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Abstract

Position-verification is the process of verifying the presence of a device at a certain position. This

verification is secure when no adversaries can falsely claim to be present there. In this article sev-

eral models for position-verification are reviewed. First, the Vanilla model is reviewed. This model

is the most basic model for position-verification, for it does not impose limitations on the abilities

or knowledge of the adversaries. We prove that no secure position-verification protocol can exist

in the Vanilla model. Next, the Hidden-Base Model, in which the location of one or more of the

verifiers is unknown, and the Moving-Base Model, in which a verifier is not stationary but moves

uniformly at random, are reviewed. We prove that in both models, no secure position-verification

protocol can exist, unless assumptions are made that would make these models inapplicable.
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Chapter 1

Introduction

You would never tell anybody you don’t know information about your bank accounts. The Dutch

government has propagated this through campaigns like Nepmail, daar trapt u niet in or Hang op,

klik weg, bel uw bank! and nowadays it is part of our common sense. Nonetheless, when you walk

into a bank and discuss information about your bank account with the clerk, this is exactly what

you are doing. This person is probably a stranger to you. Then why do you trust this person with

your valuable and confidential information? Clearly, you trust the clerk with information about

your bank accounts, simply because he or she is at that precise position: behind the counter of

your bank. Apparently the position of someone we are communicating with can be a deciding

factor in whether or not we should trust this person.

This special form of trust has got a digital equivalent. Cryptography in which the position of

a device is (implemented as a part of) the key, is called Position-Based Cryptography (PBC). The

research field of PBC is about the question if and how the position of a device can be used to con-

struct secure cryptosystems. If this is possible, it can be used in the secure exchange of certain data.

An obvious application would be communication between a Ministry of Defense and a military

base near hostile territory. If the information sent from the Ministry of Defense could only be

decrypted on a specific area well inside the military base, this would reduce the chances of the

enemy being able to successfully acquire this delicate information.

This gives rise to a question: what if some other device could make it look like it was at the

position required for it to be trusted with some information. It could then be granted access to

information, whilst not being at the required position, thus whilst not being trustworthy. In this

article an answer is given to the question: Is it possible to securely determine the position of a

device?

We answer this question by analysing and comparing the articles "Position Based Cryptogra-

phy" by Chandran et al. (2009) and "Secure Location Verification with Hidden and Mobile Base

Stations" by Capkun et al. (2008). By comparing the different arguments about secure position-

verification suggested in these articles we give a clear and consistent review of the possibilities and

challenges for Position-Based Cryptography. We also provide alternative calculations and proofs

and clearify the argumentation of these articles.
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In Chapter 2, the standard model for PBC is defined on which proofs about the security of PBC are

given. In the following chapter this model, the Vanilla model, is elaborated on, as well as the effect

of changing certain assumptions of the model on the security of PBC. In the end the assumptions

necessary for PBC to be secure are evaluated in the light of applications.



Chapter 2

The Vanilla Model

Just like vanilla is the standard flavour for icecream, the Vanilla model is the standard model for

Position-Based Cryptography. The Vanilla model is a model with three types of parties: the ver-

ifiers try to identify a prover at position P, and the adversaries try to falsely make it look as if

someone is located at P (Chandran et al., 2009). The model is explained in the Section 2.1. In

Section 2.2, a proof is given for the claim that there can not be a secure position-verification pro-

tocol in the Vanilla Model.

The Vanilla Model is a model in which the positions of all verifiers are fixed and known to all

players. Therefore impossibility of secure position-verification in the Vanilla Model does not

mean no applicable secure position-verification protocol could ever exist. With other assumptions

could come other results to the (im)possibility claim. In Chapter 3 some models with different

assumptions are discussed.

2.1 The Model
In our review, 3-dimensional space is considered. Every player knows the security parameter κ

as well as the positions of the individual verifiers and the position under investigation, P. This P

must lie in the convex hull enclosed by the verifiers (Chandran et al., 2009). All players can send

either broadcast messages or directional messages. Broadcast messages are messages that, when

sent from a position Q, move away from Q in concentric hyperspheres. Directional messages are

messages that, when sent form a position Q, travel in a region of concentric hyperspheres centred

at Q. In addition to these two types of messages, both the verifiers and the adversaries have the

ability to communicate internally over a covert channel. When the verifiers communicate over

their covert channel, neither adversaries nor prover can obtain any information about their mes-

sage. The same goes for communication over the covert channel by the adversaries. In this article

we assume all messages travel at the speed of light. As a consequence, we can say that distance

and time are the same. Any protocol for position-verification by the verifiers is assumed known to

all players.

Secure Position-Verification
Let V = {V1, · · · ,Vn} be the set of verifiers and let A = {A1, · · ·Ak} be the set of adversaries. A

position-verification protocol is a protocol in which the set of verifiers interact with a prover at

position P′ and who jointly return “Accept” when P′ = P. The interaction consists of messages Mi
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sent by verifiers Vi ∈ V , on which the prover performs some computation in order to get a response

message it sends back to the verifiers. Recall that any protocol executed by the verifiers is known

to all players.

A position-verification protocol is said to be secure when the verifiers return “Accept” after having

interacted with the set of adversaries, non of which actually being present at P, with probability ε .

Here ε is negligible in security parameter κ .

The situation in which both adversaries, none of them at P, and a prover at P are present, is

not considered in this article. This is because when a prover is at P, any adversaries also present

would simply do nothing, for the verifiers would already return “Accept” after having interacted

with the prover.

Assumptions
In the Vanilla Model, all players can read and perform computations on received messaged instan-

taneously. This is another way of saying that the adversaries always have devices with equal or

even superior computational power in comparison with the prover.

2.2 Impossibility of Secure Position-Verification in the Vanilla Model
In this section the impossibility of secure position-verification in the Vanilla Model is proven. We

show that the adversaries A together can simulate the secure positioning protocol of the verifiers

V in such a way that the verifiers V cannot distinguish between executing the protocol with prover

P or with the adversaries A.

Theorem 1. There does not exist a protocol to achieve secure position-verification in the Vanilla

model.

Chandran et al. (2009) have given a proof where adversariesA together can simulate the position-

verification protocol carried out by the verifiers V in such a way, that the V cannot see a difference

in an execution of their protocol with prover at position P or with the adversaries A. In this way

the adversaries A can always pretend that someone is present at position P, even if no one is. The

verifiers V then are not able to securely check if the prover is present at position P.1

Proof. The main idea behind this proof is that the distance between each adversary Ai and Ai′

is less or equal to 2α , with α the distance from any adversary Ai to prover P. In other words:

dist(i, i′) ≤ 2α , where dist(i,i’) is the distance between adversary Ai and Ai′ (see Table 2.1 and

Figure 2.1). Note that this is the Triangle Inequality.

We now give the strategy for each adversary Ai, i = 1,2, . . . ,m, with which they can pretend that

the prover is present at position P.

Strategy. Before the execution of the protocol by the verifiers V , each Ai needs to do the fol-

lowing: Every adversary Ai positions himself on the straight line between verifier Vi and prover

P on a distance α from P (if two verifiers Vj and Vj′ are laying on the same straight line then we

1For the sake of simplicity, we will call ’the prover present at position P’ simply ’prover P’ from now on.
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Parameter
Mi message sent by Vi

ti distance between Vi and Ai

α distance between Ai and P
Ti ti +α , distance between Vi and P

dist(i, i′) distance between Ai and Ai′ ,≥ 0
delay(i, i′) 2α−dist(i, i′)

Table 2.1: Parameters for the non-existence proof of secure position-verification in the Vanilla
model

only need one adversary A j). All the adversaries A are now positioned on a circle with radius α

and centre P. So they are all equally far away from P.

Next, each adversary Ai listens to a message Mi sent by Vi, i = 1,2, . . . ,m to P. When he has

received it, he holds it for a time of delay(i, i′) = 2α−dist(i, i′).2 Hereinafter he sends message Mi

through to every other adversary Ai′ , located within a distance of dist(i, i′) from Ai, over the covert

channel between them. It then reaches Ai′ delay(i, i′)+dist(i, i′) = 2α time after the message Mi

arrives at Ai (see Figure 2.1).

Figure 2.1: Vanilla model for Theorem 1 with three verifiers and three adversaries.

Result. We now show that if the adversaries A carry out the strategy described above, they can

send the same message to each adversary Vi as P does and that this message arrives at the same

time as when it is sent by P. In this way the adversaries A can pretend that the prover is present at

position P even when he is not. So the verifiers V never see the difference between executing the

protocol with prover P or with the adversaries A.

If the verifiers V execute the position-verification protocol, then each verifier Vi sends a message

Mi, i = 1,2, . . . ,m, to P. Next, P reads the messages and does the prescribed operation (since the

required operation is known from the publicly accessible position-verification protocol, both P and

2Recall, since messages are sent with the speed of light, time and distance are the same, see Section 2.1
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the adversaries A know what this operation is) to get a single new message M that he then sends

to every verifier to show that he is present at position P. 3

First, we look at the time it takes before the message M has reached all the verifiers V after

each verifier Vi has sent his message Mi. Let ti be the distance from verifier Vi to adversary Ai, and

Ti the distance from Vi to prover P. Since Ti is the distance from verifier Vi to prover P, Ti = ti +α

(see Figure 2.1). When a verifier Vi sends his message Mi at time t, it reaches adversary Ai at t + ti.

After that, it arrives at P at time t + ti +α . So the message Mi sent by Vi arrives at prover P at time

t + ti +α = t +Ti. If P has received the messages of all the verifiers and has processed them to

obtain M, he sends it to every verifier Vi′ , i′ = 1,2, . . . ,m. It arrives at each Vi′ at time Ti′ = α + ti′

time after P has sent it. So message M arrives at each Vi′ at time t + ti + ti′ +2α = t +Ti +Ti′ , see

Figure 2.1.

Now we show that the message M arrives at all the verifiers V at the same time when the ad-

versaries A apply their strategy and intercept the messages Mi sent by each verifier Vi. As shown

above the message Mi arrives at time t + ti at each adversary Ai. Adversary Ai applies its strategy

and holds the message with a time duration of delay(i, i′) = 2α−dist(i, i′). It thereinafter sends it

to all the other adversaries. Since each adversary Ai′ is positioned dist(i, i′) away from Ai, the mes-

sage Mi arrives at every Ai′ at t + ti+delay(i, i′)+dist(i, i′) = t + ti +2α−dist(i, i′)+dist(i, i′) =

t+ti+2α , see Figure 2.1. Every Ai′ then receives all the messages Mi from every Ai i= 1,2, . . . ,m,

processes it and obtains message M.3 Next, each Ai′ sends M to verifier Vi′ where it arrives at ti′

time after it has reached Ai′ . So if verifier Vi sends his message Mi, the message M reaches each

Vi′ via Ai′ at time t + ti +2α + ti′ = t +Ti +Ti′ , see Figure 2.1. This is the exact same time as when

the verifiers V carry out the protocol with P.

Conclusion. If verifiers V execute a position-verification protocol and the adversaries A apply

the strategy described in this proof for their attack, the verifiers V will not see the difference be-

tween executing the protocol with the prover present at position P or the adversaries pretending

the prover to be present at P. Thus, verifiers V can never securely determine the position of a

prover P in the Vanilla model.

3The computers of the adversaries A have the same computational power as the one prover P has. Therefore any
computation takes the same amount of time for both adversaries and prover. So for simplicity we say that the time it
takes to process the message is zero.



Chapter 3

Alternative Models

With the impossibility of secure position-verification in the Vanilla Model proven, the question

arises what assumptions can be made so that position-verification could ever be secure. In this

chapter, some modifications of the Vanilla Model are considered and evaluated for security.

The first section is about the Hidden-Base Model. In this model, the position of one or more

of the verifiers is unknown to all players that are not verifiers. Therefore the adversaries cannot

position themselves on the lines from the verifiers to position P. Clearly the impossibility proof of

Section 2.2 can not be applied to this model. The last section of this chapter is about the Moving-

Base Model. In this model, one of the verifiers is not fixed in d-dimensional space, but moves

around in it. The (im)possibility of secure position-verification in these models is proven below.

3.1 Hidden-Base Model
In this section, secure position-verification in the Hidden-Base Model is investigated. First, a

secure position-verification protocol is constructed that depends on the location of one of the ver-

ifiers being unknown to the adversaries. Next, we determine whether or not the adversaries could

determine the location of a hidden verifier. Note that in Section 2.2 we have shown that when the

adversaries know the location of all verifiers, they can position themselves in such a way that they

can fool any position-verification protocol.

3.1.1 Secure Position-Verification in the Hidden-Base Model
In 2008, Capkun et al. proposed a position-verification protocol relying on a hidden verifier. The

model they use is very similar to the Vanilla model from Chapter 2.

Model
The set of verifiers V is divided in a set of verifiers Vk whose positions are known to the non-

verifier players and a set of verifiers Vu whose positions are unknown. The verifiers in Vu will be

called “hidden” from this moment on. Normal verifiers act like the verifiers in the Vanilla Model.

Hidden verifiers can listen to ongoing communication and communicate with the other verifiers

over the covert channel only. They do not send broadcast or directional messages, so their position

cannot be detected in that way.
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Protocol
In the protocol of Capkun et al., a player A sends its position pA to the verifiers in two messages

simultaneously: a message mr transported by radio waves and a message mu transported by ultra-

sound. An honest player would do this via broadcast signals. Because radio waves and ultrasound

messages travel at different speeds, the messages reach the verifiers at different times. Suppose

that mr and mu reach a certain verifier V at times tr and tu respectively. This verifier now com-

putes distance dm
A = (tr− tu) · (vr− vu, with vr and vs being the speed of light and the speed of

(ultra)sound respectively. Verifier V checks if dm
A is close enough to the distance dc

A = d(pA, pV ).

Here a combined localisation and ranging error ∆ is taken into account. Thus when |dc
A−dm

A |≤ ∆,

V accepts the position. Else, V rejects it.

Security Proof
Suppose adversaries try to pretend some device is present at position P, when in fact there is none.

An adversary A at location pA can send directional messages mr and mu to all normal verifiers at

times such that for all of those verifiers, |dc
P− dm

A |≤ ∆. However, the adversary cannot chose the

right times to send the messages to a hidden verifier HV ∈ Vu, because he does not know the posi-

tion of HV and therefore he does not know the distance to HV . The security proof of the protocol

suggested by Capkun et al. (2008) is based on the probability of a hidden verifiers HV being at a

distance to an adversary A for which coincidentally, |dc
P−dm

A |≤ ∆.

We calculate the chance of success for adversary A: P(|dc
P− dm

A |≤ ∆, pA 6= pP). Back in Chap-

ter 2 we assumed the adversaries could freely chose their position in the convex hull spanned by

the verifiers. Note that when an adversary positions itself within the convex hull enclosed by the

verifiers it knows the position of, it will also be positioned within the convex hull enclosed by all

verifiers. Since the adversaries can chose their position freely, suppose they are positioned in such

a way that their chance of successfully fooling the verifiers is optimal.

We now compute the maximum chance of success for the adversaries. For this calculation, let A

be the adversary attempting to fool the verifiers. Suppose there is a hidden verifier HV ∈ Vu and

define dA = d(A,HV ). Now we see that

P(d−∆≤ dA ≤ d +∆) =
V(B((0,0),d +∆))−V(B((0,0),d−∆))

V(B((0,0),R)

=
4
3 π(d +∆)3− 4

3 π(d−∆)3

4
3 πR3

=
6d2∆+2∆3

R3 .

Notice that when the adversary is not positioned near the centre of the convex hull, part of the disc

of a certain distance from the adversary lies outside of the convex hull. Since no verifier could be

positioned there, the chance of the hidden verifier being located inside the disc would be smaller

than 6d2∆+2∆3

R3 . Therefore, in order to compute the maximum chance of success for the adversary in

the above computation, we assumed that the adversary is positioned near the centre of the convex

hull.
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We see that the chance of success decreases when the localisation and ranging error ∆ decreases or

when the radius of the convex hull increases. Therefore the verifiers can arrange their infrastruc-

ture in such a way that the chance of success for the adversaries becomes arbitrarily small. Hence,

this position-verification protocol is secure.

3.1.2 Locating a Hidden Verifier
Now that we know that secure position-verification is possible when the location of one of the

verifiers is unknown to the adversaries, the question arises if there is a way for the adversaries

to effectively and efficiently determine the position of such a hidden verifier. In this section a

protocol for determining the position of the hidden verifier is constructed. For this method to

work, the following assumptions have to be made (Chandran et al., 2009):

• The adversaries receive feedback on whether or not their position was accepted or rejected

by the verifiers.

• The method can be used O(log( 1
δ
)) times, with δ representing the precision of locating the

hidden verifier by the adversaries.

The model on which the position-verification protocol is based is a slightly altered version of the

Vanilla Model (Chandran et al., 2009). This model is explained in the following paragraph and

afterwards the position-verification protocol is given.

Protocol for Determining the Position of a Hidden Verifier
In the position-verification protocol suggested by Capkun et al. (2008) it was assumed that the

adversaries cannot guess the position of a hidden verifier with significant probability. Based only

on the assumptions made previously in this section, it can be shown that the adversaries can in fact

determine the location of a hidden verifier up to within a radius of δ . This is called “determining

the position with δ -precision”. First the procedure for locating a single hidden verifier is shown

and next the procedure for finding multiple.

Assume there are three adversaries, l1,l2 and l3, that we call locators and that do not lie on the

same straight line. Because all of them are adversaries, the locators can communicate using the

adversaries covert channel. The locators are positioned within the space enclosed by the verifiers.

Therefore, when they send their claimed position to the verifiers and the verifiers check this po-

sition, the verifier will respond with “Accept” or “Reject”. Using this response, the locators can

determine the position of the hidden verifier with δ -precision.

The locators run a binary search. This binary search developed by (Chandran et al., 2009) is

described in Protocol 1.
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Protocol 1: Locate Single Hidden Verifier

1. Locator li runs the following procedure:

(a) Let the sector in which the hidden verifier may exist be π i. Divide this sector in

two sectors π i
1 and π i

2 of equal area.

(b) The adversaries broadcast the verification message to π i
1, but not to π i

2.

(c) If the response from the verifiers is “Accept”, set π i = π i
1. Else, set π i = π i

2. If π i

is ‘narrow enough’ to resemble a straight line, go to step 2, else go to step (a).

2. Now, knowing that the hidden verifier lies on narrow sectors π i and π j for 1≤ i, j ≤ 3,

the locators can compute the position of he hidden verifier with δ -precision.

Note that this protocol will not work when locators li and l j and the hidden verifier lie on the

same straight line, as π i and π j will be the same narrow sector. Hence, the assumption of

three locators that do not lie on the same straight line is necessary.

The area of the sector that the hidden verifier must lie inside is decreased by half each iteration.

Therefore the required number of iterations in order to achieve δ -precision is O(log( 1
δ
)). Because

the smaller the required precision, the higher the number of iterations required, we see that the

required number of iterations is O(log( 1
δ
)). Hence the second assumption of this Section had to

be made.

In Protocol 1, the computation of the position of the hidden verifier with δ -precision can start

when the sector π i is ‘narrow’ enough. To clarify this, let l1 and l2 be two locators that return dif-

ferent sectors from Protocol 1 and let x be the distance between l1 and l2. Now let γ be the angle of

the two sectors they have found using Protocol 1. Since both sectors π1 and π2 were found using

Protocol 1, the hidden verifier must lie in the intersection of the two sectors. This intersection is

enclosed by the points where the borders of sectors π1 and π2 intersect. Let these points be P1, P2,

Q1 and Q2 as also depicted in Figure 3.1.

The locators have determined that the hidden verifier must lie in the quadrilateral Q1P1Q2P2. Let

y = d(Q1,Q2) and z = d(P1,P2) be the diagonals of Q1P1Q2P2. To determine the position of the

hidden verifier with δ -precision, we must have max{y,z}< δ . Note that y and z have a linear, thus

polynomial, relationship with δ .

In order to calculate the lengths of y and z, first define α to be the angle between the lines
−→
l1P2 and

−→
l1l2 and β to be the angle between the lines

−→
l2P1 and

−→
l2P1. For simplicity, with A,B being points

in d-dimensional space, write AB for d(A,B). The calculation requires use of the Sine and Cosine

Rules.
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Figure 3.1: Intersection of π i and π j (reproduced from Chandran et al. (2009))

Theorem 2 (Sine Rule). With angles and lengths as in Figure 3.2, for any triangle we have

a
sinα

= b
sinβ

= c
sinγ

.

Theorem 3 (Cosine Rule). With angles and lengths as in Figure 3.2, for any triangle we have

a2 = b2 + c2−2bccosα,

b2 = a2 + c2−2accosβ ,

c2 = a2 +b2−2abcosγ.

Figure 3.2: Triangle with marked angles and edges

Using the Cosine Rule we find the following values, corresponding to the values in Figure 3.1.

y2 = Q2l2
2
+Q1l2

2−2 ·Q2l2 ·Q1l2 · cosγ,

z2 = P2l2
2
+P1l2

2−2 ·P2l2 ·P1l2 · cosγ.
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We find the values of the lengths in these equations using the Sine Rule.

Q2l2 =
x · sin(α + γ)

sin(π− (α +β +2γ))
=

x · sin(α + γ)

sin(α +β +2γ)
,

Q1l2 =
x · sin(α)

sin(π− (α +β ))
=

x · sin(α)

sin(α +β )
,

P2l2 =
x · sin(α)

sin(π− (α +β + γ))
=

x · sin(α)

sin(α +β + γ)
,

P1l2 =
x · sin(α + γ)

sin(π− (α +β + γ))
=

x · sin(α + γ)

sin(α +β + γ)
.

Substituting these expressions into y2 and z2 yields

y2 =

(
x · sin(α + γ)

sin(α +β +2γ)

)2

+

(
x · sin(α)

sin(α +β )

)2

−2
(

x · sin(α + γ)

sin(α +β +2γ)

)(
x · sin(α)

sin(α +β )

)
cosγ,

z2 =

(
x · sin(α)

sin(α +β + γ)

)2

+

(
x · sin(α + γ)

sin(α +β + γ)

)2

−2
(

x · sin(α)

sin(α +β + γ)

)(
x · sin(α + γ)

sin(α +β + γ)

)
cosγ.

Each step in Protocol 1, the areas of sectors π i and π j are divided into halves. Hence, with

each iteration, the angle γ is divided by two. We seek to find a relationship between angle γ and

the lengths y and z in order to find a relationship between angle γ and precision requirement δ .

Expanding the sine and cosine terms to first order Taylor only series yields

y2 =
α2x2

(αβ )2 +
x2(α + γ)2

(α +β +2γ)2 −
2αx2(α + γ)

(α +β )(α +β +2γ)
=

γ2x2(β −α)2

(α +β )2(α +β +2γ)2 ,

z2 =
α2x2

(α +β + γ)2 +
x2(α + γ)2

(α +β + γ)2 −
2αx2(α + γ)

(α +β + γ)2 =
γ2x2

(α +β + γ)2 .

Clearly, both y and z have a polynomial relationship with γ when γ approaches zero. Note that we

are only interested in increasingly small angles γ , so we assume the relationship y and z have with

γ is indeed polynomial.

Consider precision requirement δ . Because the relationship of y and z with δ is polynomial and

the relationship of y and z with γ too, the relationship between γ and δ is polynomial. For any pre-

cision requirement δ , a certain number of iterations of Protocol 1 is required. The smaller δ , the

more iterations. Hence, the required amount of iterations depends on 1
δ

. Since with any iteration

the angle γ is divided by half, only O(log( 1
δ
)) iterations are necessary. This is still polynomial.

This assures us the suggested protocol for locating hidden verifier is applicable for efficient adap-

tations in position-verification programs.

In Section 4.1 the applicability of secure position-verification in the Hidden-Base Model is evalu-

ated.
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3.2 Mobile-Base Model
Another alteration of the Vanilla model which could make secure positioning possible is the

Mobile-Base Model. The Mobile-Base Model is a position-verification model based on mov-

ing verifiers, called Mobile-Base Stations (MBS). Apart from that the verifiers are moving, for

which they will need a slightly different position-verification protocol, the MBS model works the

same as the Vanilla model. The MBS check if someone is present at position P and adversaries

want to ’spoof’ (make it seem that someone is present at) this position. First we construct a mo-

bile position-verification protocol. After that we check whether or not adversaries can still spoof

position P, even though the verifiers are moving.

3.2.1 Position-Verification Protocol for the Mobile-Base Model
For the altered Vanilla model with MBS, Capkun et al. give a position-verification protocol for a

single MBS. When there are multiple MBS they all execute this protocol. The protocol is based

on the time difference of arrival for a by the MBS broadcasted message. Before we look at this,

we need to make a couple of assumptions:

• There exists a circle around the position P with radius R within which an MBS does not

enter when it executes the position-verification protocol. We can make this assumption,

because if there would not be such a circle an MBS could verify if someone is at position P

just by going to position P and check if there is someone there.

• The MBS move uniformly at random over the entire disk of radius R′, the area where

position-verification takes place.

• MBS have an error ∆ that they can tolerate in the delay of receiving a signal response from

a node. Without this error the MBS could almost securely do their position-verification

protocol (except for when all the adversaries lie on the straight line between the MBS and

P) and position-verification by, for example, satellites is not always completely precise.

Mobile Position-Verification Protocol
Because we now deal with Mobile Base Stations, also the prover P does not know where to send

his received message back to. So we have a slightly different protocol than the regular position-

verification protocol in the Vanilla model.

Both the MBS and the prover P broadcast their messages. The MBS wants to know the position of

P by checking how long it takes to get his message back after he has broadcasted it. This method

is called the Time Difference of Arrival method. Since the MBS itself is moving, the position

he measures is also influenced by the distance he travels. So he wants to know the position of

P regardless of the time (and thus the distance) that he needs to move to an other position. To

accomplish this, an MBS sends his message with extra information TP about how long the prover

P must delay his message before sending it back. If the MBS sends his message at t1 and arrives

at an other place at t2 this delay will be TP = t2− t1, the time it took fot the MBS to go from the

first place to the second. As one can see in Figure 3.3, if a MBS broadcasts a message at t1, then

it reaches P at t1 + tp1 . Prover P then holds it for TP = t2− t1 and after that broadcasts it at time

t1 + tp1 + t2− t1 = tp1 + t2. The message reaches the MBS again at time t2 + tp1 + tp2 . So at the
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same time as MBS only with the extra time it took the message to go from the MBS to P and back

to the MBS at the next point. In this way the MBS can compute P’s position by the time difference

of arrival independently of his own movement.

Figure 3.3: Image for the mobile position-verification protocol

3.2.2 Attack on the Position-Verification Protocol for the Mobile-Base Model

In their article, Capkun et al. (2008) have shown that MBS can securely carry out a mobile

position-verification protocol in order to verify position P. They assume the base stations to move

randomly, and hence the adversaries cannot pre-determine the position of the base stations. But in

a response on this article Chandran et al. (2009) have shown that his assumption is not valid and

that adversaries can even make moving verifiers believe that there is someone on position P. And

because of this, MBS cannot securely determine if someone is at position P. We show how this

attack on the mobile position protocol works and in Chapter 4 discuss to what extend this attack

is feasible.

Attack on the Protocol in Mobile Base Stations Model
The area within which the position-verification takes place is a disk with radius R′ and centre P,

the place that the adversaries want to spoof (see Figure 3.3). We only look at the disk with radius

R′ since Capkun et al. (2008) have shown that it is sufficient to show it for a disk with a random

radius (which is in our case R′). Let ∆ be the error in time (and thus distance) that the MBS tolerate

when they receive a response signal from P.

Now the strategy for k adversaries A= {A1,A2, . . . ,Ak} is to first place themselves on the bound-

ary of the disk with radius R and centre P inside the disk with radius R′.1 These adversaries are

thus positioned on a distance R from P.

When the adversaries receive a signal from an MBS they then will delay it with a time duration

of 2R before broadcasting it back with an angle α in sector Li,Ai,Ri with Ri = Li+1 and radius

1We have assumed that R is small enough such that there is a high probability that the MBS will not enter the disk.
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LiAi = a (see Figure 3.4).

Figure 3.4: Image from the article of Chandran et al. (2009) which shows the situation where
adversaries attack the position-verification protocol.

If each adversary Ai sends back the message with radius α "small enough", then any MBS in

sector Li,Ai,Ri will accept position P. This, because the smaller α gets, the more an adversary

approaches the straight line between the MBS in sector Li,Ai,Ri and P. Thus the better an ad-

versary can spoof position P.2 This angle α must be so small that the response message from an

adversary reaches the MBS within the error time ∆. We later discuss how small α exactly must be

to accomplish this (this depends on the angle θ ′ and the number of adversaries).

An MBS in area AiLiAi−1 does not receive a signal from any adversary. So if the adversaries

want to succeed in spoofing position P the MBS must not be in that area. So for one MBS the

probability λ that adversaries can pretend that there is someone at position P is the ratio of the area

Li,Ai,Ri within which the adversaries are able to spoof the location to the total area Li,Ai−1,Ai,Ri

for i = 1,2, . . . ,k (this ratio is the same for every i). Thus for multiple MBS the probability that

the adversaries can spoof position P is λ |MBS|.

Now assume an MBS is in sector Li,Ai,Ri (and thus not in area AiLiAi−1). Since the MBS is

moving and hidden, the adversary Ai will not know his exact place. So he (except for when he

accidentally is) won’t be positioned on the straight line between the MBS and P.2 If the MBS

broadcasts his signal and Ai receives it, delays it with 2R time and broadcasts it back in an angle

of α , it will reach the MBS later than the message send back by P, since it is not on the straight

line between the MBS and P. But now, by assumption, there is an error ∆ that the MBS tolerates

when receiving a signal response from a node. So if the message send back by the adversary Ai

2 We have seen in chapter 2 that if each adversary Ai lies on the straight line between the verifier Vi and P, the
verifies V cannot successfully carry out a secure position-verification protocol.



3.2. MOBILE-BASE MODEL 19

arrives at the MBS within the error bound ∆, the adversary can succesfully "spoof" position P.

Number of Adversaries Needed to Spoof Position P

The more adversaries we have positioned on the disk with radius R from P, the higher the chance

of one being very close to the straight line between the MBS and P. And thus the bigger the chance

their response message reaches the MBS within the error bound ∆. So we want to determine the

number of adversaries needed such that the response signal of the adversaries will always arrive

at the MBS on time, i.e. wont exceed the error bound ∆. First we look at the angle θ ′, which is

the angle between PAi and PLi (see Figure 3.4). As one can see, this angle depends on the number

of adversaries k. The response signal does not exceed the error bound if this angle θ ′ will be such

that a+R−R′ = µ ≤ ∆. In other words: if the adversaries want to spoof location P successfully,

then the surplus µ of the distance R = d(Ai,P) plus the radius a with which an adversary broad-

casts his signal minus the radius R of the disk must be less then the error bound ∆. You can see in

Figure 3.5, Figure 3.6 and Figure 3.7 that this surplus µ depends on θ ′ and thus on the number of

adversaries.

Figure 3.5: Twelve ad-
versaries, 1/2θ ′

Figure 3.6: Six adver-
saries, θ ′

Figure 3.7: Three ad-
versaries, 2θ ′

Note that fixing θ ′ gives us a value for a which gives us the amount with which we will or will

not exceed the error bound ∆. We want to have an upper bound θ for θ ′ such that any smaller θ ′

than θ will not make the adversaries’ response signal exceed the error bound ∆. Once we have

determined this upper bound θ we can compute the number of adversaries needed to have θ ′ be

smaller or equal to this upper bound.

Using the Cosine Rule we find the following values, corresponding to the values in Figure 3.4.

a2 = R2 +R′2−2 ·R ·R′ · cosθ .
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And thus,

cosθ =
−a2 +R2 +R′2

2 ·R ·R′

=
a2−R2−R′2

−2 ·R ·R′

Since for upper bound θ the following must hold a+R−R′ ≤ ∆ and thus a≤−R+R′+∆ to not

exceed the error bound, we can implement this in our equation. Giving

cosθ ≤ (∆+R′−R)2−R2−R′2

−2 ·R ·R′
.

So

θ ≤ cos−1

(
(∆+R′−R)2−R2−R′2

−2 ·R ·R′

)
.

Giving this upper bound one can see in Figure 3.4 that the number of adversaries must be always

more or equal to k = 2π/2θ = π/θ .

Probability of Spoofing Position P

Now we know how many adversaries we need to let the MBS believe that someone is positioned at

position P, we also want to know how big the chance λ is that we achieve this. This is the chance

that for each adversary Ai the MBS is in sector LiAiRi, the "good area", and not in the "bad area"

Ai−1LiAi in where adversary Ai cannot spoof position P (see Figure 3.4 and the detailed version in

Figure 3.8). This chance is determined by dividing the size rgood of the good area by the size rtotal

of the total area λ =
rgood
rtotal

, where the size of the total area is the size of the good area plus the size

rbad of the bad area.

The area A of a circle sector with radius R and angle θ is A = r2θ

2 . As one can see in Figure 3.4

and Figure 3.8 the total area rtotal for a single adversary Ai is the surface of the area Ai−1LiAi plus

area LiAiRi. This is the same as the sector LiPRi with radius R′ minus the same sector LiPRi with

radius R. So the size of the total area is

rtotal =
R′2 ·2θ ′

2
− R2 ·2θ ′

2

=
(R′2−R2)2θ ′

2
= (R′2−R2)θ ′.

Now instead of looking at the good area we can also look at the "bad area" Ai−1LiAi that the MBS

may not enter if the adversaries successfully want to spoof position P, since λ =
rgood
rtotal

= 1− rbad
rtotal

.

We want to know the size rbad of the bad area Ai−1LiAi. Herefore we look at the surface of triangle

4Ai−1LiAi with as height the distance from Ai,i−1 to Li a and as a base the straight line Ai−1Ai

between Ai−1 and Ai (see Figure 3.8).
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Figure 3.8: Detailed version of Figure 3.4 with good area LiAiRi and bad area Ai−1LiAi.

The height h4Ai−1LiAi of triangle 4Ai−1LiAi is R′ − R plus the height of the circular segment,

which is the part of triangle 4Ai−1LiAi inside the disk with radius R and centre P. The height

hA of a circular segment A with radius R and angle θ is hA = R(1− cos(θ/2)). So the height

hcseg(4Ai−1LiAi) of the circular segment with radius R and angle 2θ ′ inside triangle 4Ai−1LiAi is

hcseg(4Ai−1LiAi) = R(1− cos 2θ ′

2 ) = R(1− cosθ ′). Now, the height h4Ai−1LiAi of triangle4Ai−1LiAi

is

h4Ai−1LiAi = R′−R+hcseg(4Ai−1LiAi)

= R′−R+R(1− cosθ
′)

= R′+Rcosθ
′.

The length of base Ai−1Ai is twice the opposite site of θ ′ in the triangle 4Ai,i−1PAi, where Ai,i−1

is the position in the middle of Ai−1Ai (see Figure 3.8). So

Ai−1Ai = 2 ·R · sinθ
′.

Since the size of a triangle is base·height
2 , the size r4Ai−1LiAi of the triangle4Ai−1LiAi is:

r4Ai−1LiAi =
2 ·R · sinθ ′ · (R′−R · cosθ ′)

2
= R · sinθ

′ · (R′−R · cosθ
′).

To determine the size rbad of the bad area Ai−1LiAi we need to subtract the size of triangle

4Ai−1LiAi inside the disk with radius R from the size of triangle 4Ai−1LiAi (see Figure 3.8).

This is the circular segment with radius R and angle 2θ ′. The size rcseg of a circular segment is the
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area of the circle sector minus the area of the triangular portion, so

rcseg =
R2

2
(2θ

′− sin(2θ
′)).

So the size rbad of the bad area Ai−1LiAi is

rbad = r4Ai−1LiAi− rcseg

= R · sinθ
′ · (R′−R · cosθ

′)− R2

2
(2θ

′− sin(2θ
′),

and the chance of spoofing position P successfully is

λ =
rgood

rtotal

= 1− rbad

rtotal

= 1−
R · sinθ ′ · (R′−R · cosθ ′)− R2

2 (2θ ′− sin(2θ ′)

(R′2−R2) ·θ ′

=−R ·R′ · sinθ ′−θ ′ ·R′2

(R′2−R2) ·θ ′
.

If we have k MBS then the chance of spoofing P successfully is the chance that all the adversaries

stay in the good area. So this chance is simply λ k.

3.3 Other Alternative Models
We have looked at two obvious alterations of the basic insecure Vanilla model; the Hidden-Base

Model and the Mobile-Base Model. It has been show that secure positioning is not possible with

these alternative models, but there could be other alterations of the Vanilla Model that might make

secure positioning possible. Although we do not review other models in this article, there are some

that might be interesting to research. Three of these other alterations on the Vanilla model are:

• The Bounded-Retrieval Model. In this model, the amount of information adversaries can

receive and store is limited. The existence of this alteration is plausible since in some

situations verifiers can sent a big amount of information at a very high speed, by which

adversaries can only receive a constant fraction of it. This, for example, happens when

verifiers have several sources where they broadcast there information and when they also

broadcast it at different frequencies. Chandran et al. (2009) have shown that there exist a

protocol in this model that is secure against any attack by adversaries. However, previous

papers have said the same about the Hidden-Base Model and Mobile-Base Model, but we

have seen that this is not the case. If someone could come up with an attack build on the

same assumptions as the position-verification protocols of the verifiers, then the Bounded-

Retrieval model is unsafe as well.

• Quantum-information. Since in the attacks on the Vanilla Model, the Hidden-Base Model

and the Moving-Base Model adversaries intercept the information sent by the verifiers, hold

it and then forward it to the other adversaries an obvious alteration could be the use of
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quantum information. Because the no-cloning theorem does not allow for making perfect

copies of quantum information (Wootters and Zurek, 1982), it is not possible to copy a

quantum message in order to hold a copy for as long as required to spoof the verifiers. It has

however already been shown by Buhrman et al. (2014) that even with quantum-information

secure positioning is not possible.

• The Noisy-Channel Model. Another alteration is to make use of so called "noisy chan-

nels". In this model, due to imperfections in broadcasting or reception hardware, a random

alteration of the sent information is detected by the players. This random alteration is called

noise. Noise depends on the hardware used by either the broadcasting or reception hard-

ware and on the distance travelled by the message. As a result, the noise is independent for

each receiver. Dziembowski and Zdanowicz (2014) prove that secure position-verification

is possible when noisy channels are taken into account.



Chapter 4

Model Evaluation

In this chapter the security of position-verification in the different models discussed in previous

chapters is evaluated with an emphasis on applicability. Following Chapter 3, first the Hidden-

Base Model (HMB) en then the Mobile-Base Model (MBM) are reviewed.

4.1 Security in the Hidden-Base Model
We have seen that secure position-verification is possible when the location of one or more of

the verifiers is unknown to the adversaries. Recall the chance of success for the adversaries is

P(d −∆ ≤ dA ≤ d +∆) = 6d2∆+2∆3

R3 . Note that none of the variables depend on the adversary.

Therefore, future improved adversary computers will not be able to achieve higher chances of suc-

cessfully fooling the verifiers. Moreover the localisation and ranging error ∆ positively relates to

P(d−∆≤ dA ≤ d +∆). Therefore, future improved localisation and ranging hardware that allow

for smaller ∆ will decrease the adversaries chance of success. This error ∆ is discussed more in

Section 4.3.

The security proof of Capkun et al. relies on the hidden verifier remaining hidden. Hence, the

protocol constructed by Chandran et al. for locating a hidden verifier poses a fatal problem. At

most O(log( 1
δ
)) attempts are needed to locate any hidden verifier (Chandran et al., 2009). When

all verifiers are located, the adversaries can successfully fool the verifiers in the way described in

the impossibility proof of Section 2.2.

A possible way for the verifiers to prevent the successful localisation of some or all hidden verifiers

is to allow only a predetermined number of attempts to connect to the verification infrastructure by

any device. This predetermined number of attempts has to be significantly smaller than O(log( 1
δ
)).

Such a limitation on the infrastructure would impose problems on the applicability of this protocol:

1. When individual devices are limited in their number of attempts to connect to the verification

infrastructure, multiple adversaries can work together to locate a hidden verifier if their

added number of allowed attempts reaches O(log( 1
δ
)).

2. When the limitation of attempts is enforced on more devices combined, any honest device

is retained from connecting to the verification infrastructure if adversaries, intentionally or

not, attempt to connect more often than allowed. Though this does not render the position-

verification protocol insecure, it does make it impractical for applications.
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4.2 Security in the Mobile-Base Model
In Section 3.2 we have seen another way of trying to determine if someone is at a given position P

by using moving verifiers, called Mobile-Base Stations (MBS). We also have seen that adversaries

can still carry out an attack to let these MBS believe that someone is at position P even when he is

not. In this section we are going to look at the applicability of this attack. Is it realistic to say that

adversaries can easily spoof position P when they apply their attack as described in Section 3.2?

There are two obstacles which could prevent adversaries from successfully spoofing position P:

• The number of adversaries needed could be too high for practical implementations. Since

the response signal from the adversaries has to arrive at the MBS within the error bound ∆,

the number of adversaries needed to achieve successful spoofing when the error bound ∆ is

small could be very high.

• The adversaries could have a low chance of success because the area in where the adversaries

cannot spoof position P is too large compared to the area in where they can spoof position

P.

Assume that the disk where the MBS are has a radius R′ = 500m, the disk that we assume the MBS

will not enter has a radius of R = 50m and the MBS have an error bound of ∆ = 2.5m.

Let us assume that the MBS is in the area in where adversaries can spoof position P. We need to

have enough adversaries such that the delay of the signal broadcast back by the adversaries arrives

at the MBS within the error bound ∆. As shown in Section 3.2, we need to have k = π

θ
adversaries

to achieve this, where θ , the upper-bound of the angle θ ′, is

θ ≤ cos−1

(
(∆+R′−R)2−R2−R′2

−2 ·R ·R′

)
.

If R′ = 500m, R′ = 50m and ∆ = 2.5m we need to have k = 11 adversaries to stay within the error

bound ∆ = 2.5m, since

θ ≤ cos−1
(
(2.5+500−50)2−502−5002

−2 ·50 ·500

)
= cos−1

(
−47743.75
−50000

)
≈ π

10.418
.

So if we take upper bound for θ ′ to be θ ≈ π

10.418 , then number of adversaries is k = π/θ =

π/ π

10.418 ≈ 10.4. So we need 11 adversaries.

Now assume we have 11 adversaries, i.e. that the response signal from the adversaries always

arrives at the MBS within the error bound ∆ = 2.5, but we do not know if the MBS are in the area

in where the adversaries can pretend that the prover is at position P (the "good area"). Recall that

the chance that an MBS is in the good area, and thus that the adversaries can successfully spoof

position P, is

λ =−R ·R′ · sinθ ′−θ ′ ·R′2

(R′2−R2) ·θ ′
.
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And if we have k MBS than the chance of success is λ k. In this example where we have R′= 500m,

R′ = 50m and ∆ = 2.5m (and 11 adversaries) this chance is for a single MBS

λ =−
500 ·50 · sin( π

10.418)−
π

10.418 ·5002

(5002−502) · π

10.418

=−7425.199−74251.993
74635.529

≈ 0.91.

So the chance of success against a single MBS is approximately λ ≈ 0.91. Even with 20 MBS

in the disk with radius R′ = 500m, the adversaries still have a 0.12 chance of spoofing position P.

If we want this chance to be below .01 we need 44 MBS. If we have R′ = 2000m, R = 50m and

∆ = 2.5m we still need 11 adversaries to stay within the error bound and our chance of success

with a single base-station is approximately .98.

Chandran et al. (2009) have shown how the number of adversaries needed to successfully spoof P

depends on the sizes of R′, R and ∆. Since only the ratios of these parameters to oneanother matter

and not the actual values, Chandran et al. have plotted two graphs with different values of these

ratios (See Figure 4.1 and Figure 4.2).

Figure 4.1: Graph by Chandran et al.
(2009) where the number of adversaries is
plotted as a function of ∆ with R = .5R′

and ∆ = .01R′.

Figure 4.2: Graph by Chandran et al.
(2009) where the number of adversaries is
plotted as a function of ∆ with R = .1R′

and ∆ = .01R′.

We see in both graphs that we do not need a lot of adversaries to stay within the error bound ∆.

So the number of adversaries needed is not too high for practical implementations. Only when

the error bound ∆ is very small and the radius of R′ compared to R′ very big, then the number of

adversaries needed to stay within the error bound ∆ could become very big. So if in the future

improved hardware could make positioning possible with a very small ∆, then secure positioning

might be possible.

Chandran et al. (2009) have also looked at the probability of successfully spoofing P in the "worst

case scenario". Where they defined the worst case to be a very small error bound ∆ = .00001 for
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a fixed R/R′ ratio, because then a large number of adversaries is needed to stay within the error

bound ∆. But one can see in Figure 4.3 that even with this restrictions the worst case probability

of success will still be very high (always bigger than 0.5).

Figure 4.3: Graph by Chandran et al. (2009) where the chance of success is given as a function
of the ratio R/R′ with a very small error bound ∆ = .00001.

So the number of adversaries needed to stay within the error bound ∆ in the attack for the Mobile-

Base Station Model is very small and even the worst case probability of success is always very

high. Thus it is realistic that the attack described in Section 3.2 is easy to carry out and has a high

probability of success.

4.3 Influence of Localisation and Ranging Error ∆

As we have seen before, both in the Hidden-Base Model and the Moving-Base Model, the security

of position-verification protocols could increase with a decreased localisation and ranging error

∆. This error is taken into account in the first place, because localisation and ranging hardware

is never completely accurate. However, in time this localisation and ranging hardware could im-

prove, allowing for smaller ∆.

For the Moving Base Model, a smaller ∆ potentially improves the security of position-verification

protocols. This is because from a very small ∆ on, the number of required aversaries would in-

crease fast, see Figures 4.1 to 4.2. If improved future hardware allows for a ∆ small enough,

position-verification protocols based on the Moving Base Station could be secure.

For the Hidden Base Model, a smaller ∆ does not necessarily improve the security of position-

verification protocols. When the limited number of attempts to connect to the verification infras-

tructure, discussed in Section 4.1, are implemented, a smaller ∆ improves the security. However

protocols using this implementation are not suited for application, as seen before. When unlimited

attempts to connect can be done by the adversaries, the security improvement caused by smaller

∆ is not sufficient. This is because smaller ∆ in this case results in possibly smaller δ . As we have

shown in Section 3.1, the effort that the adversaries have to make to locate a hidden verifier with
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δ -precision relates to δ with O(log( 1
δ
)). Clearly, even for extremely small δ , this effort doesn’t

increase much.



Chapter 5

Conclusion

In this article we have reviewed possibilities for secure position-verification in the Vanilla Model,

the Hidden-Base Model and the Moving-Base Model. The Vanilla Model is the most basic model.

Here, no limitations on the abilities or the knowledge of the adversaries are assumed. We have

proven that the adversaries can always make it look as if some device is present at a certain po-

sition P, regardless the protocol run by the verifiers. To do this, the adversaries have to position

themselves at equal distance to P, in a way such that an adversary is positioned on every line from

a verifier to P.

The Hidden-Base Model is similar to the Vanilla Model, but here the position of one of the veri-

fiers is unknown to the adversaries. We have shown that a position-verification protocol suggested

by Capkun et al. can only be secure when assumptions are made that would make the protocol

impractical for applications. Since without these assumptions, the position of any hidden verifier

can efficiently be determined by the verifiers, still no practical secure position-verification proto-

cols exist that make use of hidden verifiers.

In the Moving-Base Model, instead of hidden verifiers, there are moving verifiers. Each moving

verifier moves uniformly at random in a disk with radius R′ and with centre P, the position where

the moving verifiers want to check for the presence of a device. We have shown that even with

moving verifiers adversaries can successfully pretend a device to be present at this position with

chances high enough to say that the moving position-protocol given by Capkun et al. is insecure.

This is because, if moving verifiers execute a mobile position-verification protocol and adversaries

position themselves around position P, they can cover for moving verifiers in a significantly high

percentage of this area and do not need many adversaries to achieve successful spoofing.

Based on our research on these three models, we conclude that secure position-verification based

on either hidden or moving verifiers is not possible. We do recommend research into secure

position-verification in other alterative models, such as but not limited to the Bounded-Retrieval

Model, the Noisy-Channel Model and models making use of quantum information.



Chapter 6

Popular Summary

Doing homework is often a boring activity. Especially when the sun is shining and your parents

want you to sit at school and do boring math exercises, instead of going outside to play football.

Would it not be nice if you, with the help of your friends, could always make your parents believe

that you are doing your sitting at school and doing your homework when in fact you are playing

football outside? In this article about Position-Based Cryptography, the field of cryptography that

deals with the question whether or not position can be part of an encryption, we have examined

just that. We have shown that for the most basic model with which one could check this and for

some obvious alterations on this basic model, it is impossible to securely determine someones

position.

Suppose you are studying mathematics at the Amsterdam Science Park and your mother wants

check if you are doing your homework. She has three radio masts and wants to verify if your at

your desk (see Figure 6.1). She wants to accomplish this by letting the masts execute a publicly

known protocol in which the first two masts on the left side sent a message to you that you should

combine and sent to the mast on the right. We call these masts verifiers, the position where you

should be sitting the position P and you and your friends outside the adversaries.

Figure 6.1: Three masts and the place where you should be doing your homework.
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If the adversaries now position themselves on a circle with radius α around position P each on

the straight line between the mast and position P, then you are always able to let the verifiers

(and thus your mom) believe that you are on position P, when in fact you and your friends are

just ’chilling’ outside. This, because by triangle inequality the distance from one adversary A1

to another A2 is always shorter than 2α; the distance α from adversary A1 to P plus again the

distance α from P to the other adversary A2 (see Figure 6.2). So if adversary A1 holds it for

a time of delay(1,2) = 2α−dist(1,2), which is the time it takes for the message to go from A1

to P and from P to A2 (so 2α) minus the time dist(1,2) it takes for a message to go from A1

to A2, and then sends it, then a message arrives at each adversary at the same time as when it

has been sent by the verifier. Because after a message has reached adversary A1 it arrives de-

lay(1,2)+dist(1,2) = 2α−dist(1,2)+dist(1,2) = 2α time later at adversary A2 and when he sends

it through to the verifier directly the message will arrive there at the exact same time as when it

has been sent by a verifier directly.

Now since the protocol is publicly known, the adversaries that are positioned in between the two

left verifiers and P both know that they need to send their intercepted message to the adversary

positioned in between the right verifier and P, which needs to send the two messages to the right

verifier. The same message arrives at the same time at the right verifier when it has been inter-

cepted by the adversaries as when it has been sent by the verifiers and so your mom cannot see the

difference between you chilling outside and you sitting at your desk studying. Therefore you can

always make your mom believe that you are studying when in fact you are not.

Figure 6.2: By triangle inequality, the distance from one adversary to the other is always shorter
than the distance from the adversary to P and from P to the other adversary.

We now know that when you know the location of all verifiers, you and your friends can pretend

to be studying at Science Park. But what if the location of one of the verifiers is unknown to you?

The chance of this verifier coincidentally being at a location for which your plan still works, is



6. POPULAR SUMMARY 32

very small. This chance depends on the total size of the area enclosed by the verifiers. When coin-

cidentally fooling your mother does not have a high chance of success, you try to take coincidence

out of the equation. If you could locate that hidden verifier, you would know where to position

yourself and your friends in such a way that you could again successfully pretend to be studying

at Science Park. Suppose that prior to the day that your mother wants you to go study, you go

to Science Park to prepare for the location-fooling operation. This time, you do send your actual

position to the verifiers. However, you only send your location to half the area that the verifiers can

be in. Now, when they accept your position, you know that the hidden verifier must be somewhere

in the area that you sent your location to. When they do not accept your position, you know that

the hidden verifier must be somewhere in the area that you did not send your position to. With

every time you repeat this, the area in which the hidden verifier could be is divided into halves. In

no time, you know the location of the verifier precise enough to, when the day comes that your

mother wants you to study at Science Park, be able to successfully pretend to be doing just that,

whilst actually being outside of Science Park playing football.

Figure 6.3: Method for the verifiers to position themselves around position P with one moving
verifier, so they can successfully pretend someone to be present at position P.

Since it does not matter whether the verifiers are hidden or are not, your mother needs an

other method to successfully check if you are studying at Science Park. She now tries using mov-

ing verifiers that broadcast their signal when checking if you are studying at position P. Because

they are moving, you and your friends (the adversaries) cannot position themselves on the straight

line between the verifiers and the position P where you should be studying. In this article we have

shown that even with moving verifiers it is still possible to pretend that someone is at position P

when he is not. Since verifiers (which are in our example radio masts) are measuring devices they

always have an error bound when they measure something. Adversaries can make good use of this

and still successfully make it seem that someone is at position P. If verifiers position themselves

all on the circle around P and each adversaries takes care for an area of the space where the moving

verifiers could be as shown in Figure 6.3, then they can successfully make it seem that someone is
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present at position P. This because the more adversaries you have the more each adversary comes

close to the straight line between the verifier and P. We have shown in our article that you do not

many adversaries to accomplish this. The only problem is, as you can see in Figure 6.3, that there

is an area (the triangle in between two adversaries) in which they cannot pretend that someone is

present at position P. But we have also shown in our article that the chance that a verifier is in this

area is so small that it does not give problems and therefore it is even with moving verifiers always

possible to make your mother believe that you are studying.

Despite her efforts, you can always fool your mother into thinking you are studying at Science

Park, as long as you and your friends together position yourselves correctly. For you this is a great

thing. For Position-Based Cryptography, it means that no encryptions based on someones location

is secure, for the location itself cannot be known with certainty.
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