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Abstract

This thesis discusses an algorithm [1] to transform an arbitrary generator of a principal
fractional ideal to a short generator. This algorithm contributes to a key-recovery attack
on Soliloquy [2]. Both Soliloquy and the key-recovery attack are discussed in this thesis.
Lattices in cryptography and algebraic number theory are connected using the log-unit
lattice by embedding number fields in Rn. Furthermore, Dirichlet L-series are explored,
including its analytical continuation and the special values L(1, χ). Finally, Dirichlet
L-series are linked to the class number of a number field.
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1. Introduction

Cryptography has been around in some form for thousands of years. Perhaps one of the
more commonly known examples is the Caesar cipher named after Julius Caesar, who
is said to have used this scheme to protect military information. He would take each
letter of the message and shift it by 3 positions in the alphabet, wrapping around when
reaching the end. Instead of the letter A, the letter D would be written down, and so
forth. To anyone unfamiliar with the encryption scheme, the resulting text would seem
nonsense, keeping the original message confidential.

With knowledge of current techniques, such a scheme could easily be broken, even for
unknown shifts. In our current alphabet, there are only 26 different shift values, making
it trivial to break. Even if we consider some larger set of characters to use (such as
ASCII) it still barely provides security. Each letter in the alphabet is always replaced
by a unique fixed letter, allowing one to calculate the relative frequency of each letter
in the encrypted text and compare this frequency to the frequency distribution for the
corresponding language. For example, the letter ‘e’ is the most frequently used letter in
the English language. Matching the distributions would quickly reveal the shift value.

Over time, cryptography became more sophisticated and prevalent, and it is ubiquitous
in modern life. Although still useful for military communication, cryptography is now
commonly used to message securely using services such as Whatsapp, complete online
banking transactions, and browse the web securely. These applications have also required
many new techniques to construct such schemes. One of the schemes used often today is
RSA, which relies on the hardness of factorisation of integers into prime numbers. Using
computers currently available, it is not known how to solve the factorisation problem
efficiently, making it difficult for adversaries to break the encryption. However, a new
threat to cryptography looms on the horizon: quantum computers are able to break some
prevalent current cryptography with relative ease. This sparked new developments in
cryptography to ensure efficient security in the era of the quantum computer, leading to
a field known as post-quantum cryptography.

One possible solution comes in the form of lattices, a structure previously known in
algebraic number theory, a subfield of mathematics. Essentially, a lattice is a regular grid,
which may be skewed and stretched. Some lattice problems seem to be algorithmically
hard, allowing the construction of cryptography. Numerous proposals have used more tools
from algebraic number theory to provide these lattices with more structure. Additional
structure can be a powerful tool, but may also lead to unforeseen consequences. This
thesis will explore an article by Cramer et al. [1], which exploits such additional structure.
They provide a classical algorithm, which can efficiently break certain cryptographic
schemes when combined with another quantum step. We will show an implementation of
the classical part of the algorithm, and examine the results. Furthermore, we shall dive
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further into algebraic number theory. It is useful for cryptography, but also a field in
its own right. Areas of study include zeta functions and L-series, somewhat mysterious
objects that are powerful tools in number theory. A famous example is the Riemann-zeta
function, which may be written as a product over all primes, revealing its first connection
to number theory. In particular, we will show the class number formula: a formula linking
together these functions with another quantity associated to number fields, the class
number.

Acknowledgements
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2. Preliminaries

2.1. Cryptography

As mentioned in the introduction, cryptography has come a long way since the primitive
constructions used in the Roman Empire and earlier. Modern cryptography is based on
solid principles and mathematical approaches to ensure security, and perhaps just as
important, to know when it fails to do so. These principles will be discussed briefly in this
section. For further reading on these principles and foundations of modern cryptography,
we refer to [3].

Consider the situation where two individuals wish to securely communicate over a
public channel. Messages sent between these individuals have to be encrypted, and the
parties must agree on the method, called an encryption scheme.

It is important to note that the scheme itself does not need to be kept secret. In fact,
the scheme should be secure when everything except the key is public, which is known as
Kerckhoffs’ principle [3, p. 7]. Not only is it easier to keep just the key secret, public
schemes may be reused and standardised too.

2.1.1. Principles of modern cryptography

What distinguishes modern cryptography from classical cryptography is the focus on
formal reasoning and analysis to provide proofs of security. Specifically, three principles
form the basis of modern cryptography [3].

Principle one: formal definitions. Security needs to be formally defined. This has many
advantages: one can precisely know what type of attacks they are protected against, one
may prove that a proposed scheme actually satisfies such a definition, and it allows for
easy comparison of different schemes.

Principle two: precise assumptions. Often encryption schemes rely on the assumption
that some underlying problem is hard to solve. Precisely specifying these assumptions
allows them to be studied carefully, resulting in trust that the assumptions hold, or
showing that they do not. Both cases are of vital importance for security.

Principle three: proofs of security. In the past, cryptography used to be a back-and-
forth battle between those making and those breaking schemes. A rigorous proof provides
certainty that no attacker can break the scheme, as long as the assumptions hold.

Before we can apply these principles, we need to formally define what a cryptographic
scheme is. Although many different types of schemes exist, we shall only define a public-
key encryption scheme, which is often used in practice and the most relevant for this
thesis. First of all, we need the notion of negligible functions.
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Definition 2.1 (Negligible function). Consider a function f : N → R≥0. If for every
polynomial p that is positive on N there exists an integer Np ∈ N such that n > N implies

f(n) <
1

p(n)
,

we call f negligible.

We may now define public-key encryption schemes.

Definition 2.2 (Public-key encryption scheme, Definition 11.1 of [3]). A public-key
encryption scheme is a set of algorithms (Gen,Enc,Dec) such that:

• The key-generation algorithm Gen takes a security parameter 1n as input, and
outputs a keypair (pk, sk) called the public key and the private key respectively.

• The encryption algorithm Enc takes a public key pk and a message m as input,
and outputs a ciphertext c← Encpk(m), where ← means (randomised) assignment.

• The decryption algorithm Dec takes a private key sk and a ciphertext c, producing
a message m or ⊥ in case of failure, denoted by Decsk(c).

For correctness, it is required that the probability Decsk(Encpk(m)) 6= m is ‘small’ for
all messages m. Formally, it must be negligible in the security parameter n, see [3,
Definition 3.4].

In public-key encryption schemes, only the private key must be kept secret, and the
public key may be shared. As only the public key is required to encrypt a message, two
individuals may communicate without exchanging keys beforehand. This feature is very
important in the context of online communication with other people and websites, as
there may be no opportunity to exchange keys before secure communication is necessary.
Further encryption schemes in this thesis will be public-key encryption schemes, unless
specifically mentioned otherwise. Before proceeding, let us consider an example of
public-key cryptography: RSA.

Example 2.3 (RSA). The key-generation algorithm Gen takes the security parameter
1n, and calculates N = pq, where p and q are random n-bit primes. It then chooses e > 1
such that gcd(e, φ(N)) = 1, where φ is the Euler totient function. Finally, it computes
e−1 mod φ(N) and outputs (N, e, d). The public key is (N, e) and the private key is
(N, d).

Encryption and decryption for a message m ∈ {0, . . . , N − 1} are defined respectively
by Encpk(m) = me mod N and Decsk(c) = cd mod N .

Correctness follows from cd = (me)d = med = m mod N as d = e−1 mod φ(N).

Note that even though RSA is indeed a public-key encryption scheme, it is not actually
secure in this form [3, p. 411–415] as will be shown in Section 2.1.2. Another example of
a public-key encryption scheme can be found in Section 4.4.
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2.1.2. Defining security

As mentioned in the principles of modern cryptography [3], it is necessary to define
what we mean by security if we want to have a chance at designing secure schemes.
Multiple different security definitions exist, usually influenced by the threat model, that
specifies which capabilities the attacker is assumed to have. One such definition is known
as EAV-security, where encryptions are indistinguishable to a passive eavesdropper.
To formally define EAV-security of a scheme Π against an attacker A, we define an
experiment PubKeav

A,Π(n).

Definition 2.4 (EAV-security). Let the experiment PubKeav
A,Π(n) be defined as follows.

1. Run Gen(1n) to obtain (pk, sk).

2. Adversary A is given pk and outputs two messages m0,m1 of equal length.

3. A uniform bit b ∈ {0, 1} is chosen, and then mb is encrypted and given to A. The
ciphertext c is called the challenge ciphertext.

4. A outputs a bit b′, guessing which message was encrypted. If A succeeds, i.e. b = b′,
the experiment outputs 1. Otherwise, the experiment outputs 0.

If for any probabilistic polynomial time adversary A the inequality P[PubKeav
A,Π(n) = 1] ≤

1
2 + ε(n) holds for a negligible function ε, we refer to the scheme Π as EAV-secure.

Example 2.5. We show that RSA as defined in Example 2.3 does not satisfy this
definition of security. Note that the encryption algorithm is deterministic. An attacker
may choose two messages m0,m1 of equal length, and encrypt both messages using
the public key to get c0, c1 respectively. Upon receiving the challenge ciphertext c, the
attacker outputs 0 if c = c0 and 1 if c = c1. The success chance is 1, and therefore
Example 2.3 does not satisfy EAV-security.

Remark 2.6. As illustrated by Example 2.5, any public-key encryption scheme satisfying
EAV-security must have a non-deterministic encryption algorithm.

Note that to satisfy EAV-security — and any other meaningful definition of security —
the adversary must be unable to efficiently derive the private key from the public key.
To illustrate this, assume that an adversary A can efficiently obtain the private key from
the public key. It may then use the private key to decrypt the challenge ciphertext and
succeed at the experiment with overwhelming probability. The algorithm presented by
Cramer et al. leads to such a key-recovery attack for Soliloquy [1], discussed in Section 4.4.
This fact immediately highlights why such an algorithm is important in cryptography, as
key-recovery attacks are devastating to the security of encryption schemes.

2.2. Lattices

As certain current encryption schemes such as RSA will no longer be secure after the
advent of the quantum computer, new foundations have to be found to build new
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cryptography upon. One candidate is a structure called a lattice. In this section, we will
define a lattice, show some properties and give some examples.

Definition 2.7 (Lattice). Consider the R-vector space Rn with the standard inner
product denoted 〈·, ·〉. A lattice is a subgroup of the form

Γ = Zv1 + · · ·+ Zvm

with linearly independent vectors v1, . . . , vm ∈ Rn, called a basis of Γ. If m = n, the
lattice is called complete.

Essentially, a lattice can be thought of as a regular m-dimensional grid in n-dimensional
space. Consider for example the 2-dimensional lattice in R2 spanned by {(2, 1)T , (0, 1)T }.
It consists of all points (2a, a + b), where a, b ∈ Z. It is a complete lattice, as both
dimensions equal two. Note that this does not always have to be the case. In fact, some
lattices we will come across in the setting of cryptography will never be complete. Let
us define the volume of a lattice, which can be thought of as the size of the fundamental
parallelogram in the lattice, or more mathematically:

{α1v1 + · · ·+ αmvm | 0 ≤ αi < 1}.

Definition 2.8 (Volume). Let Γ be a lattice spanned by v1, . . . , vn and define the matrix
A by Aij = 〈vi, vj〉. We then define

vol(Γ) = | detA|1/2.

Remark 2.9. The volume of a lattice is independent of the chosen basis. Let v =
{v1, . . . , vn} and v′ = {v′1, . . . , v′n} be bases of the same lattice. We may then write
vi =

∑
aijv

′
j for integer coefficients, 0 ≤ i ≤ n, and construct the matrix T ′ = (aij)

to transform the basis v′ to the basis v. Similarly, we can create a square matrix that
transforms the basis v to the basis v′. The matrices T and T ′ are inverses of each other,
and have integer entries. It follows that |det(T )| = |det(T ′)| = 1, showing that choice of
basis does not affect the volume of the lattice.

Again referring to the example above with basis {(2, 1)T , (0, 1)T }, we find that the

matrix (〈vi, vj〉) is

(
5 1
1 1

)
, yielding a volume of 2. We shall now use this volume, to

illustrate a property of a lattice: the shortest nonzero vector. To do this, we need
the notions of centrally symmetric and convex sets. A set X ⊆ Rn is called centrally
symmetric if for any x ∈ X we have −x ∈ X. A set X ⊆ Rn is called convex if for any
points x, y ∈ X the line between x and y is contained in X, or formally:

{tx+ (1− t)y | 0 ≤ t ≤ 1} ⊆ X.

We may now continue to the theorem.
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Theorem 2.10 (Minkowski’s Lattice Point Theorem [4, Theorem 4.4]). let Γ be a
complete lattice in the Euclidean vector space Rn and X a centrally symmetric, convex
subset of Rn. Suppose that

vol(X) > 2n vol(Γ).

Then X contains at least one nonzero point γ ∈ Γ.

Note that any nonempty convex centrally symmetric subset of Rn contains the lattice
vector 0. In certain cases it is important to find the shortest nonzero vector of lattice.
Theorem 2.10 gives an upper bound on the norm of this vector by considering a large
enough ball X around the origin, such that the condition is satisfied.

2.2.1. Building cryptography with lattices

In public-key cryptography, we have a public key and a private key. As mentioned in
Section 2.1, it is crucial that the private key cannot be derived from its public counterpart.
To achieve this property, some algorithmic problem is required that is hard to solve in
general, but is greatly simplified by knowledge of some secret structure. In the case of
RSA in Example 2.3, this secret structure is the prime factorisation of the modulus N .
If the primes p, q such that N = pq are known, then φ(N) and d = e−1 mod φ(N) may
be easily calculated, revealing the private key.

We shall dive into some problems that might qualify as being hard. First of all, we
define the shortest vector problem abbreviated SVP as follows: given a basis of a lattice
L ⊆ Rn, find a vector with norm min06=x∈L ‖x‖.

Example 2.11. Consider the lattice L = Zb1 + Zb2, where

b1 =

2
5
6

 , b2 =

1
3
3

 .

Note that the vector (0, 1, 0)T = 2b2− b1 is in the lattice and has norm one. Any nonzero
vector in this lattice has norm at least one, as all coefficients are integers. We may
conclude that we have found a vector satisfying SVP.

For low dimensions n, this problem is not particularly difficult. In two dimensions,
one may use a basis reduction due to Lagrange and Gauss, given by Algorithm 1 below.
However, difficulty increases rapidly as n grows, and low dimensions are generally not used
for cryptographic purposes. A slightly easier problem related to SVP is approximated-
SVP with factor γ. In this case any solution v with ‖v‖ ≤ γmin06=x∈L ‖x‖ is accepted,
providing a trade-off between accuracy and speed.

Another common lattice-based problem is CVP, short for the closest vector problem.
It is defined similarly to SVP: given a basis of a lattice L, and a target t ∈ Rn, find a
vector v ∈ L such that ‖v− t‖ = minx∈L ‖x− t‖. An approach to solving this problem is
known as Babai’s rounding algorithm, which will also be used in Chapter 4.
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Data: A basis b1, b2
Result: A lattice basis b̃1, b̃2 such that b̃1 is the shortest non-zero lattice vector,

and b̃2 is the shortest linearly independent vector after b̃1
while b1 or b2 can be reduced do

if ‖b1‖ > ‖b2‖ then
Swap b1 and b2

end
while ‖b2 ± b1‖ < ‖b2‖ do

Replace b2 with b2 ± b1
end

end
Algorithm 1: Lagrange-Gauss reduction

2.3. Number fields

In this section, we define some of the building blocks of algebraic number theory. This area
of mathematics is concerned with number fields: finite field extensions of Q. Concepts
such as integers, prime numbers and factorisation as known in Z and Q are generalised
to arbitrary number fields. These are useful and fundamental constructs in algebraic
number theory, and also find applications in cryptography. For the rest of this thesis, we
will implicitly assume that any ring mentioned is commutative.

2.3.1. Integrality

First of all, we shall concern ourselves with defining integers in a more general setting.

Definition 2.12. Let A ⊆ B be an extension of rings. An element b ∈ B is called
integral over A, if there exists a monic, non-constant polynomial f ∈ A[X] such that
f(b) = 0. The ring B is called integral over A if all elements of B are integral over A.

A natural question to ask is whether integrality is preserved under multiplication and
addition of integral elements. This is especially important as we wish to define the ring
of all integral elements in a ring extension A ⊆ B. Note however, that this set must be
closed under the usual ring operations to actually be a ring.

Theorem 2.13 (Proposition 2.2 of [4]). Finitely many elements b1, . . . , bn ∈ B are all
integral over A if and only if the ring A[b1, . . . , bn] viewed as an A-module is finitely
generated.

As mentioned in [4], it follows that any element b ∈ A[b1, . . . , bn] is integral, as
A[b1, . . . , bn, b] = A[b1, . . . bn] is finitely generated. Clearly, b1 + b2, b1b2 ∈ A[b1, b2],
showing that the product and sum of integral elements b1 and b2 are again integral. We
may now define the ring of all integral elements as intended.

Definition 2.14 (Integral closure). Define the integral closure of A in B as the set
A = {b ∈ B | b integral over A}. If A = A, we say A is integrally closed in B.
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In algebraic number theory, specific ring extensions are of particular interest: number
fields, which are defined as finite field extensions of Q. Let K be a number field. We
consider the subring Z of K and define the ring of integers OK as the integral closure of
Z in K. These are the generalised integers that we will be working with in number fields.
Consider for example the field Q(i), such that i2 + 1 = 0. Then its ring of integers is
Z[i], which is a ring extension of Z.

Next, we turn our attention to the notion of a basis.

Definition 2.15 (Integral basis). A tuple of elements ω1, . . . , ωn ∈ B such that each
b ∈ B can be written uniquely as a linear combination

b = a1ω1 + · · ·+ anωn

with ai ∈ A is called an integral basis of B over A.

Note that such a basis does not necessarily exist.
Often we consider the number field K as subset of C. However, there is no unique way

to do this whenever K 6= Q. Formally, this is solved by the definition of an embedding.

Definition 2.16 (Embedding). Consider rings A,B and let σ : A → B be a ring-
homomorphism. If σ is injective, it is called an embedding of A into B.

In number fields, an integral basis always exists [4, Ch.1 Proposition 2.10]. Existence
of an integral basis allows us to define the following.

Definition 2.17 (Discriminant). Let ω1, . . . , ωn be an integral basis of OK over Z and
define the matrix A by Aij = σi(ωj), where σi goes through all embeddings of K in C.
We define the discriminant of K as

dK := det(A)2.

It is important to note that the discriminant is well-defined. Any other integral
basis gives the same discriminant [4, p. 15]. Furthermore, note that the matrix A in
Definition 2.17 is a square matrix. Any element of K may be written as b/a with b ∈ OK ,
a ∈ Z [4, p. 8]. This means that an integral basis is also a Q-basis of K, by writing out
the linear combination of b, and dividing all coefficients ai ∈ Z by a ∈ Z, and remarking
that ai/a ∈ Q. This shows that the length of the integral basis equals the degree of the
number field. As the number of embeddings of K in C also equals the degree of the
number field, we find that the matrix A is a square matrix.

In this thesis, one family of number fields will often reappear: cyclotomic fields.

Definition 2.18 (Cyclotomic field). Let n ∈ N, n > 2 and let ζ be a primitive n-th root
of unity, i.e. ζn = 1 and ζm 6= 1 for m < n. Then Q(ζ) is called the n-th cyclotomic field.

Note that Q(ζ) is an extension of Q of degree φ(n) <∞, and is therefore a number
field. Its ring of integers is determined in the following lemma.

Lemma 2.19 (Proposition 10.2 of [4]). A Z-basis of the ring O of integers of Q(ζ) is
given by 1, ζ, . . . , ζd−1, with d = φ(n), in other words,

O = Z + Zζ + · · ·+ Zζd−1 = Z[ζ].

12



2.3.2. Ideals

Having considered integers of number fields, we shall now turn our attention to generalising
prime numbers. An important notion used in this generalisation is that of an ideal:
an additive subgroup of a ring, closed under multiplication by elements from that ring.
Ideals generated by one element, denoted (a) := aOK for some a ∈ K are called principal
ideals. In general number fields, unique factorisation of numbers into prime factors is
lost.

Example 2.20. Consider K = Q(
√
−5) with ring of integers OK = Z[

√
−5 ]. We then

have
(1 +

√
−5)(1−

√
−5) = 6 = 2 · 3.

We can equip this number field with the norm N(a+ b
√
−5) = a2 + 5b2. If the element 2

would admit a decomposition 2 = αβ for α, β non-units in OK , we would get the equation

4 = N(2) = N(α)N(β),

and thus N(α) = ±2. However, the equation a2 + 5b2 = 2 has no integer solutions. The
same reasoning shows that the elements 3, 1+

√
−5, 1−

√
−5 are irreducible. Furthermore,

the elements 2, 3 generate the ideals (2) := 2Z + 2Z
√
−5 and (3) := 3Z + 3Z

√
−5

respectively. Clearly, 1 +
√
−5 and 1−

√
−5 are not elements of (2) or (3), showing that

the generated ideals and therefore the factorisations are truly different. We conclude that
the element 6 ∈ OK has no unique factorisation.

To combat this issue, the notion of an ideal was introduced, which do keep this property
(under certain conditions) when going from Q to an arbitrary number field. We define
prime ideals, which shall take the place of prime numbers. To consider factorisations
into prime ideals, we must define what the product of two ideals is. For any ring R, and
ideals I, J of R, we define the product of I and J to be

IJ :=
{ n∑
k=1

ikjk | ik ∈ I, jk ∈ J, n ∈ N
}
.

Definition 2.21 (Prime ideal). Let I be an ideal of a ring R. If for all a, b ∈ R the
condition ab ∈ I implies a ∈ I or b ∈ I, we say I is prime.

It is important to note that in general, ideals of arbitrary rings do not factorise uniquely
into prime ideals. However, ideals of the ring of integers do satisfy this property.

Theorem 2.22 (Theorem 3.3 of [4]). Every ideal a of OK different from {0} and OK
admits a factorisation

a = p1 · · · pr
into nonzero prime ideals pi of OK which is unique up to the order of the factors.

Remark 2.23. Rings that have such unique factorisation of ideals are called Dedekind
domains.
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Having discussed integrals of OK , we turn our attention to another notion of ideals.

Definition 2.24 (Fractional ideal). A fractional ideal of K is a finitely generated
OK-submodule of K.

Remark 2.25. An equivalent characterisation is as follows: a OK-submodule a of K is
a fractional ideal if and only if there exists c ∈ OK \ {0} such that ca ⊆ OK [4, p.21].

As an example, consider the number field Q(i), where i2 + 1 = 0, with OK = Z[i].
Then 2Z[i] and iZ[i] are ideals of OK . However, 1

2Z[i] and i
2Z[i] are not ideals of OK ,

but are finitely generated Z[i]-submodules of K and therefore fractional ideals. In fact,
both these fractional ideals are generated by a single element from K.

Theorem 2.26 (Proposition 3.8 of [4]). The nonzero fractional ideals form an abelian
group under multiplication, the ideal group JK of K. The identity element is (1) = OK ,
and the inverse of a is

a−1 = {x ∈ K | xa ⊆ OK}.

Remark 2.27. Note that a−1 is in fact a non-zero fractional ideal. We may write each
element x ∈ K as x = b/a with b ∈ OK and a ∈ Z [4, p.8]. Let b1/a1, . . . , bn/an be an
integral basis of a over Z and define c = lcm(a1, . . . , an). Then we have ca ⊆ OK as all
denominators cancel. It follows that c ∈ a−1, so a−1 is non-zero.

Next, we show that a−1 is a OK-submodule of K and that there exists d ∈ OK such
that da−1 ⊆ OK . It then follows from Remark 2.25 that a−1 is a fractional ideal. Let
x, y ∈ a−1. By definition, we have a−1 ⊆ K and xm, ym ∈ OK for all m ∈M . Therefore
we also have (x+ y)m = xm+ ym ∈ OK . As xm ∈ OK , we also have rxm ∈ OK for all
r ∈ OK . It follows that a−1 is a OK-submodule of K.

As a is non-zero, we can choose y ∈ a, y 6= 0. By definition of a−1 we have ya−1 ⊆ OK .
We also have cy ∈ OK by definition of c. Then cya−1 ⊆ OK . We conclude a−1 is a
non-zero fractional ideal.

In particular, we are interested in a specific subgroup and its index in the ideal group.

Definition 2.28 (Class group). The nonzero fractional principal ideals (a) = aOK for
a ∈ K∗ are a subgroup of JK denoted PK . We define the class group as ClK = JK/PK .
The order of this group is called the class number.

An interesting fact is that the class number is finite when considering number fields
and the corresponding rings of integers [4, Ch.1 Theorem 6.3]. The class number will
reappear when looking at L-series in Section 3.2.4, where we find a way to compute it. It
will also be discussed in Chapter 4.
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3. Algebraic number theory

3.1. General theory

In this section, we return to a number field K with ring of integers OK . Recall that OK
is defined as the integral closure of Z in K. First of all, we briefly recall the concept of
units, as they play an important role in Chapter 4. For a ring R, we call a ∈ R a unit if
there exists b ∈ R such that ab = ba = 1, and we write b = a−1. The group of all units in
a ring R is denoted by R∗. In this section, we show a result on the structure of O∗K and
use this structure to define the log-unit lattice.

3.1.1. Mapping the number field to Rn

We show how to map non-zero elements of a number field K to vectors in Rn, using
Minkowski Theory [4, Ch.1 §5]. To do this, we consider embeddings σ : K → C (see
Definition 2.16). We split the embeddings into real and complex embeddings. An
embedding σ is called real if Imσ ⊆ R, and called complex otherwise. The complex
embeddings come in pairs: if σ is an embedding, so is σ defined by σ(a) = σ(a) for
a ∈ K. Suppose we have r real embeddings ρ1, . . . ρr and s pairs of complex embeddings
σ1, σ1, . . . , σs, σs. We choose order the embeddings and choose one from each pair to
define the map λ : K∗ → Rr+s given by

λ(a) =



log |ρ1(a)|
...

log |ρr(a)|
2 log |σ1(a)|

...
2 log |σs(a)|


. (3.1)

Note that |x| = |x| for each x ∈ C, and therefore the choice of embedding from a complex
pair is arbitrary. Furthermore, only 0 is mapped to 0 by any embedding, and 0 6∈ K∗, so
the logarithm in the definition is always defined. It follows that λ is well-defined.

Example 3.1. Consider the number field K = Q(ζ) where ζ ∈ C is a primitive fifth root
of unity. There are no real embeddings, and two pairs of complex embeddings of K in C:
σ1 defined by ζ 7→ ζ and σ2 defined by ζ 7→ ζ2 (and their conjugate counterparts). We
then have

λ(a+ bζ + cζ2 + dζ3) =

(
2 log |a+ bζ + cζ2 + dζ3|
2 log |a+ bζ2 + cζ4 + dζ|

)
as ζ6 = ζ.
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3.1.2. Dirichlet’s unit theorem and the log-unit lattice

We shall now explore the structure of O∗K . The following theorem gives an explicit
description.

Theorem 3.2 (Dirichlet’s Unit Theorem [4, Ch.1 Theorem 7.4]). Let r be the number
of real embeddings, and 2s the number of complex embeddings from K to C. There exist
units ε1, . . . εt ∈ O∗K , t = r + s− 1, called fundamental units, such that any unit ε ∈ O∗K
can be written uniquely as a product

ε = ζεν11 · · · ε
νt
t

with a root of unity ζ ∈ O∗K and integers νi.

Remark 3.3. According to Theorem 3.2, any ε ∈ O∗K may be written uniquely as
ζεν11 · · · ε

νt
t . Note that all factors in the product are also elements of O∗K . It follows that

for all integers ν1, . . . , νt and any root of unity ζ ∈ O∗K , we have ζεν11 · · · ε
νt
t ∈ O∗K .

We now consider ε ∈ O∗K and apply λ from Section 3.1.1. This yields

λ(ε) =



log |ρ1(ζεν11 · · · ε
νt
t )|

...
log |ρr(ζεν11 · · · ε

νt
t )|

2 log |σ1(ζεν11 · · · ε
νt
t )|

...
2 log |σs(ζεν11 · · · ε

νt
t )|


=



log (|ρ1(ζ)| · |ρ1(εν11 )| · · · |ρ1(ενtt )|)
...

log (|ρr(ζ)| · |ρr(εν11 )| · · · |ρr(ενtt )|)
2 log (|σ1(ζ)| · |σ1(εν11 )| · · · |σ1(ενtt )|)

...
2 log (|σs(ζ)| · |σs(εν11 )| · · · |σn(ενtt )|)


= ν1λ(ε1) + · · ·+ νtλ(εt). (3.2)

Here we used the properties log(ab) = log(a) + log(b), log(ab) = b log(a), log 1 = 0 and
that for any embedding τ and any root of unity ζ we have τ(ab) = τ(a)b and |τ(ζ)| = 1.

Definition 3.4 (Log-unit lattice). The group λ(O∗K) is called the log-unit lattice.

By Theorem 3.2, any element in the log-unit lattice can be written as in (3.2). Re-
mark 3.3 shows that any element of the form (3.2) is a point in the log-unit lattice. The
log-unit lattice is therefore a lattice with basis {λ(ε1), . . . , λ(εt)}.

Lemma 3.5. The log-unit lattice is orthogonal to the all-ones vector 1.

Proof. For arbitrary a ∈ O∗K , consider the vector λ(a) in the log-unit lattice. We show
that 〈λ(a),1〉 = 0 where 〈·, ·〉 denotes the standard inner product on Rn. First of all,
note that log |σ(a)|2 = 2 log |σ(a)| and log |σ(a)| = log |σ(a)|. We may therefore rewrite

〈λ(a),a〉 =
∑
ρ real

log |ρ(a)|+
∑
(σ, σ)

complex pair

log |σ(a)|2 =
∑
ρ real

log |ρ(a)|+2
∑
(σ, σ)

complex pair

log |σ(a)|,
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where we only consider one from each embedding from each complex pair to∑
τ

log |τ(a)|

over all embeddings τ from K into C. This may be further manipulated to get∑
τ

log |τ(a)| = log
∣∣∏
τ

τ(a)
∣∣

For a unit a ∈ O∗K , we have |N(a)| := |
∏
τ τ(a)| = 1 as N is multiplicative, giving

N(a)N(a−1) = N(aa−1) = N(1) = 1 for integers N(a) and N(a−1). We conclude that
〈λ(a),1〉 = 0, thus the log-unit lattice is orthogonal to the all-ones vector.

Finally, we introduce the regulator of a number field K, which can be used to determine
the volume of the log-unit lattice. It will also be important in Section 3.3.

Definition 3.6 (Regulator). Write λ(i)(a) for the i-th component of λ(a) and consider
the matrix  λ(1)(ε1) · · · λ(1)(εt)

...
...

λ(t+1)(ε1) · · · λ(t+1)(εt)

 .

Remove any row from this matrix, and call the result M . We define the regulator of a
number field to be R = |det(M)|.

We show that the regulator is well-defined, by proving that it is independent of choice
of fundamental units and choice of row to delete. First of all, we discuss the choice of
row to delete. Define

λ0 =
1√
r + s

(1, . . . , 1) ∈ Rr+s. (3.3)

By Lemma 3.5, the vector λ0 is orthogonal to the log-unit lattice. Clearly, it also has

Euclidian length 1. Write λ
(i)
0 for the i-th component of λ0 and λ(i)(a) for the i-th

component of λ(a). Note that r + s = t+ 1 by definition. Consider the matrix

A =

 λ
(1)
0 λ(1)(ε1) · · · λ(1)(εt)
...

...
...

λ
(t+1)
0 λ(t+1)(ε1) · · · λ(t+1)(εt)

 . (3.4)

Now choose some row i ∈ {1, . . . , r + s} of A, and add all other rows to row i. We then
get the matrix B, where the i-th row is (

√
r + s, 0, . . . , 0).

B =


λ

(1)
0 λ(1)(ε1) · · · λ(1)(εt)
...

...
...√

r + s 0 · · · 0
...

...
...

λ
(t+1)
0 λ(t+1)(ε1) · · · λ(t+1)(εt)

 (3.5)
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The zeroes appear due to Lemma 3.5, and clearly the components of λ0 sum to
√
r + s.

Note that the determinant of a matrix remains unchanged when adding rows to other
rows, thus det(A) = det(B). We compute det(B) by developing along row i. As the
zeroes do not contribute, this gives ±

√
r + s det(M), where M is the submatrix of B

with row i and column 1 removed. This matrix M is then given by removing row i from
the matrix  λ(1)(ε1) · · · λ(1)(εt)

...
...

λ(t+1)(ε1) · · · λ(t+1)(εt)

 , (3.6)

which matches the matrix from Definition 3.6. We now have det(A) = det(B) =√
r + s det(M) for arbitrary i, showing that det(M) is independent of the row we delete.
Secondly, we discuss choice of fundamental units. Using Lemma 3.7, we connect the

regulator to the volume of the log-unit lattice. As stated in Remark 2.9, the volume of a
lattice does not depend on choice of basis. It follows that the regulator is independent of
choice of fundamental units.

Finally, we use the regulator to calculate the volume of λ(O∗K), following [4, p.43–44].

Lemma 3.7 (Proposition 7.5 of [4]). The volume of the log-unit lattice is given by√
r + sR, where R is the regulator, r is the number of real embeddings, and s is the

number of complex pairs of embeddings.

Proof. By Lemma 3.5, the vector λ0 (see (3.3)) is orthogonal to the log-unit lattice.
As the length of λ0 is 1, the t-dimensional volume of the log-unit lattice equals the
(t+ 1)-dimensional volume of the log-unit lattice with λ0 added as basis vector. Consider
the matrix A from (3.4). Then ATA is the matrix of inner products from Definition 2.8.

We then have |det(A)| = | det(ATA)|1/2 = vol(λ(O∗K)). As seen when developing (3.5),
we have |det(A)| = | det(B)| =

√
r + sR.

3.2. L-series and zeta functions

One of the most well known functions in mathematics is the Riemann zeta function. It
has interesting connections to number theory, which are not immediately apparent. In
this section, we discuss some properties of the Riemann zeta function and a generalisation,
the Dirichlet L-series. Many of the results derived for the Riemann zeta function hold
for more general series too. This section will follow Chapter 7 of [4].

3.2.1. The Riemann zeta function

Riemann’s zeta function is defined for the complex variable s by the series

ζ(s) =

∞∑
n=1

1

ns
.

Clearly, we must ask whether this series converges.
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Lemma 3.8 (Ch.7 Proposition 1.1 of [4]). The series ζ(s) =
∑∞

n=1
1
ns is absolutely and

uniformly convergent in the domain <(s) ≥ 1 + δ, for every δ > 0. It therefore represents
an analytic function in the half-plane <(s) > 1.

Proof. Let σ = <(s) ≥ 1 + δ and note that |1/ns| = 1/nσ as niα has norm one for every
α ∈ R. We then find

∞∑
n=1

∣∣∣∣ 1

ns

∣∣∣∣ =

∞∑
n=1

1

nσ
≤
∞∑
n=1

1

n1+δ
,

in which the last term converges by the integral test. The Weierstrass M-test implies
that ζ(s) converges absolutely and uniformly.

Its connection with number theory however, has not yet been revealed. It turns out
that the series may be rewritten as a product over all primes. As the set of all prime
numbers if infinite, we must first define infinite products. An infinite product

∏∞
n=1 an

is defined to converge if the partial products pn = a1 · · · an have a nonzero limit, which
is the case if and only if

∑∞
n=1 log an converges, with log the principal branch of the

logarithm. The product is called absolutely convergent if the series converges absolutely.

Lemma 3.9 (Proposition 1.1 of [4]). The identity

ζ(s) =
∏

p prime

1

1− p−s
,

holds for <(s) > 1, and is referred to as Euler’s identity.

Proof. Let M ∈ N. We take the logarithm of E(s) :=
∏
p≤M 1/(1 − p−s) and use

log(1− z) = −
∑∞

n=1 z
n/n to get

logE(s) =
∑
p≤M
− log(1− p−s) =

∑
p≤M

∞∑
n=1

1

np−ns
.

As remarked in the proof of Lemma 3.8, we have |pns| = pnσ ≥ p(1+δ)n, for <(s) = σ ≥
1 + δ. Using a geometric series and the fact that a/2 ≤ a− 1 for a ≥ 2, we find that

∑
p≤M

∞∑
n=1

1

np−ns
≤
∑
p≤M

∞∑
n=1

1

np(1+δ)n
≤
∑
p≤M

∞∑
n=1

(
1

p1+δ

)n
=
∑
p≤M

1

p1+δ − 1
≤ 2

∑
p≤M

1

p1+δ
.

For any M ∈ N, the sum
∑

p≤M 1/p1+δ is smaller than
∑∞

n=1 1/n1+δ, which is convergent
as mentioned in Lemma 3.8. Taking the limit M → ∞ shows that the series logE(s)
converges absolutely for <(s) ≥ 1 + δ. This allows us to redefine E(s) as the infinite
product

E(s) :=
∏

p prime

1

1− p−s
.
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Once more we write out the geometric series, obtaining

1

1− p−s
= 1 +

1

ps
+

1

p2s
+ · · · ,

which we use to expand
∏
p≤N 1/(1−p−s) by multiplying all terms. For all prime numbers

p1, . . . , pr ≤ N this yields

∏
p≤N

1

1− p−s
=

∞∑
ν1,...,νr=0

1

(pν11 · · · p
νr
r )s

=
∑
n

′ 1

ns

where
∑′ is the sum over all n for which all prime divisors are smaller than N . Clearly,

for n ≤ N all prime divisors are smaller than N , so we get∏
p≤N

1

1− p−s
=
∑
n

′ 1

ns
=
∑
n≤N

1

ns
+
∑
n>N

′ 1

ns
.

Finally, comparing with ζ(s) we get∣∣ ∏
p≤N

1

1− p−s
− ζ(s)

∣∣ =
∣∣ ∑
n≤N

1

ns
+
∑
n>N

′ 1

ns
−
∑
n

1

ns
∣∣

≤
∑
n>N

1

ns
→ 0,

as it is the remainder of a convergent series.

We consider the behaviour of the function. Specifically, we concern ourselves with
poles.

Definition 3.10 (Pole, Residue). If a complex function f is analytic on the set G =
{x ∈ C | 0 < |c− x| < R} for some c ∈ C and R ∈ R, we may write

f(z) =

∞∑
n=−∞

an(z − c)n

for the Laurent series around c ∈ C [5, Theorem 9.9, Corollary 9.11]. If for some n < 0
we have an 6= 0, we say f has a pole at c with residue a−1. If a−1 6= 0 and an = 0 for
n < −1, the pole is called simple.

Remark 3.11. Lemma 3.9 shows the Riemann zeta function may be written as a product
over all primes. It is well known that the ζ(s) has a pole at s = 1. It follows that the
product ∏

p prime

1

1− p−s

cannot be bounded as s→ 1. As any finite product is bounded, there are infinitely many
prime numbers.
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3.2.2. Dirichlet L-series

One generalisation of the Riemann zeta function comes in the form of the Dirichlet
L-series. To define it, we first need to discuss the notion of a Dirichlet character.

Definition 3.12 (Dirichlet character). Let m ∈ N. A Dirichlet character mod m is a
multiplicative homomorphism

χ : (Z/mZ)∗ → S1 = {z ∈ C | |z| = 1}.

A Dirichlet character is called primitive if there is no proper divisor m′ | m such that
a ≡ b (mod m′) implies χ(a) = χ(b). The smallest of such divisors is called the conductor
fχ of χ.

We extend a Dirichlet character χ to all integers, by defining

χ(n) =

{
χ(n mod m) for gcd(n,m) = 1,

0 for gcd(n,m) 6= 1.

Example 3.13. A basic, but important character is the trivial character χ0 mod m. It
is the homomorphism (Z/mZ)∗ → S1 mapping all elements of (Z/mZ)∗ to 1. Extending
χ0 to all integers, we have χ0(n) = 1 if gcd(n,m) = 1 and χ0(n) = 0 if gcd(n,m) 6= 1. A
special case of the trivial character is the principal character, where we choose m = 1.
Therefore the principal character ψ extended to all integers gives the function ψ(n) = 1
for all n ∈ N.

Secondly, consider the following non-trivial example. Define χ : (Z/8Z)∗ → S1 by
χ(1) = 1, χ(3) = −1, χ(5) = 1, χ(7) = −1. Note that χ is a character mod 8. We see
that χ(a + 4) = χ(a), so we may also define χ′ as χ′(1) = 1, χ(3) = −1 and consider
this character mod 4. By definition, it follows that χ is not a primitive character. As
χ′(1) 6= χ′(3) and 2 is the only prime divisor of 4, we conclude that χ′ is in fact primitive.
Consequently fχ = fχ′ = 4.

Often, we only consider a character mod fχ for simplicity. Having defined Dirichlet
characters, we turn our attention to the Dirichlet L-series.

Definition 3.14 (Dirichlet L-series). Let χ be a Dirichlet character. The Dirichlet
L-series corresponding with χ is defined as

L(s, χ) =

∞∑
n=1

χ(n)

ns
,

for complex variable s.

Note that for the principal character χ(n) = 1 for all n ∈ N, we have L(s, χ) = ζ(s).
Alternatively, consider the Dirichlet character mod 2 given by χ(1) = 1. Then L(s, χ) =∑

n odd 1/ns.
Like in the case of the Riemann zeta function (see Lemmas 3.8 and 3.9), the Dirichlet

L-series can be related to prime numbers.
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Lemma 3.15 (Ch.7 Proposition 2.1 of [4]). The series L(s, χ) converges absolutely and
uniformly in the domain <(s) ≥ 1 + δ, for any δ > 0. It therefore represents an analytic
function on the half-plane <(s) > 1. We have an Euler product expansion

L(χ, s) =
∏

p prime

1

1− χ(p)p−s
.

3.2.3. Continuing the L-series

This section will follow Chapter 4 of [6]. As seen in Lemma 3.15, the Dirichlet L-series
converges on the half-plane <(s) > 1. However, it may be analytically continued to the
entire complex plane if χ is not the principal character. First, we need to introduce
another function: the Gamma function.

Definition 3.16 (Gamma function). For <(s) > 0, the Gamma function is defined as

Γ(s) =

∫ ∞
0

e−yys−1 dy

The Gamma function may be continued to a large part of C, but not the entire complex
plane. To describe this, we define a function to be meromorphic on C if it is holomorphic
on C, except for a set of isolated poles. We may now state the following lemma.

Lemma 3.17 (Ch.7 Proposition 1.2 of [4]). The Gamma function is analytic and admits
a meromorphic continuation to C. These poles are located at s = −n, for non-negative
integers n with corresponding residues (−1)n/n!. It has no poles elsewhere, and it is
nowhere zero.

We now split the L-series into a finite sum of ‘shifted zeta functions’. Define the
Hurwitz zeta functions as

ζ(s, b) =
∞∑
n=0

1

(b+ n)s
for <(s) > 1, 0 < b ≤ 1.

Let χ be a Dirichlet character with conductor f . Then

f−sζ(s, a/f) = f−s
∞∑
n=0

1

(a/f + n)s
=

∞∑
n=0

1

(a+ nf)s
=

∑
n=a mod f

1

ns
.

By considering classes mod f , we partition N. Furthermore, if n ≡ m mod f , we have
χ(n) = χ(m), allowing us to extract the factor χ(n) from the L-series. This means we
can write

L(s, χ) =

∞∑
n=1

χ(n)

ns
=

f∑
a=1

χ(a)f−sζ
(
s,
a

f

)
. (3.7)

Continuing the L-series now reduces to continuing the Hurwitz zeta function.
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Theorem 3.18 (Theorem 4.2 of [6]). The Hurwitz zeta function, and therefore the
Dirichlet L-series, may be analytically continued to C \ {1}.

Proof. Let

F (t) :=
te(1−b)t

et − 1

and define H(s) :=
∫
γ F (z)zs−2dz, where γ is the continuous the path in Figure 3.1,

consisting of three parts:

1. The horizontal line y = ε/2 from infinity towards the circle C(0, ε),

2. Part of the circle C(0, ε), connecting to both horizontal lines, say from angle ϕε to
2π − ϕε with ϕε → 0 as ε→ 0,

3. The horizontal line y = −ε/2 from C(0, ε) towards infinity.

These parts will be referred to as γ1, γ2, and γ3 respectively.
In the definition of H(s) , zs means es log z, where we define the complex logarithm in

terms of the real logarithm as follows: log(z) := log |z|+ i arg(z) with arg(z) ∈ (0, 2π).
This choice ensures continuity. For <(s) > 1 we know that ζ(s, b) converges by Lemma 3.8.

Figure 3.1.: The path of the integral, from [6, p. 33]

We will show that ζ(s, b) = H(s)/
(
(e2πis − 1)Γ(s)

)
for <(s) > 1. Furthermore we will

show that H(s)/
(
(e2πis − 1)Γ(s)

)
converges for all s 6= 1 and therefore provides an

analytic continuation to C \ {1} of ζ(s, b).
First of all, note that F (z)zs−2 has no poles on γ. Furthermore, F (t) decays exponen-

tially as t → ∞. It follows that H(s) is defined, and analytic for all s ∈ C. Secondly,
consider s 6= 1 such that <(s) ≤ 1. The function Γ(s) is nowhere zero, and has (simple)
poles only at −n for non-positive integers n (see Lemma 3.17). However, e2πis− 1 is zero
at −n for integers n and has no poles. The simple poles and zeroes cancel, showing that
the denominator of (e2πis − 1)Γ(s) is analytic and nonzero for <(s) ≤ 1, s 6= 1. It follows
that H(s)/((e2πis − 1)Γ(s)) is an analytic function on C \ {1}.

Finally, we show that ζ(s, b) and the suggested continuation agree for s such that
<(s) > 1. We return to the function H(s) and rewrite it. Let <(s) > 1. We show that∫
γ2
F (z)zs−2dz → 0 as ε → 0. Note that F (z) is analytic near z = 0 as the zero and

simple pole cancel. It follows that F (z) is bounded near z = 0, say |F (z)| ≤ A ∈ R. We
then have∣∣∣∣∫

γ2

F (z)zs−2ds

∣∣∣∣ =

∣∣∣∣∫ 2π−ϕε

ϕε

F (εeiϕ)(εeiϕ)s−2εdϕ

∣∣∣∣ ≤ ∫ 2π

0
Aεs−1dϕ = 2πAεs−1,
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which goes to 0 as ε→ 0. Now we take the limit ε→ 0, and rewrite the integrals over
γ1 and γ3, considering their different limits due to the cut in the domain of log at the
positive real numbers. This yields

H(s) = (e2πis − 1)

∫ ∞
0

F (t)ts−2dt, (3.8)

as only the parts of γ along the positive real axis remain. Using a geometric series, we
may write

∞∑
m=0

e−(b+m)t = e−bt
∞∑
m=0

e−mt =
e−bt

1− e−t
=

e1−bt

et − 1
= F (t)/t.

Substituting this in (3.8) gives

H(s) = (e2πis − 1)

∫ ∞
0

ts−1
∞∑
m=0

e−(b+m)t = (e2πis − 1)

∞∑
m=0

∫ ∞
0

ts−1e−(b+m)tdt,

where the last equality follows from Fubini’s theorem. Applying the substitution t 7→
t/(m+ b), we get

(e2πis − 1)

∞∑
m=0

1

(m+ b)s

∫ ∞
0

e−tts−1dt,

which equals (e2πis − 1)Γ(s)ζ(s, b) by definition. It follows that

ζ(s, b) =
H(s)

(e2πis − 1)Γ(s)
. (3.9)

As H(s)/((e2πis−1)Γ(s)) is analytic on C\{1}, we conclude ζ(s, b) may be analytically
continued to C \ {1}. Combining (3.7) and the analytic continuation of ζ(s, b) results in
an analytic continuation of L(s, χ).

3.2.4. The special values L(1, χ)

Theorem 3.18 shows that the Dirichlet L-series can be analytically continued to C \ {1}.
Naturally, one may ask how the L-series behaves around the point 1. For χ = 1, the
trivial character, we have L(s, χ) = ζ(s). It is known that ζ(s) has a pole at s = 1, and
therefore so does L(s, χ). For non-trivial characters χ however, the Dirichlet L-series
L(s, χ) may be analytically continued to the entire complex plane [4, Ch.8 Theorem 2.8].
As it turns out, the value L(1, χ) has some interesting applications. It is used in [1] to
derive bounds required for the algorithm described in Section 4.1. Some of those results
will be discussed in this section. The value L(1, χ) can also be used to calculate the class
number of a number field, to which we will return in Section 3.3.

First of all, we discuss a two-sided bound on L(1, χ), which we need in Chapter 4.
Before stating the theorem, let us define the following: a character is called quadratic if
it is non-trivial and real-valued. Note that Dirichlet characters map to roots of unity,
and {−1, 1} are the only real roots of unity.
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Theorem 3.19 (Theorem 2.6 of [1]). There exists a universal constant C > 0 such that,
for any non-quadratic character χ of conductor f > 1,

1

C log f
≤ |L(1, χ)| ≤ C log f.

Moreover, for any quadratic character χ,

|L(1, χ)| ≥ 1

C
√
f

Theorem 3.19 does not extend to the principal character χ0, as L(s, χ0) has a pole at
s = 1. Improving the constant C is an active field of research [1]. For λ ≈ 9.27628 we
have the bound

|L(1, χ)| ≥ 1 + o(1)

λ log(f/π)

for non-quadratic primitive Dirichlet characters, where o(1) tends to 0 as the conductor
f of χ tends to infinity [7]. It is also possible to express L(1, χ) directly.

Theorem 3.20 (Theorem 4.9 of [6]). We have

L(1, χ) =


πi τ(χ)

f2
∑f

a=1 χ(a)a if χ(−1) = −1,

− τ(χ)
f

∑f
a=1 χ(a) log |1− ζaf | if χ(−1) = 1, χ 6= 1,

where

τ(χ) =

f∑
a=1

χ(a)e2πia/f .

The function τ is called a Gauss sum.

If one only wishes to calculate |L(1, χ)|, the expression may be simplified by using the
fact that |τ(χ)| =

√
f [6, Lemma 4.8].

3.3. The class number formula

In Section 2.3 we defined the class group (see Definition 2.28). Recall that a fractional
ideal of K is a finitely generated OK-submodule of K (see Definition 2.24). The nonzero
fractional ideals form an abelian group, denoted JK . The class group is defined as
ClK = JK/PK (see Definition 2.28). The order of this group is finite, and is referred to
as the class number [4, Ch.1 Theorem 6.3]. Even though many class numbers have been
calculated, they still appear mostly unpredictable [4, p. 37]. In this section we concern
ourselves with calculating class numbers.

First of all, we introduce some notation.
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Definition 3.21 (Absolute norm). Let a 6= 0 be an ideal of OK . We define the absolute
norm as

N(a) = (OK : a),

the index of a in OK .

The absolute norm is finite [4, Proposition 2.12]. We use the absolute norm to define a
function similar to the Riemann zeta function and the Dirichlet L-series: the Dedekind
zeta function.

Definition 3.22 (Definition 5.1 of [4]). The Dedekind zeta function of the number field
K is defined by the series

ζK(s) =
∑
a

1

N(a)s
,

where a varies over the non-zero ideals of OK .

Example 3.23. Consider K = Q(i) with OK = Z[i]. Note that Z[i] is a principal ideal
domain. By [4, p. 35], we have N((a + bi)) = N(a + bi) = a2 + b2, where (a + bi) is
defined as the principal ideal (a+ bi)Z[i]. The sum over all non-zero ideals of OK then
becomes a sum over all ideals (a+ bi) for a > 0 or b > 0. Therefore we find the Dedekind
zeta function

ζK(s) =
∑
a

1

N(a)s
=

∑
a,b≥0

a>0 or b>0

1

(a2 + b2)s
.

We now return to an arbitrary number field K. The Dedekind zeta function converges
absolutely and uniformly for <(s) ≥ 1 + δ for every δ > 0 [4, Proposition 5.2], and may
be analytically continued to C \ {1} [4, Corollary 5.11]. The Dedekind zeta function can
be related to the class number using the following formula.

Theorem 3.24 (Class number formula [4, Corollary 5.11]). We have

Ress=1 ζK(s) =
2r1(2π)r2hR

w
√
|d|

,

where r1 and r2 are the number of real and complex embeddings of K respectively, h is
the class number, R is the regulator, w is the number of roots of unity in K, and d is the
discriminant.

The value Ress=1 ζK(s) is related to the special values L(1, χ) of the Dirichlet L-series.
To do this, we first need to associate Dirichlet characters with number fields.

Definition 3.25 (Associated field). Let X be a finite group of Dirichlet characters
under multiplication. Let n be the least common multiple of the conductors of the
characters in X, and consider each character mod n. Then ∩χ∈X kerχ is a subgroup of
(Z/nZ)∗ ∼= Gal(Q(ζn)/Q). The fundamental theorem of Galois theory guarantees that
this subgroup corresponds to a number field K [8, Theorem 2.8.8]. We call K the field
associated with X.
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The following theorem uses the associated field to connect ζK and the Dirichlet L-series.

Theorem 3.26 (Theorem 4.3 of [6]). Let X be a group of Dirichlet characters, K the
associated field, and ζK(s) the Dedekind zeta function of K. Then

ζK(s) =
∏
χ∈X

L(s, χ).

We can connect the special values L(1, χ) to the class number formula using Theo-
rem 3.26 [6, p.38]. For χ0 the principal character, L(1, χ0) = ζ(s) has a simple pole at
s = 1 with residue 1. Combined with Theorem 3.26 and Theorem 3.24, this gives∏

χ∈X\{χ0}

L(1, χ) =
2r1(2π)r2hR

w
√
|d|

,

We may also consider the special case where the number field K is a cyclotomic field. In
that case we have the following result.

Theorem 3.27 (Ch.1 Proposition 5.12 of [4]). Let K = Q(ζ) where ζ is a primitive n-th
root of unity. We have

ζK(s) = G(s)
∏
χ

L(s, χ)

where χ varies over all characters mod m and

G(s) :=
∏
p|m

(1−N(p)−s)
−1

where p | m if and only if mOK ⊆ p.
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4. Transforming generators to short
generators

Cramer et al. have examined a specific lattice problem, and propose an algorithm designed
to solve this problem efficiently on a quantum computer. The algorithm is used to find
short generators of principal ideals in certain cyclotomic rings. To define shortness, we
need some notion of length in the number field. For this reason, the elements will be
embedded in Rn in a way similar to Section 3.1.1, and use the (Euclidian) norm on this
space. Furthermore, it should be noted that principal ideals are understood as principal
fractional ideals (see Section 2.3) of the form gOK for a generator g ∈ K. In this chapter,
the number field K will be a cyclotomic field Q(ζ), where ζ is a primitive m-th root of
unity for prime-power m = pk.

4.1. The algorithm

Cramer et al. put forth an algorithm meant for efficiently finding the short generator of
a principal ideal, given that one exists [1]. This last part is rather important, and
distinguishes the problem from its more general counterpart. Formally, the Short
Generator of a Principal Ideal Problem, abbreviated SG-PIP is described as follows:
given a Z-basis of an ideal guaranteed to have a short generator, find any shortest
generator of that ideal. As mentioned in [1], this problem is usually broken down in two
parts: finding any generator of the ideal — usually named the Principal Ideal Problem
(PIP) — and transforming this generator to a short generator. Cramer et al. take on the
latter.

First of all, we give a more precise definition to the length of a generator. We
represent elements of K by real vectors by considering complex embeddings of K (see
Definition 2.16). As K is a cyclotomic field, it has no real embeddings. The complex
embeddings come in pairs: if τ is an embedding, so is τ , defined by τ(a) = τ(a) for
a ∈ K. For this reason we define G = (Z/mZ)∗/{±1}, considering only one conjugate
embedding from each pair. We identify G with {1, . . . , φ(m)/2}. The number field K is
now embedded in Rφ(m)/2 using the map

Log : K∗ → Rφ(m)/2, a 7→ (log |σi(a)|)i∈G. (4.1)

Restricting this map to O∗K and applying Dirichlet’s Unit Theorem (see Theorem 3.2),
we find that Λ = Log(O∗K) is a lattice in Rφ(m)/2 of rank φ(m)/2− 1.

Remark 4.1. As a cyclotomic field has no real embeddings, we have Log = 1
2λ, where λ

is defined as in (3.1). It then follows from Lemma 3.5 that Λ is orthogonal to the all-ones
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vector. We shall refer to Λ as the log-unit lattice. It is nearly equal to the previously
defined log-unit lattice (see Definition 3.4), just scaled with factor 1/2.

We need the notion of cyclotomic units to properly state the algorithm. Recall we
identified G with {1, . . . , φ(m)/2}.

Definition 4.2 (Cyclotomic units). Define the cyclotomic generators by

bj :=
ζj − 1

ζ − 1
, j ∈ G \ {1}.

Elements of the group generated by the cyclotomic generators and ±ζ are called cyclotomic
units. The group of cyclotomic units is denoted by C.

We now generally describe the algorithm presented by Cramer et al.

Theorem 4.3. Consider a generator g′ = gu for a short generator g ∈ K and a
cyclotomic unit u. There exists an efficient algorithm that given g′ finds g with some
probability at least α > 0, where α is independent of the input generator and unit.

Before discussing the details of the algorithm, we elaborate on the requirement g′ = gu.
When transforming a generator g to another generator g′, we need to make sure they
produce the same ideal, i.e. gOK = g′OK . If gOK = g′OK , we may write g = g′a and
g′ = gb for some a, b ∈ OK . Substituting these equations yields g = gba and g′ = g′ab.
As there are no zero divisors in a (cyclotomic) field, we find that g = g′ = 0 or that a, b
are units of OK . The ideal (0) has only one element, and therefore only one generator,
allowing us to claim the following.

Lemma 4.4. If g and g′ are generators of the same principal ideal, then g′ = gu for
some unit u ∈ O∗K .

Remark 4.5. Lemma 4.4 shows that g′ = gu for a unit u ∈ O∗K , while Theorem 4.3
considers a cyclotomic unit u ∈ C ⊆ O∗K . However, the algorithm can be extended to
cover the general case u ∈ O∗K [1, p.11].

Applying Log to both sides of the equation g′ = gu, we get Log(g′) = Log(g) + Log(u).
We define bj := Log(bj) for j ∈ G \ {1}. The vectors bj form a basis of the sublattice
Log(C) of the log-unit lattice. To find Log(u) and reconstruct g, we can use CVP (see
Section 2.2). By definition of CVP (see Section 2.2), we have a target t ∈ Rn, and a
lattice L ⊆ Rn with basis B. We must find the vector v such that

‖v − t‖ = min
x∈L
‖x− t‖.

In this case we have t = Log(g′), L = Log(C), v = Log(u) and the basis B =
{b2, . . . ,bφ(m)/2}. An approach to solving CVP is Babai’s rounding algorithm, of which
we will provide a proof of correctness. To describe it, we must first define dual bases.
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Definition 4.6. Let B = {α1, . . . , αn} be a basis of Rn. Then the basis B∨ =
{α∨1 , . . . , α∨n} satisfying 〈α∨i , αj〉 = δij is called the dual basis of B, where δ is the
Kronecker delta function and 〈·, ·〉 is the standard inner product on Rn. By abuse of
notation, we also write B∨ for the matrix [α∨1 | · · · | α∨n ] where we consider the dual basis
vectors as column vectors in Rn.

We will describe Babai’s rounding algorithm to solve CVP under certain conditions.

Definition 4.7 (Babai’s rounding algorithm). Given a lattice basis B ⊂ Rn and a target
t ∈ Rn, return B · b(B∨)T · te, where b·e denotes element-wise rounding to the nearest
integer.

The algorithm does not necessarily output the right vector for any target and basis.
We specify a set of conditions such that Babai’s rounding algorithm outputs the right
vector, and prove correctness of the algorithm under these conditions.

Lemma 4.8 (Claim 2.1 of [1]). Let L ⊂ Rn be a lattice with basis B = {α1, . . . , αm},
and let t = v + e ∈ Rn for some v ∈ L, e ∈ Rn. If −1

2 ≤ 〈α
∨
j , e〉 < 1

2 for all j, then on
input t and basis B, Babai’s rounding algorithm outputs v.

Proof. As v ∈ L, we know v = Bz for an integer vector z. Then (B∨)T · t = z+ (B∨)T · e
as (B∨)TB = I. Note that

(B∨)
T · e =

〈α
∨
1 , e〉
...

〈α∨m, e〉

 ,

so b(B∨)T · te = z as the assumption on 〈α∨j , e〉 ensures correct rounding. Then

v = Bz = B · b(B∨)
T · te

shows that Babai’s rounding algorithm outputs v.

In our specific case, we must have |〈b∨j ,Log(g)〉| < 1
2 . Clearly this bound depends on

the norm of the dual basis vectors b∨j . For the next theorem, recall that we are working
in the number field Q(ζ), where m is the order of ζ.

Theorem 4.9 (Theorem 3.1 of [1]). Let m = pk for a prime p, and let {b∨j }j∈G\{1}
denote the basis dual to {bj}j∈G\{1}. Then all ‖b∨j ‖ are equal, and

‖b∨j ‖
2

= O(m−1 · log3m).

We can now state the algorithm in full.
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Data: A generator g′ = gu for some short generator g and cyclotomic unit u
Result: A short generator of gOK of the form ±ζjg
Apply Babai’s rounding algorithm to Log(g′) with basis bj for j ∈ G \ {1} and
name the output v.

Find integer coefficients such that v =
∑
ajbj .

Compute u′ =
∏
b
aj
j .

Output g′/u′.

Algorithm 2: An algorithm to transform an arbitrary generator to a short genera-
tor [1, Theorem 4.1].

An implementation of Algorithm 2 in Python can be found in Appendix A. It is important
to note that the output of the algorithm is not necessarily correct for any input g′ = gu.
However, sampling g using a certain probability measure ensures the algorithm succeeds
with some non-zero probability, as stated in the following theorem.

Theorem 4.10 (Theorem 4.1 of [1]). There exists a constant c > 0 such that the
following property holds. Let D be a probability measure over Q(ζ) such that for any
tuple of vectors v1, . . . , vφ(m)/2−1 ∈ Rφ(m)/2 of Euclidean norm 1 that are orthogonal to

the all-ones vector, the probability that |〈Log(g), vi〉| < c
√
m · (logm)−3/2 holds for all i is

at least some α > 0. If we choose g from D and let u be a cyclotomic unit, Algorithm 2
succeeds with probability at least α.

Proof. The algorithm applies the rounding algorithm from Definition 4.7 to Log(g′) =
Log(g) + Log(u), using the vectors bj as the basis. By the assumption on D and
Theorem 4.9, with probability at least α the output is Log(u) ∈ Log(C). We next
find integer coefficients aj such that Log(u) =

∑
ajbj , and compute u′ =

∏
b
aj
j . Since

Log(u′) = Log(u) it follows that u′ must be of the form ±ζju for some sign and some j.
Therefore, g′/u′ is the desired element.

4.2. Implementing the algorithm

Algorithm 2 can be used to find a short generator of a principal ideal, when an arbitrary
generator is known. In this section, an implementation of the algorithm is discussed. The
corresponding code can be found in Appendix A. Any references to line numbers refer to
Appendix A too.

Recall that we are working in the number field Q(ζ), where ζ is a primitive m-th root
of unity. Note that we must be able to calculate the embedding of number field elements
as described in (4.1) To do this computation, all embeddings of an element are kept track
of during the entire execution. For example, consider line 21, where ζ is defined. In the
code, it is an array of embeddings of the form (σi(ζ))i∈G, similar to (4.1). The function
log embed in line 14–15 then computes the map

(σi(a))i∈G → (log |σi(a)|)i∈G = Log(a).
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As σi is a homomorphism, we can first embed an element, and then perform computations
on it. This order of operations ensures that we only need to know the image of the
embedding for a select number of elements — in our case just the image of ζ.

Let us now turn our attention to the constants defined in line 17–26. First of all,
note that m in line 17 is the order of ζ. In line 18–20, (Z/mZ)∗, φ(m) and G =
(Z/mZ)∗∩{1, . . . , φ(m)/2−1} are calculated. We define the generators of the cyclotomic
units, variable b in line 23. Mathematically, these generators are defined as

bj =
ζj − 1

ζ − 1
for j ∈ G \ {1}.

Note that as we are keeping track of embeddings using arrays, the variable b is a two-
dimensional array. Lemma 4.4 shows that generators of the same principal ideal differ by
a unit. In this program, this unit is fixed and defined as u = b2 in line 24. Finally, we
embed the cyclotomic generators, yielding the basis B in line 25, and compute its dual
basis B∨, the variable D in line 26.

The main loop of the program consists of randomly drawing a generator g from Q(ζ),
calculating g′ = gu, and trying to retrieve a short generator by running the algorithm. It
runs 10000 times, and the frequency of success is output on termination. The generator
g is drawn by calculating

g =

φ(m)−1∑
i=0

aiζ
i,

where ai is randomly sampled from a standard Gaussian distribution (µ = 0, σ = 1).
This calculation is performed in line 28–30, and called in line 39. Sampling is done in
line 38. Algorithm 2 runs in line 42–45. Babai’s algorithm can be found in line 42 of the
program, calculating

uguess = B · b(B∨)
T · g′e.

Line 43 is used to find integer coefficients such that uguess =
∑

j∈G ajbj . Finally, we

calculate u′ =
∏
j∈G b

aj
j and gguess = g′/u′. The resulting element g′ is the output of the

algorithm, and according to Theorem 4.10, a short generator with some probability. Note
that u′ is a cyclotomic unit, and thus g′/u′ and g generate the same ideal. Therefore we
only need to verify that gguess is indeed short.

4.3. Numerical results

In this section, we share some numerical results from Algorithm 2 as implemented in
Appendix A. Recall that we are working in the cyclotomic field K = Q(ζ), where ζ is a
primitive m-th root of unity for m = pk for p prime and k ∈ N. For a fixed cyclotomic unit,
we consider every prime-power m such that 5 ≤ m < 256, and retrieve the percentage of
cases where the algorithm successfully finds a short generator. A scatter plot showing
the resulting data can be found in Figure 4.1. The data does not appear to change when
considering either u = b2 or u = b3. It is interesting to note that the success rate rapidly
goes to 100% for prime m. Even for non-prime m, the success rate appears to rise for
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larger m. The precise relation between m and the success rate may be interesting for
further research.

(a) Fixed cyclotomic unit u = b2. Raw data can
be found in Table B.1.

(b) Fixed cyclotomic unit u = b3. Raw data can
be found in Table B.2.

Figure 4.1.: The success rate of Algorithm 2 implemented as in Appendix A when varying
the order m = pk of the root of unity ζ.

4.4. Soliloquy

Soliloquy is a key-encapsulation mechanism, developed as a possibly quantum-resistant
protocol [2]. A key-encapsulation mechanism is similar to a public-key encryption scheme
(see Definition 2.2). Instead of encrypting messages, a key is encrypted using the scheme
and sent to the other party. This shared secret key may then be used for further secure
communication. Soliloquy has since been shown [2, 9] to be insecure. In particular, the
scheme is vulnerable to a key-recovery attack using a quantum algorithm and Algorithm 2.
In this section, we shall first define what the scheme is, and show how it may be used
to encrypt and decrypt messages. Similar to Chapter 4, we consider the number field
K = Q(ζ), where ζ is a primitive n-th root of unity for prime n. Recall that K = Q(ζ)
has ring of integers OK = Z[ζ].

The description of Soliloquy in this section follows [2]. First of all, we define the key
generation algorithm. For i ∈ {1, . . . , n}, let ai be sampled independently from a discrete
Gaussian distribution of mean 0 and width σ. We construct

α :=
n∑
i=1

aiζ
i ∈ OK . (4.2)

and define
p :=

∏
σ

σ(α),

33



where σ ranges over all embeddings K → C. To be a valid Soliloquy key, p must be
prime and satisfy

c := 2(p−1)/n 6= 1 mod p. (4.3)

If these conditions are not satisfied, the coefficients are resampled. Condition (4.3) ensures
that c is a non-trivial n-th root of unity. Most importantly, the Dedekind–Kummer
theorem [10, Theorem B] states that we have the equation

αO = pO + (ζ − c)O.

The private and public key are given by the element α and p respectively. Having defined
the key, we turn our attention to encapsulating message. We generate a small element

ε :=
n∑
i=1

eiζ
i ∈ OK

by sampling the coefficients ei from a discrete Gaussian of mean 0 and width σ′. This
element ε is then encapsulated by computing

z :=

n∑
i=1

eic
i mod p

and considering it as an integer 0 ≤ z < p in OK . Essentially, we compute z := ε
mod αOK . This means that z − ε = 0 mod αOK . We may actually view finding ε as
an instance of CVP (see Section 2.2), as non-zero ideals form lattices when embedded [4,
Ch.1 Proposition 5.2] The receiver knows a relatively short generator α for the ideal, and
may use the basis defined by the cyclic matrix

a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a2 a3 · · · a0 a1

a1 a2 · · · an−1 a0

 ,

where the ai denote the coefficients from (4.2). As α is relatively small, this is a good
enough basis to use Babai’s rounding algorithm to solve CVP, revealing ε.

Next, we shall discuss the key-recovery attack on Soliloquy. Note that p, n, ζ and
c are public, allowing an attacker to compute the ideal αO = pO + (ζ − c)O. As the
ideal αO is known to the attacker, recovering the private key α has been reduced to
solving SG-PIP for the ideal αO. There exists a technique to efficiently find an arbitrary
generator using a quantum computer [9]. Finally, Algorithm 2 may be used to efficiently
transform the arbitrary generator to a short generator, revealing the private key.
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5. Conclusion

Cryptography is an important part of secure communication, and our current methods
are threatened by the advent of the quantum computer. This thesis looks into an attack
on cryptographic schemes relying on the SG-PIP problem (see Section 4.1). Furthermore,
interesting results in algebraic number theory are explored.

In Chapter 2, we define public-key encryption schemes and one notion of security for
such schemes. We note that schemes cannot be considered secure when vulnerable to
key-recovery attacks, as is the case with Soliloquy, which is discussed in Section 4.4.
We define lattices, which are considered as a possible foundation for post-quantum
cryptography. In particular, the shortest vector problem (SVP) and the closest vector
problem (CVP) are described. Furthermore we outline some basic algebraic number
theory, which is required for analysis of the algorithm and further mathematical results.

We discuss mathematical results from algebraic number theory in Chapter 3. First of
all, we define how number fields may be embedded into Rn. Using this embedding, we
define the log-unit lattice, which explicitly connects number fields and cryptography on
lattices. Furthermore, the Riemann zeta function and the more general Dirichlet L-series
are discussed. Convergence and analytic continuations are discussed in Section 3.2.4. We
show the Riemann zeta function may be written in terms of all primes numbers, and
note that a similar result holds for the Dirichlet L-series. Lastly, we discuss the class
number formula and its relation to the special values L(1, χ).

In Chapter 4, we discuss an algorithm presented by Cramer et al. for transforming
generators of fractional principal ideals. The details of the algorithm are explained in
Section 4.1 We implement the algorithm and show the results in Sections 4.2 and 4.3.
Our results show that the success rate grows quickly as the order of the cyclotomic field
increases. An analysis showing why this is the case could be a topic for further research.
Finally we discuss Soliloquy, a particular cryptographic scheme which is vulnerable to a
key-recovery attack as it relies on SG-PIP.
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Populaire samenvatting

Cryptografie is zeer belangrijk in onze moderne wereld, maar toch vaak onzichtbaar. Dage-
lijks gebruikt iedereen vele malen toepassingen van cryptografie voor verschillende vormen
van veilige en confidentiële communicatie. Berichten die via bijvoorbeeld Whatsapp of
Signal verstuurd worden, zijn versleuteld en dus onleesbaar voor iedereen behalve zender
en ontvanger. Ook zorgt cryptografie ervoor dat we veilig kunnen internetbankieren en
helpt het computers te beschermen tegen bepaalde aanvallen door de identiteit van de
andere partij te verifiëren. Kortom, zonder cryptografie zou onze communicatie een stuk
minder veilig verlopen.

Public-key cryptografie

We zullen hier kort het principe van public-key cryptografie weergeven, wat bijvoorbeeld
gebruikt wordt bij het surfen op het internet. In dit geval hebben we een persoon A die
een bericht probeert te sturen naar persoon B. Er is echter een derde persoon E, die
de communicatie afluistert. Deze situatie is geschetst in Figuur P1. Van tevoren heeft

A B

E

Figuur P1.: De setting van public-key cryptografie. Persoon A stuurt een bericht naar
persoon B, terwijl E de communicatie onderschept.

persoon B al een paar sleutels gegenereerd: de public key pk en de secret key sk. Alleen
persoon B heeft de secret key, maar iedereen heeft de public key. Persoon A versleutelt

A
pk van B

B
pk, sk

E
pk van B

Figuur P2.: De setting van public-key cryptografie (zie Figuur P1) waar de sleutels zijn
aangegeven.

een bericht met de public key, en stuurt het versleutelde bericht naar B. Dit versleutelde
bericht kan nu alleen met de secret key ontsleuteld worden, dus persoon E kan de inhoud
van het bericht niet zien. Als het bericht bij B is aangekomen, kan deze het bericht met
de secret key ontsleutelen.
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RSA

Een concreet voorbeeld van een dergelijk schema is RSA, waarvan we een versimpeld
voorbeeld zullen laten zien. Hiervoor hebben we het concept van modulo rekenen nodig,
wat we kunnen vergelijken met uren op de klok. Om 14:00 is het twee uur, en om 15:00
is het drie uur. Wat we hier wiskundig doen, is 12 aftrekken van het getal totdat we een
getal tussen 0 en 11 krijgen. We schrijven 14 mod 12 = 2 en 15 mod 12 = 3. Natuurlijk
kunnen we dit ook voor andere getallen dan 12 doen, bijvoorbeeld 11 mod 7 = 4 en 17
mod 7 = 3.

We beschrijven vervolgens de werking van RSA. persoon B genereert getallen N, e, d
die aan bepaalde voorwaarden voldoen. De public key bestaat uit de getallen N en e, dus
deze zijn bij iedereen bekend. Alleen persoon B heeft naast N en e ook de secret key d.

Als een voorbeeld nemen we N = 77, e = 13, d = 37. We kunnen op deze manier alleen
getallen versturen, maar met uitgebreidere technieken kunnen we ook tekst versturen. Per-
soon A versleutelt het bericht m = 5 door c = me mod N = 513 mod 77 = 1220703125
mod 77 = 26 uit te rekenen. Vervolgens stuurt A het versleutelde bericht c = 26 naar
B. Tenslotte ontsleutelt B het bericht door m = cd mod N = 2637 mod 77 = 5 uit te
rekenen. Op deze manier ontvangt B het bericht van A, zonder dat E het heeft kunnen
lezen.

De scriptie

Quantumcomputers kunnen RSA en soortgelijke constructies eenvoudig kraken. Hoewel
er op dit moment nog geen voldoende grote quantumcomputers zijn om dit daadwerkelijk
te doen, is het wel van belang nieuwe cryptografie te ontwikkelen die toekomstbestendig
is. Een van de mogelijkheden is de zogenaamde lattice-based cryptografie. In deze scriptie
laten we een algoritme zien dat ook bepaalde lattice-based cryptografie kan kraken door de
secret key te berekenen. Zo kan iedereen de versleutelde berichten weer ontsleutelen, dus
is het systeem niet veilig. Verder wordt de wiskundige achtergrond van deze cryptografie
besproken, de algebräısche getaltheorie. Ook worden een aantal andere resultaten uit de
algebräısche getaltheorie besproken.
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A. Code

1 #! /usr / bin /env python3
2 from f r a c t i o n s import gcd
3 from random import gauss
4 import numpy as np
5 import numpy . l i n a l g
6
7 def na iveEuler (n ) :
8 e lements = np . empty (0 )
9 for x in range (1 , n ) :

10 i f gcd (x , n) == 1 :
11 e lements = np . append ( elements , x )
12 return e lements
13
14 def log embed ( e l ) :
15 return np . l og (np . abs ( e l ) )
16
17 m = 125 #The order o f the p r im i t i v e root o f un i ty
18 e lements = naiveEule r (m)
19 phi m = len ( e lements )
20 G = elements [ : int ( phi m / 2 ) ]
21 zeta = np . power (np . exp (2 j ∗ np . p i / m) , G)
22 # genera tors cyc lo tomic uni ts , f i r s t coord inate i s j , second i s embedding
23 b = (np . power ( zeta , G [ 1 : ] . reshape ( ( len (G)−1 ,1))) − 1)/( ze ta − 1)
24 u = b [ 0 ] # b [ 0 ] = b 2 , b [ 1 ] = b 3
25 B = log embed (b .T)
26 D = np . matmul (B, np . l i n a l g . inv (np . matmul (B.T, B) ) ) #Dual b a s i s
27
28 def c o e f t o e l ( c o e f l i s t ) :
29 return np . matmul ( c o e f l i s t ,
30 np . power ( zeta , np . arange (0 , phi m ) . reshape ( ( phi m , 1 ) ) ) )
31
32 count = 0
33 num it = 10000
34 for i t e r a t i o n in range ( num it ) :
35 i f i t e r a t i o n % ( num it /10) == 0 :
36 print ( i t e r a t i o n )
37 #Calcu la t e a l i n e a r combination with random c o e f f i c i e n t s
38 rand = [ gauss (0 , 1 ) for in range ( phi m ) ]
39 g = c o e f t o e l ( rand )
40 gprime = g ∗ u
41 #Use Babai ’ s a l gor i thm to f i nd Log (u) and cons t ruc t shor t generator
42 l og u = np . matmul (B, np . around (np . matmul (D.T, log embed ( gprime ) ) ) )
43 a = np . round(np . l i n a l g . l s t s q (B, l og u ) [ 0 ] )
44 uprime = np . prod (np . power (b , a . reshape ( ( len ( a ) , 1 ) ) ) , a x i s =0)
45 g gues s = gprime / uprime
46 i f np . l i n a l g . norm( log embed ( g ) − log embed ( g gue s s ) ) < 1e−12:
47 count += 1
48 print ( ’ Success r a t e : {}% ’ . format ( count / num it ∗ 100))
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B. Data

Order of ζ Success (%)

8 70.37

16 52.74

32 44.76

64 47.69

128 63.20

256 86.13

9 48.45

27 32.74

81 40.22

243 79.87

5 48.02

25 26.90

125 49.53

7 35.83

49 28.25

11 31.47

121 62.19

17 33.50

19 34.89

23 38.64

29 44.94

31 47.32

Order of ζ Success (%)

37 52.35

41 57.65

43 56.63

47 55.75

53 67.16

59 64.38

61 69.88

67 74.77

71 79.25

73 76.66

79 85.44

83 85.83

89 88.48

97 91.87

101 90.82

103 92.49

107 92.86

109 93.87

113 95.42

127 97.15

131 97.60

137 98.29

Order of ζ Success (%)

139 98.30

149 98.50

151 98.84

157 99.03

163 99.38

167 99.31

173 99.68

179 99.49

181 99.62

191 99.78

193 99.78

197 99.85

199 99.86

211 99.93

223 99.94

227 99.94

229 99.95

233 99.98

239 99.97

241 99.98

251 99.98

Table B.1.: Data retrieved as explained in Section 4.3, using the fixed cyclotomic unit b2.
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Order of ζ Success (%)

16 53.74

32 44.42

64 48.29

128 62.80

256 86.21

9 49.33

27 32.64

81 40.20

243 80.35

25 25.49

125 48.75

49 29.91

11 30.61

121 61.63

17 33.52

19 35.81

23 38.45

29 45.12

31 47.20

37 52.69

41 57.72

Order of ζ Success (%)

43 56.53

47 55.50

53 68.07

59 64.19

61 70.52

67 74.72

71 78.61

73 76.06

79 85.75

83 86.51

89 87.74

97 92.03

101 91.35

103 92.35

107 92.81

109 93.18

113 95.77

127 97.15

131 97.82

137 98.17

139 98.31

Order of ζ Success (%)

149 98.54

151 98.60

157 98.93

163 99.44

167 99.23

173 99.67

179 99.57

181 99.71

191 99.80

193 99.80

197 99.81

199 99.84

211 99.92

223 99.95

227 99.96

229 99.97

233 99.96

239 99.99

241 99.95

251 100.0

Table B.2.: Data retrieved as explained in Section 4.3, using the fixed cyclotomic unit b3.
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