winning probabilities in the BSC game. Wherever there is a gap,
it is interesting to look for a quantum strategy that also performs better than classical.

In Chapter 6, we considered a class of LSSD games defined by any channel and con-
sidered playing multiple simultaneous copies. We extended the idea of using codes and
list-decoding schemes to define classical and no-signalling strategies to this more general
class of games. We gave an expression for the limit of the exponent of the classical win-
ning probability and showed that no-signalling strategies based on list-decoding schemes
do not achieve a better exponent. However, this last result depended on a conjecture,
which we have not proven.

An obvious suggestion for future work is to prove Conjecture 6.5. Other open questions
are: can we show, like for the BSC, that no-signalling strategies based on list-decoding
schemes are asymptotically optimal? Are there more examples of channels for which
there is a gap in winning probability between classical and no-signalling strategies in a
finite number of simultaneous copies? Can the results be extended to classical-quantum
channels, where Alice and Bob receive a quantum state? For this last question, we would
need to extend the idea of no-signalling to the case where the inputs and outputs can be
quantum states.
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Chapter 6 also gives rise to a new area within information theory: simultaneous de-
coding. Within this setting, a sender tries to send a message to two receivers using
identical channels and the communication is successful if both receivers decode correctly.
We can allow the receivers to share some quantum or no-signalling resources and exam-
ine whether this leads to better coding schemes. There are similar settings that have
already been researched. In one such setting, the messages sent to the receivers are not
necessarily the same, or two different channels are used (like in the book by El Gamal [8,
Part 2]). In another similar setting we allow the sender and the receiver to share some
entanglement (like in the book by Holevo [11, Section 9]). There is even very recent
research in a setting with two senders and one receiver that all share a no-signalling box
(see the paper by Fawzi and Fermé [6]).

Ethical aspects We believe that none of the contributions made by this paper have
any ethical aspects directly connected to them. However, there are some indirect risks
connected to researching quantum mechanics. Especially when we advertise the research
to the world, telling everyone how great quantum mechanics are. The capabilities of
quantum mechanics and specifically things like quantum computing and non-locality
could be blown out of proportions by people that are not well-read into the topics, or
even by people with bad intentions. As an example, a future scammer might be able
to convince others into buying a certain app or device (maybe a non-local box) that
promises the ability to do things that it realistically cannot do. This might seem like a
stretch, but in recent years we have seen how, for example, the blockchain technology
caused a huge hype around cryptocurrency (and most recently NFT’s). This hype has
led to many people losing money.

We believe that, while research into quantum mechanics is important, we should treat
the subject carefully. Mostly, we should always make sure to be honest about the limits
of quantum mechanics, even if there are a lot of reasons to be enthusiastic about quantum
in general.
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Popular summary

Consider the following scenario: two people, Alice and Bob, play a game against a referee.
In this game, the referee generates three values, which we call x, a and b. Alice and Bob
know how the referee generates these three values. The referee gives the value a to Alice
and b to Bob, who then both have to guess the third value x without communicating
with each other. Alice and Bob win the game if they both guess correctly. We call this
game an LSSD game (see Figure 7.1).

Figure 7.1.: Diagram of an LSSD game. Alice and Bob’s guesses are named xA and xB.
They win the game if they both guess correctly, so if xA = xB = x.

In this thesis, we are interested in what happens when we give the players access to a
magic box (usually called a no-signalling box). The players both input their value into
this box and they both get an output from this box. The magic box is allowed to do
anything as long as it satisfies the following constraint: based on the output Alice gets
from the box, she should not be able to obtain information on what Bob gave as input
and vice versa. Now, the question is whether such a box could help the players win the
game.

The main result of this thesis is centered around a specific example of an LSSD game.
In this example, the referee generates a sequence of n bits (zeros and ones), where
choosing a zero and choosing a one both happen with probability 1/2. The referee then
generates a copy of this sequence by going over all elements of the sequence one by one
and changing them from 0 to 1 or from 1 to 0 with a probability α (we assume that the
probability α of such a flip is less than 1/2). The referee gives this copy to Alice, and
generates another copy, which they give to Bob. Alice and Bob need to guess the initially
generated sequence of bits.

Important to realize is that, in this game, Alice and Bob try to achieve two things:
they want to individually be correct and they want to guess the same thing (if they guess
something different, at least one of them will be incorrect). They can achieve the first
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goal by always guessing a sequence that is similar to the sequence they received, since,
especially for small error probability α the sequence they receive will usually be similar
to the original. The second goal can be achieved by limiting the number of sequences
they might guess. This way, there is a higher probability they guess the same thing.

It turns out that good strategies (without a magic box) are for Alice and Bob to both
perform the same “error-correcting code” on their sequences and output the result as
their guess. An error correcting code is an algorithm that can detect and correct errors
(flips) in sequences of bits. A code can only correct to a part of all possible sequences.
The smaller this part is, the more likely Alice and Bob guess the same thing.

Strategies that use a magic box work a bit differently. The players input their sequences
into the box. The box generates a list of all sequences that are different from Alice’s
sequence in at most d positions, and does the same for Bob’s sequence. Next, The box
pairs up items of these two lists, such that two items that are the same are always paired.
Finally, the box picks one of the pairs at random and outputs it to Alice and Bob. Alice
and Bob give the output from the box as their guess (see Figure 7.2).

Figure 7.2.: An example of how a magic box strategy works when the length of the
sequences is 3, d = 2 and the inputs of Alice and Bob are 101 and 001. The
box generates two lists of sequences that are different in at most d positions.
It then pairs up elements of the lists (by drawing lines), making sure to
always pair elements that occur in both lists. One pair is chosen to be the
output.

Probably the most interesting result in this thesis is that there are examples where
strategies using a magic box increases the probability of winning compared to not using
a magic box.
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A. Proof of Lemma 6.2

The proof of Lemma 6.2 relies on concepts and theorems from the book by Csiszar [4].
We will not be discussing these concepts here.

Lemma 6.2. Let PA|X be a channel, QXA a probability distribution over X × A and
δ > 0. For large enough n, there exists an(

n, 2n(I(X;A)Q−δ),
2−nD(QA|X∥PA|X|QX)

poly(n)

)
code for the channel PA|X.

Proof. Let R = I(X;A)Q − δ. By the packing lemma (Lemma 10.1 in Csiszar’s book),
there exists a function Enc: [2nR] → X n such that

• Enc(m) is of type QX for all m ∈ [2nR];

• |TQA|X (Enc(m)) ∩
⋃

m′ ̸=m TQA|X (Enc(m
′))| ≤ |TQA|X (Enc(m))|2−n δ

2

(Note that the conditions of the packing lemma are satisfied, becauseH(X)Q ≥ I(X;A)Q).
Now define Dec: A n → [2nR] by Dec(an) = m if m is the unique message such

that an ∈ TQA|X (Enc(m)), otherwise we set Dec(an) = 0. For all m ∈ [2nR], we have∑
an: Dec(an)=m

P×n
A|X(a

n|Enc(m)) = |Dec−1(m)|2−n(D(QA|X∥PA|X|QX)+H(A|X)Q) (A.1)

by Lemma 2.6 in Csiszar’s book (Using that Enc(m) are all of type QX). By definition
of the decoder, we also have

|Dec−1(m)| ≥ |TQA|X (Enc(m)) \
⋃

m′ ̸=m

TQA|X (Enc(m
′))| (A.2)

≥ |TQA|X (Enc(m))|(1− 2−n δ
2 ) (A.3)

≥ (n+ 1)−|A |(1− 2−n δ
2 )2nH(A|X)Q (A.4)

≥ 2nH(A|X)Q

poly(n)
, (A.5)

where (A.3) follows from the second property of Enc and (A.4) follows from Lemma 2.3
of Csiszar’s book. By combining (A.5) with (A.1) we conclude that (Enc,Dec) is a(

n, 2n(I(X;A)Q−δ),
2−nD(QA|X∥PA|X|QX)

poly(n)

)
code.
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