Towards Truly Boolean Arrays
in Data-Parallel Array Processing

Clemens GRELCK #, Hraban LUYAT #

& Computer Systems Architecture Group
University of Amsterdam
Amsterdam, Netherlands

Abstract. Booleans are the most basic values in computing. Machines, however,
store Booleans in larger compounds such as bytes or integers due to limitations in
addressing memory locations. For individual values the relative waste of memory
capacity is huge, but the absolute waste is negligible. The latter radically changes if
large numbers of Boolean values are processed in (multidimensional) arrays. Most
programming languages, however, only provide sparse implementations of Boolean
arrays, thus wasting large quantities of memory and potentially making poor use of
cache hierarchies.

In the context of the functional data-parallel array programming language SAC
we investigate dense implementations of Boolean arrays and compare their per-
formance with traditional sparse implementations. A particular challenge arises
in data-parallel execution on today’s shared memory multi-core architectures:
scheduling of loops over Boolean arrays is unaware of the non-standard addressing
of dense Boolean arrays. We discuss our proposed solution and report on experi-
ments analysing the impact of the runtime representation of Boolean arrays both
on sequential performance as well as on scalability using up to 32 cores of a large
ccNUMA multi-core system.

Keywords. Boolean arrays, data parallelism, ccNUMA architectures, functional
array programming, automatic parallelisation

1. Introduction

Booleans are the most basic values in computing, and as such in one way or another
supported by any programming language. Surprisingly, at least from a conceptual point
of view, this does not hold for arrays of Boolean values. In almost all programming
languages Booleans effectively require more than one bit for representation. While this is
largely irrelevant for individual values, it does make a crucial difference for large arrays
of Boolean values if the required storage grows by a factor of 8 or 32. For example, in
the latest C standard the (new) built-in type _Bool requires 8 bits storage; a single bit in
a bit structure requires 32 bit storage.

Inefficient storage of Boolean arrays has a secondary adverse effect on runtime per-
formance: relevant information is sparsely scattered across memory. This results in low
data locality, inefficient utilisation of cache hierarchies, and thus poor performance on
modern ccNUMA systems. The situation is, of course, not without reason. Since the
early days of computing memory cannot be addressed on the level of bits, but at best at

the level of bytes. Actual memory transfers are usually organised in even much coarser
grained units, so-called cache lines.

Despite the lack of support in many modern programming languages, Boolean arrays
do have countless applications in areas such as image and signal processing, text and
image compression/decompression, etc.

In this paper we propose a dense memory representation of Boolean arrays. We cir-
cumvent the limitations of computer hardware, as described above, by a double-layered
indexing scheme when reading elements from or writing elements to a Boolean array.
First, we extract the corresponding byte or double word (configurable) from memory,
then we read or set the individual bit by means of bit-wise logic operations, and if needed
write the entire byte or double word back to memory. This implementation makes a trade-
off between the negative performance effect of double-layered indexing and the positive
effect of improved cache utilisation. In the presence of an ever-growing disparity between
memory speed and processor speed we speculate on a net gain in many scenarios.

We investigate the effect of dense vs sparse representation of Boolean arrays in the
context of the functional data-parallel array language SAC (Single Assignment C, [6,3]).
SAC combines a purely functional, state-free semantics with a C-like syntax and high-
level support for multi-dimensional stateless arrays; it aims at reconciling high program-
ming productivity with competitive performance in the age of multi- and many-core com-
puting through fully compiler-directed parallelisation [2,7,1]. A number of case studies
demonstrate the effectiveness of the approach [8,4,9].

The need for parallel execution on any modern computing platform substantially
complicates the efficient implementation of densely stored Boolean arrays. In SAC, just
as in any other shared memory data parallel approach (e.g. OpenMP), a loop scheduler in
one way or another distributes iterations over compute cores. It does so regardless of the
base type, and thus it becomes likely that the boundary between loop indices computed
by one core and those computed by another core falls within a byte or double word used
for compact storage of Boolean element values. We investigate two different approaches
to deal with this situation.

2. Introducing SAC

Core SAC is a functional, side-effect free variant of C: we interpret assignment se-
quences as nested let-expressions, branches as conditional expressions and loops as syn-
tactic sugar for tail-end recursive functions. Despite the radically different underlying
execution model (context-free substitution of expressions vs. step-wise manipulation of
global state), all language constructs adopted from C show exactly the same operational
behaviour as expected by imperative programmers. Our choice of syntax is meant to fa-
cilitate adoption of SAC by programmers with an imperative background while the SAC
compiler can exploit the benefits of a side-effect free semantics for advanced optimisa-
tion and automatic parallelisation.

On top of this language kernel SAC provides genuine support for truly multidimen-
sional arrays promoting a shape-generic style of programming. Arrays are truly state-
less/functional and as such array values may be passed as arguments or results of func-
tions without restrictions. SAC only provides a small set of built-in array operations. Es-
sentially, these are primitives to retrieve data pertaining to the structure and contents of

arrays, e.g. an array’s rank (dim (array)) or its shape (shape (array)). Any multidi-
mensional array is characterised by its rank scalar, that determines the array’s number
of dimensions (or axes) and the shape vector, which determines the extent of the arry
along each dimension (or axis). Thus, the rank of an array defines the length of its shape
vector, and the product of all elements of the shape vector yields the array’s number of
element. A selection facility provides access to individual elements or entire subarrays
using a familiar square bracket notation: array [idxvec]. All aggregate array operations
are specified using WITH-loop expressions, a SAC-specific array comprehension:

with {
(lower_bound <= idxvec < upper_bound) : expr;

(lower_bound <= idxvec < upper_bound) : expr;
}: genarray (shape, default)

The key word genarray makes this with-loop define an array whose shape is given
by the shape expression and whose elements default to the value of the default
expression. The body consists of multiple (disjoint) partitions. Here, lower_bound and
upper_bound denote expressions that must evaluate to integer vectors of equal length.
They define a rectangular (generally multidimensional) index set. The identifier idxvec
represents elements of this set, similar to induction variables in for-loops. We call the
specification of such an index set a generator and associate it with some potentially
complex SAC expression. Thus, we define a mapping between index vectors and values,
in other words an array. We deliberately use index sets, which make any with-loop expose
fine-grained concurrency and thus the ideal basis for parallelisation.

There are several variants of with-loops, among others for the specification of reduc-
tion operations. Furthermore, generators are not confined to dense rectangular spaces,
but are generalised to cover various forms of periodic patterns. As a consequence, a sin-
gle with-loop generally defines a fairly complex aggregate multi-dimensional array op-
eration. Aggressive optimisation with the aim to condense many light-weight with-loops
into few heavy-weight ones typically lead to non-trivial iteration spaces [5].

3. Implementation

For the implementation of dense Boolean arrays we can focus ourselves on three array
operations: allocation of memory suitable to hold a new array value, reading an element
of an array at a given index and writing a new given value at a given index of some array.
These three operations are well encapsulated in the code generator of the SAC compiler
limiting the necessary implementation effort.

—

contype xbamalloc(shp)

{

H‘vsr‘pl*lshpv
return (con_-type =) malloc(\conlztoypel "* 5) ;

}

Figure 1. Allocation procedure for dense bit arrays

Fig. 1 shows a pseudo C implementation of the array allocation operation. As only
argument ba_malloc receives the shape of the new array value; it yields a pointer to
a sufficiently sized chunk of contiguous address space cast to the chosen container type
that hosts a number of Boolean values. For the purpose of experimentation we abstract
from the concrete container type; any (unsigned) integer type can be used here. Of course,
the C language requires us to choose a concrete container type at compile time.

As pointed out in Section 2, the number of elements of a multidimensional array
equals the product of the elements of the shape vector. Since every container element
holds a number of Boolean values, we divide the number of array elements by the size of
the container type in bits. We use bars to denote the C sizeof operator, that gives the
size of some type in bytes. As we use bits, we further multiply the size of the container
type by 8.

Since the concrete container type is fixed at compile time, its size is available to
the compiler. Assuming that the size of any suitable container type is a power of two
bytes, any optimising compiler should manage to replace the costly division operation
by a corresponding cheap bit shift operation. For the sake of readability we refrain from
manually applying such optimisations to this and the following pseudo codes.

bool xba_read/(icia:, arr)

{

ravel_idx = Zy:dgl*l (idx; = H“dzl*l shape (arr) ;);

Jj=i+1
outer_idx = ravel_idx (| con_-type| = 8);
inner_idx = ravel_idx % (|con_-type| =* 8);
return !! (arr[outer_idx] & (1 << inner_idx));

Figure 2. Read operation for dense bit arrays

Fig. 2 shows our implementation of the dense bit array read operation in pseudo C
code. The ba_read operation receives an index vector and a multidimensional array and
it yields a Boolean value, more precisely zero or one. First, we determine the ravel index,
i.e. the scalar index into flat contiguous address space that is equivalent to the index vec-
tor into the given multidimensional array, following the well known Horner scheme. This
ravel index is then divided into an outer index specifying the index of the corresponding
container element and the inner index that defines the bit address within the container el-
ement. Next, we compute a suitable mask by shifting the number 1 as many bit positions
left as prescribed by the inner index. Then, we compute the bit-wise conjunction of the
container element and the mask and, thus, extract the Individual Boolean value. At last,
the double exclamation mark operator normalises the value to O (false) or 1 (true).

The third and last bit array operation, bit write, is shown in Fig. 3. We follow the
example of ba_read and first compute ravel, outer and inner index in the same way as
before. The further procedure, however, depends on the given Boolean value. If the value
is t rue, we compute the same bit mask as in the read operation, but this time we set the
container element to the bit-wise disjunction of the previous element and the mask. This
sets the indexed bit value to t rue and leaves all other bits in the container unchanged. If
the given value is false, we invert the mask and then compute set the container to the
bit-wise conjunction of the previous value and the inverted mask. This sets the indexed
bit to false and leaves all other bits in the container unchanged.

void ba.write (in, arr, wval)

{

ravel_idx = Zlfgl_l (idw; * H‘jiﬂr_ll shape (arr) ;);
outer_idx = ravel_idx (|con_type| * 8);
inner_ idx = ravel_idx % (|con_type| x 8);

if (val) {

arr[outer_idx] |= 1 << inner_idx);

} else {

arr[outer_idx] &= - (1 << inner_idx);

}
}

Figure 3. Write operation for dense bit arrays

Array programming naturally lends itself to multi-core and many-core architectures.
Consequently, SAC is first and foremost a data-parallel language. The obvious basis for
(data-)parallel program execution are the with-loops introduced in Section 2. Usually the
number of concurrently computable indices in a multidimensional index space by several
orders of magnitude exceeds the available number of cores. Thus, an index scheduler
(often called loop scheduler) assigns indices to cores (more precisely kernel threads) for
computation taking various aspects into account such as load balancing, data locality
in deep cache hierarchies as well as overhead. Neither the problem nor the solutions
are specific to SAC, but can in variations be found in any data-parallel shared memory
approach, e.g. OpenMP.

void ba_write_mt (ic?:c, arr, val)

{

ravel_ idx = ,li;dgl_l (idw; * H‘]Zif_li__ll shape (arr) ;);
outer_idx = ravel_idx (lcon_-typel| * 8);
inner_idx = ravel_idx % (|con_-type| =* 8);
if (val) {

do {

old = arr[outer_idx];

new = old | (1 << inner_idx);

} while (! _cas(&arr[outer_idx], old, new));
} else {

do {

old = arr[outer_idx];
new = old & (1 << inner_idx);
}while (! _cas(&arr[outer_idx], old, new));

}
}

Figure 4. Thread-safe write operation for dense bit arrays

Since the index scheduler is not aware of the array’s base type and in particular not
of the bit-wise representation that we are interested in here, different threads on different
cores may concurrently write Boolean values that coincidentally map to the same con-

tainer element. The ba_write operation in Fig. 3 is a combination of three consecutive
more basic operations: loading a container element from memory into a register, updating
the register with the corresponding bit manipulation and writing the resulting value back
to memory. If independent threads perform this operation concurrently on different bits
of the same container element, we are likely to see interleavings that overwrite bits with
false values. To avoid this and to ensure the deterministic behaviour of programs we must
embed the above three steps into a critical region that guarantees their single-threaded
execution.

The straightforward approaches to implementing critical regions are mutex locks or
semaphores. However, in our fine-grained scenario of bit-wise operations it must be ex-
pected that these techniques incur prohibitive overhead that would invalidat our entire
approach. As shown in Fig. 4, we rather follow a so-called optimistic approach. Apart
from rewriting the bit-wise operation such that they expose both the old and the new
value of a container element we use a compare-and-swap operation (cas). This oper-
ation is supported in hardware by all modern instruction set architectures. If the value
at the address given as first argument equals that of the second argument, the operation
atomically writes the third value to the given address. Otherwise, it does nothing. The
result signals success or failure. The assumption is that in most cases the atomic write
succeeds. Only in case of statistically unlikely conflicts the cas operation fails and the
whole operation is repeated.

4. Experimental evaluation

Our experimental system is a 48-core ccNUMA SMP machine with 4 AMD Opteron 6172
“Magny-Cours” processors running at 2.1 GHz eqipped with 128 GB of DRAM. Each
processor core has 64 KB of L1 instruction cache, 64 KB of L1 data cache and 512 KB
unified L2 cache. Each group of 6 cores shares one L3 cache of 6 MB. The system runs
Linux kernel 2.6.18 with Glibc 2.5.

Our first benchmark, Gauss, stresses memory read performance. A sliding window
of eleven elements is moved over a vector of Booleans, and a simple computation on
these eleven bits yields the result value that is written back to another vector of Booleans.
We investigate and compare six different implementations of Boolean arrays: a tradi-
tional sparse implementation, a thread-unsafe dense implementation and a thread-safe
dense implementation, each based on either 8-bit or 32-bit memory addressing (i.e. using
either unsigned char orunsigned int as implementation types).

Fig. 5 shows the results obtained with the Gauss benchmark using up to 32 cores.
Performance-wise we can easily identify that the six implementation variants form two
groups with almost identical runtime behaviour. The dense implementations of Boolean
arrays clearly outperform the traditional sparse implementations in this scenario. Nei-
ther the question of implementation type (8-bit or 32-bit) nor making the write operation
thread-safe shows any measurable impact on performance. In essence, we can observe
that improved data locality in the cache hierarchy more than outweighs the overhead in-
flicted by two-level indexing into memory as outlined in the previous section. It is note-
worthy, however, that this benefit only arises in terms of scalability in parallel execution.
Sequential execution on a single core, albeit outside the range of Fig. 5 yields the same
runtime for all six variants.

Runtime in micro-seconds

Gauss

3e+07 — T T T T T T T
Key
—+— sparse, 8 bit
- -X - dense, 8 bit, race
--X--- dense, 8 bit, safe
—-El— sparse, 32 bit
— k-~ dense, 32 bit, race
—&— dense, 32 bit, safe
2.5e+07 -
2e+07 -
1.5e+07
le+07 -
5e+06
O L L L L L L L L

1 4 8 12 16 20
Number of cores

24 28

Figure 5. Dense vs sparse implementations of Boolean arrays: Gauss benchmark

Runtime in micro-seconds

EvenOdd

2e+07 — T T T T I I I T
Key
—+— sparse, 8 bit
- -X - dense, 8 bit, race
--X--- dense, 8 bit, safe
—-E}— sparse, 32 bit
— k-~ dense, 32 bit, race
—&— dense, 32 bit, safe
1.5e+07 -
n
|
ki
po
[\
1e+07—52';—'\,—
o Fa L o
g Ty Pog Be8Bgg
' & [
5e+06
0 L L L L L L L L L

Number of cores

Figure 6. Dense vs sparse implementations of Boolean arrays: EvenOdd benchmark

Our second benchmark, EvenOdd, stresses write performance: it alternatingly writes
true and false to a vector of Booleans without any read instructions whatsoever.
For this kind of operation we would expect much less favourable results, and indeed
Fig. 6 confirms our epectations. The thread-safe dense implementations scale well, but
start out from a 5-6 times higher execution time than their unsafe counterparts. The 32-
bit sparse implementation, in contrast, does not scale at all. Apparently, the benchmark
immediately becomes memory-bound. The best performance is indeed achieved by the
8-bit sparse implementation, but the thread-unsafe dense implementations are more or
less on par for larger core counts. Given that this benchmark represents the worst case
for our approach this is encouraging. It shows, however, that synchronising the loop
scheduler with the storage format to avoid the costly compare-and-swap operations may
be worthwhile as future work.

5. Related Work

Despite the fact that Boolean values are the most fundamental unit of information in
computing, arrays of Boolean values have largely been neglected in the design and im-
plementation of programming languages. In early versions of C, for instance, no basic
type for Booleans existed. Only with the C99 standard C adopted the type -Bool from
C++ as an elementary data type. While C and C++ traditionally do not fix the represen-
tation size of elementary data types, arrays of Booleans use the smallest addressable unit
(i.e. a whole byte) to represent a single value. This is equivalent to the 8-bit sparse format
that we investigated in Section 4. Similarly bit structures in C++ and C99 do not lead to
dense representations of Boolean arrays either.

The same holds in one way or another for most popular imperative languages. For
example, Java, C#, Fortran and Pascal unanimously define the elementary type Boolean
to have one byte size. Consequently, arrays of Booleans inevitably lead to the same 8-
bit sparse representation as above. The situation is not very different in general-purpose
functional languages such as ML, OCaml or Haskell. Here, the situation is aggravated
by the fact that continuously store arrays are not at the heart of language design.

At the same time, usually non-standardised libraries exist in most of the above men-
tioned programming languages that implement densely stored bit arrays using similar
low-level bit-wise operations as we do in Section 3. We are not aware of any such imple-
mentation, however, that takes parallel execution in shared memory environments into
account whatsoever.

More related work can be found in the area of interpreted array languages such as
APL and J. With the clear focus on arrays, also arrays of Boolean values have been more
in the focus of design and implementation than in most other programming languages,
and, consequently, dense representations of Boolean arrays are fairly common in array
languages. Implementation-wise they benefit from the fact that programs are predomi-
nantly written by composition of built-in operations on whole arrays rather than by some
form of loop that iterates over individual array elements. This makes it much easier to
map bit-wise operations back to pseudo-vectorised operations on bytes, words or double
words, and, thus, to harness substantial improvements in runtime performance. To the
present day, these interpreted array languages are run sequentially.

6. Conclusion and Future Work

We propose a dense, bit-wise implementation for Boolean arrays in the functional, data-
parallel array language SAC, Single Assignment C. We further compare the relative per-
formance of dense and sparse memory representations of Boolean arrays in the context
of shared memory data-parallel execution. While we made this work in the context of
SAC, our findings are relevant across all languages that deal with data-parallel arrays,
e.g. OpenMP extensions of C or Fortran. They demonstrate that even in the absence
of (pseudo-) vectorisation of bit-wise array operations dense storage formats can out-
perform that straightforward sparse array representations due to improved data locality
when memory bandwidth is a scarce resource as is common in larger multi-core systems.

In the future we aim at conducting further experiments to validate our results on
further architectures and explore opportunities for compiler-directed pseudo vectorisa-
tion, i.e. replacing inner loops over Boolean arrays by appropriate bit-wise operations on
whole character or integer values.

References

[1] M. Diogo and C. Grelck. Heterogenous computing without heterogeneous programming. In K. Hammond
and H. Loidl, editors, Trends in Functional Programming, 13th Symposium, TFP 2012, St.Andrews, UK,
volume 7829 of Lecture Notes in Computer Science. Springer, 2013. to appear.

[2] C. Grelck. Shared memory multiprocessor support for functional array processing in SAC. Journal of
Functional Programming, 15(3):353—401, 2005.

[3] C. Grelck. Single Assignment C (SAC): high productivity meets high performance. In V. Zsdk,
Z. Horvith, and R. Plasmeijer, editors, 4th Central European Functional Programming Summer School
(CEFP’11), Budapest, Hungary, volume 7241 of Lecture Notes in Computer Science, pages 207-278.
Springer, 2012.

[4] C. Grelck and R. Douma. SAC on a Niagara T3-4 Server: Lessons and Experiences. In K. de Boss-
chere, E. D’Hollander, G. Joubert, D. Padua, F. Peters, and M. Sawyer, editors, Applications, Tools and
Techniques on the Road to Exascale Computing, volume 22 of Advances in Parallel Computing, pages
289-296. IOS Press, Amsterdam, 2012.

[5] C. Grelck and S.-B. Scholz. Merging compositions of array skeletons in SAC. Journal of Parallel
Computing, 32(7+8):507-522, 2006.

[6] C. Grelck and S.-B. Scholz. SAC: A functional array language for efficient multithreaded execution.
International Journal of Parallel Programming, 34(4):383-427, 2006.

[71 1. Guo, J. Thiyagalingam, and S.-B. Scholz. Towards Compiling SaC to CUDA. In Z. Horvéth and
Viktéria Zsok, editors, 10th Symposium on Trends in Functional Programming (TFP’09), pages 33-49.
Intellect, 2009.

[8] A. Kudryavtsev, D. Rolls, S.-B. Scholz, and A. Shafarenko. Numerical simulations of unsteady shock
wave interactions using SAC and Fortran-90. In /0th International Conference on Parallel Computing
Technologies (PaCT’09), volume 5083 of Lecture Notes in Computer Science, pages 445-456. Springer,
2009.

91 A. ginkarovs, S. Scholz, R. Bernecky, R. Douma, and C. Grelck. SAC/C formulations of the all-pairs
N-body problem and their performance on SMPs and GPGPUs. Concurrency and Computation: Practice
and Experience, 2013. to appear.

