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Abstract Generic array programming systematically abstracts from struc-
tural array properties such as shape and rank. As usual, generic programming
comes at the price of lower runtime performance. The idea of asynchronous
adaptive specialization is to exploit parallel computing facilities to reconcile
these conflicting objectives through the continuous adaptation of running ap-
plications to the ranks and shapes of their arrays.

A key parameter for the effectiveness of our approach is the time it takes
from requesting a certain specialization until its availability to the running
application. We describe the ins and outs of a persistence layer that keeps spe-
cialized variants in a repository for future use and thus effectively reduces the
average waiting time for re-compilation to nearly zero. A number of critical
issues that, among others, stem from the interplay between function special-
ization and function overloading catch our special attention. We describe the
solutions adopted and illustrate the benefits of persistent asynchronous adap-
tive specialization by a series of experiments.

1 Introduction

Software engineering is concerned with the fundamental trade-off between ab-
straction and performance. In array programming this trade-off is between
abstracting from ranks and shapes of arrays in source code and the ability
to determine actual ranks and shapes through compilation technology as a
prerequisite for high runtime performance. However, concrete rank and shape
information is often not available as a matter of fact until application run-
time. For example, the corresponding data may be read from a file, or they
may stem from external library code. In such scenarios the effect of compile
time specialization is very limited.
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Such scenarios motivate our current research that we perform in the context
of the purely functional, data-parallel array language SaC (Single Assignment
C) [1–3]. SaC features immutable, homogeneous, multi-dimensional arrays
and supports both shape- and rank-generic programming: SaC functions may
not only abstract from the concrete shapes of argument and result arrays, but
even from their ranks number of axes). In comparison to non-generic code
the runtime performance of equivalent operations is substantially lower for
shape-generic code and even more so for rank-generic code [4]. Apart from
the obvious reason that generic code maintains more information in runtime
data structures, the crucial issue are the SaC compiler’s advanced optimiza-
tions [5,6] that are not as effective on generic code as they are on shape-specific
code. This is a matter of principle and not owed to implementation deficien-
cies. For example, in automatically parallelized code [7–9] many organizational
decisions must be postponed until runtime, and synchronization and commu-
nication overhead are generally higher.

We build upon the ubiquity of multi-core processor architectures for our
asynchronous adaptive specialization framework [10]. Asynchronous with the
execution of generic code, be it sequential or automatically parallelized, a
specialization controller generates an appropriately specialized binary clone
of some function while at the same time the application continues with the
execution of the slow generic clone. Eligible functions are indirectly dispatched
such that if the same function is called repeatedly with arguments of the same
shapes, the corresponding fast clone is used as soon as it becomes available.

The effectiveness of our approach critically depends on making specialized
binary clones available as quickly as possible. This would normally call for a
fast and light-weight just-in-time compiler, but firstly the SaC compiler is ev-
erything but light-weight, and rewriting it in a more light-weight style would be
tempting but incur a gigantic engineering effort. Secondly, making the com-
piler faster would inevitably come at the expense of reducing its aggressive
optimization capabilities, which obviously is adverse to our overarching goal
of high performance.

In our original aspproach [10] specializations are accumulated during one
execution of an application and are automatically removed upon the applica-
tion’s termination. Consequently, any subsequent run of the same application
starts specializing again from scratch. Of course, the next run may use arrays
of different ranks and shapes, but in many real world scenarios it is quite
likely that a similar set of shapes will prevail. The same holds across different
application programs, in particular as any SaC application is heavily based
on the foundation of SaC’s comprehensive standard library of rank-generic
array operations. We first proposed the idea of a persistence layer that could
reduce the overhead to near-zero in practice in [11]. For many applications
we would envision a training phase, after which most required specializations
have been generated. The whole dynamic specialization machinery only be-
comes active again when the user reruns an application on array shapes not
previously encountered.
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As a concrete scenario consider an image filtering pipeline. Image filters can
typically be applied to images of any size. In practice, however, users only deal
with a fairly small number of different image formats, e.g. the image formats
produced by a digital cameras. Still, the concrete image formats are unknown
at compile time of the image processing application. So, our approach would
effectively train the application to the image formats of interest. Purchasing a
new camera may introduce new image formats and thus would lead to a short
re-training phase.

In fact, the proposed persistence layer requires more radical changes to the
dynamic specialization framework than initially anticipated. The contributions
of this paper are

– to describe persistent asynchronous adaptive specialization in detail;
– to identify and solve a number of non-trivial technical issues;
– to illustrate the performance gains achieved by the persistence layer through

a series of experiments.

The remainder of the paper is organized as follows. Section 2 provides
background information on SaC and its runtime specialization framework.
We describe the proposed persistence layer in Section 3. The following two
sections 4 and 5 deal with the particular challenges we encountered, before
Section 6 reports on out experimental evaluation. Finally, we sketch out some
related work in Section 7 and draw conclusions in Section 8.

2 Background: SAC and Asynchronous Adaptive Specialization

As the name suggests, SaC leaves the beaten track of functional languages
and adopts a C-like syntax: we interpret assignment sequences as nested let-
expressions, branching constructs as conditional expressions and loops as syn-
tactic sugar for tail-recursive functions; details can be found in [1,3]. Following
the example of interpreted array languages an array value in SaC is charac-
terized by a triple (r, s,d). The rank r ∈ N defines the number of dimensions
(or axes) of the array. The shape vector s ∈ Nr yields the number of elements
along each of the r dimensions. The data vector d ∈ T

∏
s contains the array

elements, the so-called ravel, where T denotes the element type.

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

AUD Class:

shape: static

shape: dynamic

AKD Class:

rank: static

shape: dynamic

AKS Class:

rank: static

*

Fig. 1 Three-level hierarchy of array types: arrays of unknown dimensionality (AUD),
arrays of known dimensionality (AKD) and arrays of known shape (AKS)
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Fig. 2 Experiment: rank-generic convolution kernel with and without asynchronous adap-
tive specialization (reproduced from [10])

The type system of SaC is polymorphic in the rank and shape of arrays.
As illustrated in Fig. 1, each type induces a three-layer type hierarchy. On the
lowest level we find non-generic types that define arrays of fixed shape. On an
intermediate level we see arrays of fixed rank. And on the top of the hierarchy
we find arrays of any rank (and thus any shape. The hierarchy of array types
induces a subtype relationship (with function overloading) and leads to three
different runtime representations of arrays.

The idea of asynchronous adaptive specialization is to postpone function
specialization until application runtime if the required rank and shape informa-
tion cannot be determined at compile time. Technically, we compile a generic
SaC function into two binary functions: the usual generic implementation and
a small proxy function that is the one to be called. When executed, the proxy
function first checks whether a previously specialized function instance for
the concrete argument ranks and shapes already exists and if so dispatches
to that fast clone. Otherwise, it files a specialization request consisting of the
function identifier and the concrete argument shapes before calling the generic
implementation.

Concurrent with the running application, specialization controllers take
care of specialization requests. They run the fully-fledged SaC compiler on
an intermediate representation of the function to be specialized and the corre-
sponding specialization parameters. Eventually, they link the resulting binary
code into the running application and update the proxy function accordingly.

We illustrate the effect of asynchronous adaptive specialization by the ex-
periment shown in Fig. 2. This experiment is based on a rank-generic con-
volution kernel with convergence test: Two functions alternately compute one
convolution step and a convergence test in an iterative manner. Fig. 2 shows
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the dynamic behaviour of an application that iteratively applies this rank-
generic convolution kernel to a 3-dimensional array of 100× 100× 100 double
precision floating point numbers. The plot shows individual iterations on the
x-axis and measured execution time for each iteration on the y-axis. The two
lines show measurements with runtime specialization disabled and enabled,
respectively. One can easily identify two steps of performance improvement
when the specialized variants of the convolution step and the convergence
test successively become available to the running application. This example
demonstrates the tremendous effect that runtime specialization can have on
generic array code. A more detailed explanation of this experiment as well as
a number of further experiments can be found in [10] and in [11].

3 Persistent Asynchronous Adaptive Specialization

As originally proposed in [11] and sketched out in the introduction the idea
of persistent dynamic specialization is as intriguing as simple, the latter at
least at first glance. Instead of discarding all generated specializations upon
termination of each execution of some program, we keep them in a repository
for later use by the same application or even different applications.

Persistent dynamic specialization is a win-only approach. If a required spe-
cialization has already been generated by a previous run of the same applica-
tion or likewise by a previous run of some other application, it can be linked
into the running application without any delay and the costly dynamic com-
pilation process is entirely avoided. This scenario not only makes the fast
non-generic clone of some function immediately available to the running ap-
plication, but also saves the hardware that would otherwise be utilized for
recompilation. This either saves energy through partial shut-down of comput-
ing resources or makes more resources available to the parallel execution of
the application itself resulting in higher execution performance.

The file system is the best option for realization of the specialization reposi-
tory. To avoid issues with write privileges in shared file systems we refrain from
sharing specializations between multiple users. While it would appear attrac-
tive to do so, in particular for functions from the usually centrally stored SaC
standard library, the system administration concerns of running SaC appli-
cations in privileged mode can hardly be overcome in practice. Consequently,
we store specialized function instances in the user’s file system space. A sub-
directory .sac2c in the user’s home directory appears to be a suitable default
location.

Each specialized function instance is stored in a separate dynamic library.
In order to store and later retrieve specializations we make reuse of an al-
ready existing feature within the SaC compiler: to disambiguate overloaded
function instances (and likewise compiler-generated specializations) in com-
piled code we employ a scheme that constructs a unique function name out
of module name, function name and argument type specifications. We adapt
that scheme, mainly replacing the original separator token by a slash. As a
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$HOME

.sac2c

rtspec

sac

mylibs

ConvolutionAuxiliaries

convolution step

double

2-1000-1000.so

3-100-100-100.so

is convergent

double-double-double

2-1000-1000-2-1000-1000-0.so

3-100-100-100-3-100-100-100-0.so

float-float-float

myalternativelibs

ConvolutionAuxiliaries

convolution step

double

1-1000000.so

3-100-100-100.so

is convergent

double-double-double

1-1000000-1-1000000-0.so

3-100-100-100-3-100-100-100-0.so

float-float-float

Fig. 3 Example file system layout with multiple variants of a SaC module

consequence, we end up with a potentially complex directory structure that
effectively implements a search tree and thus allows us to efficiently locate
existing specializations as well as to identify missing specializations.

There is, however, one pitfall: a module name in SaC is not necessarily
unique in a file system. Like many other compilers the SaC compiler allows
users to specify directory paths to locate modules. Changing the path specifi-
cation may effect the semantics of a program. For our purpose this means that
instead of the pure module name we need to use a fully qualified path name to
uniquely identify a module definition. Fig. 3 illustrates the proposed solution
with a small example file system layout based on the implementation of the
rank-generic convolution kernel introduced in Section ??. In the complete im-
plementation, as shown in [11], we find a module ConvolutionAuxiliaries

with functions convolution step and is convergent. Now, in the example
of Fig. 3 we can identify two variants of the module, one in a subdirectory
mylibs and the other in a subdirectory myalternativelibs. Which of these
two implementations of the module would be used by a SaC application solely
depends on the SaC compiler’s path configurations and the command line ar-
guments given and, thus, are orthogonal to the semantics of the language.

For the encoding of argument base types and shapes we preferred clarity
and readability over obfuscation and intellectual property protection during
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the development stage. This can easily be changed later depending on user
demands.

In the file system snapshot of Fig. 3 we can further observe the base type en-
coding of the functions convolution step and is convergent. In our exam-
ple they are defined for one double argument and for three double arguments,
respectively. To illustrate the potential of different overloaded argument base
types we also consider a version of the convergence check for single precision
floating point numbers.

On the level of individual dynamic libraries we can see the encoding of the
exact ranks and shapes of existing dynamic specializations: for the first imple-
mentation of our module we can see two specializations, one for a 2-dimensional
case (1000x1000) and one for a 3-dimensional case (100x100x100). For the al-
ternative implementation for the same library we can identify a 1-dimensional
specialization (1,000,000) and again the same 3-dimensional specialization as
before. The third argument of our function is convergent is a double scalar,
the convergence threshold. Hence, the trailing zero in the corresponding file
names as the rank of a scalar is zero (see Section 2 for details).

4 Persistent Specialization vs Function Overloading

Unfortunately, the devil is in the detail, and so we discovered a number of
issues that make the actual implementation of persistent asynchronous adap-
tive specialization much more challenging than originally anticipated. Our first
issue originates from SaC’s support for function overloading in conjunction
with our desire to share specializations between independent applications. The
combination of overloading and specialization raises the question how to cor-
rectly dispatch function applications between different function definitions of
the same name. In Fig. 4 we show an example of five overloaded definitions
of the function foo alongside the derived dispatch code. The SaC first dis-
patches on parameter types from left to right and for each parameter first on
rank and then on shape. The type system of SaC ensures that the dispatch is
unambiguous.

For the construction of the dispatch tree it is irrelevant whether some
instance of a function is original code or a compiler-generated specialization.
There is, however, a significant semantic difference: while we aim at dispatching
to the most specific compiler-generated specialization for performance reasons,
we must dispatch to the best matching user-defined instance no matter what.
To achieve this our original asynchronous adaptive specialization framework
exploits an interesting feature of our module system, which allows us to import
possibly overloaded instances of some function and to again overload those
instances with further instances in the importing module. This feature allows
us to incrementally add further instances to a function.

On every module level that adds further instances a new dispatch (wrap-
per) function similar to that shown in Fig. 4 is generated that implements
the dispatch over all visible instances of a function regardless of where ex-
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int [*] foo( int[*] a, int [*] b);
int [*] foo( int[.] a, int [.] b);
int [*] foo( int[7] a, int [8] b);
int [*] foo( int[.,.] a, int [42] b);
int [*] foo( int[2,2] a, int [99] b);

int [*] foo_dispatch(int[*] a, int[*] b)
{

if (dim(a) == 1) {
if (shape(a) == [7]) {

if (dim(b) == 1) {
if (shape(b) == [8]) {

c = foo_3( a, b);
}
else {

c = foo_2( a, b);
}

}
else {

c = foo_1( a, b);
}

}
else {

if (dim(b) == 1) {
c = foo_2( a, b);

}
else {

c = foo_1( a, b);
}

}
}
...

...
else if (dim(a) == 2) {

if (shape(a) == [2,2]) {
if (dim(b) == 1) {

if (shape(b) == [99]) {
c = foo_5( a, b);

}
else if (shape(b) == [42]) {

c = foo_4( a, b);
}
else {

c = foo_1( a, b);
}

}
else {

c = foo_1( a, b);
}

}
else {

if (shape(b) == [42]) {
c = foo_4( a, b);

}
else {

c = foo_1( a, b);
}

}
}
else {

c = foo_1( a, b);
}
return c;

}

Fig. 4 Example of shapely function overloading and resulting dispatch function

actly these instances are actually defined. We take advantage of this design
for implementing asynchronous adaptive specialization as follows: each time we
generate a new specialization at application runtime we effectively construct
a new module that imports all existing instances of the to be specialized func-
tion and then adds one more specialization to the module, the one matching
the current function application. Without further ado the SaC compiler in
addition to the new executable function instance also generates a new dis-
patch wrapper function that dispatches over all previously existing instances
plus the newly generated instance. All we need to do at runtime then is to
appropriately replace the old dispatch function by the new one.

At first glance, it seems we could continue with this scheme, and whenever
we add a specialization to the repository we simply replace the dispatch func-
tion in the repository by the new one. In other words, we would carry over
the concept from a single application run to the set of all application runs in
the history of the computing system installation. Unfortunately, this would be
incorrect.

The issue here is the coexistence of semantically equivalent specializations
and possibly semantically different overloadings of function instances. One dis-
patch function in the specialization repository is not good enough because any
program (or module) may well contribute further overloadings. This may se-
mantically shadow certain specializations in the repository and at the same



Persistent Asynchronous Adaptive Specialization for Generic Array Programming 9

time require the generation of new specializations that are semantically differ-
ent from the ones in the repository, despite sharing the same function name.

A simple example illustrates the issue: let us assume a module A that ex-
ports a function foo with, for simplicity, a single argument of type int[*].
Again, the element type, here int, is irrelevant. Now, some application(s) us-
ing module A may have created specializations in the repository for shapes
[42], [42,42] and [42,42,42], i.e. for 1-dimensional, 2-dimensional and 3-
dimensional arrays of size 42 in each dimension. One may think that the repos-
itory could also simply contain a dispatch function that dispatches between
all repository instances, but this is not an option for several reasons.

Firstly, the repository instances are created incrementally, possibly my mul-
tiple applications using A::foo. New dispatch functions could only be created
during a dynamic compilation process. For that the compiler would need to
know all existing specializations in the repository in order to create the new
dispatch function for these and the one new specialization. Trouble is that
multiple such dynamic compilations may happen simultaneously, which im-
mediately creates a mutual exclusion problem on the repository and would
require a lock for the repository to be held throughout each dynamic com-
pilation process. This would significantly delay our asynchronous adaptive
specialization, and thus would be exactly the opposite of what we are aiming
for.

Secondly, with substantial repository sizes, dynamic dispatch over many
instances in the style of Fig. 4 becomes increasingly inefficient as each appli-
cation may effectively only ever make use of a small number of the instances
found in the repository after a while.

Thirdly, imagine a program that itself has an overloading of function foo

for 42-element vectors. This program would have to internally dispatch to its
own instance if foo(int[42] while it could use and would benefit from the
repository instances of foo(int[42,42] and foo(int[42,42,42] and it may
create a new repository instance for, say, foo([int[21]).

From the above scenarios it becomes clear that we need a two-level dispatch
for the persistence layer. At first, we dispatch within the running applica-
tion through a conventional dispatch function, as illustrated in Fig. 4. If this
dispatches to a rank- or shape-generic instance, we interfere and determine
whether or not a suitable specialization already exists in the specialization
repository. For this purpose module name, function name and the sequence of
argument types with full shape information (as is always available at appli-
cation runtime) suffice to identify the corresponding shared library in the file
system.

If the required specialization does already exist, we directly link this in-
stance into the running application and call it. Now, we need a second-level
dispatch mechanism that keeps track of all dynamically linked instances. A
classical dispatch function, as used so far, is not an option because we de-
liberately avoid compilation for performance. Thus, in particular, we cannot
compile a new dispatch function. Instead we use a dynamic data structure
to store function pointers for dynamically loaded instances with the function
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name and parameter types and shapes serving as search key. For now, we use
a simple search tree in our concrete implementation, but this could easily be
replaced by more sophisticated mechanisms in the future.

If the required specialization does not yet exist, we file the corresponding
specialization request as before and call the generic function instance instead.
However, more changes are needed in this case as well. When the dynamic
compilation process completes, we do no longer link the new binary version
of the additional instance into the running application. After all, it is pure
speculation that this application will ever call it. Instead, we create the cor-
responding shared library in the specialization repository for future use by
this and possibly any other application. Should the running application ever
need this specific instance, it will load it from the specialization repository as
described in the previous paragraph.

5 Semantic Revision Control

Consider once more the scenario sketched out in the previous section, where a
specialization repository contains three specializations, of the function foo(int[*]),
namely for shapes [42], [42,42] and [42,42,42]). Furthermore, let us as-
sume a program overloads foo with another generic instance foo([int[.,.]).
If this program calls foo with a 42-element vector, we can load the correspond-
ing previously specialized instance and benefit from high performance. How-
ever, if this program calls foo with a 42x42-element matrix, we must not load
the corresponding instance from the repository because that is derived from
foo(int[*]), whereas semantics demand to use the local generic instance
foo(int[.,.]). Since that is a generic function as well, we want to use our
asynchronous adaptive specialization mechanism once more. That inevitably
leads to two non-identical instances foo(int[42,42]) in the repository, one
derived from foo(int[*]) and one derived from foo(int[.,.]).

This scenario exemplifies a dilemma that has another variant. A developing
user could now simply come up with the idea to change the implementation of
function foo(int[*]) in module A. This somewhat invalidates certain existing
specializations in the repository, but this invalidation only becomes effective
after the application itself is recompiled. Consequently, we face the situation
where some applications “see” different specializations for the same function,
type and shape than others.

To solve both issues at once we need a mechanism that keeps track of what
exact generic code any instance in the repository is derived from. Therefore,
we cannot but incorporate the entire definition of a rank- or shape-generic
function into the identifier of a specialization. For this purpose we linearize
the intermediate code of a generic function definition into textual form and
compute a suitable hash when generating a dynamic specialization of this
generic instance. This hash is then used as the lowest directory level when
storing new specializations in the file system. Upon retrieving a specialization
from the file system repository a running application again generates a hash
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. . .
mylibs

ConvolutionAuxiliaries

convolution step

double

2-1000-1000

dcc0e68deb5ffd37f4ab45e30e13c8.so

f9783fc9338fda9f48f4b79335479e.so

3-100-100-100

dcc0e68deb5ffd37f4ab45e30e13c8.so

f9783fc9338fda9f48f4b79335479e.so

is convergent

double-double-double

2-1000-1000-2-1000-1000-0

db60c387568b3665c5b099a8d3d675.so

e5219fecc5606c6f3a47c2411efb1c.so

3-100-100-100-3-100-100-100-0

db60c387568b3665c5b099a8d3d675.so

e5219fecc5606c6f3a47c2411efb1c.so

Fig. 5 Refinement of the file system layout shown in Fig. 3 considering multiple semantic
variants of the same SaC module, . distinguished by unique hashes of the intermediate code
representation (shortened to fit horizontally).

of a linearization of the intermediate code of its own generic definition. This is
then used to determine whether or not a suitable specialization exists in the
repository and to locate it. With this non-trivial solution we ensure that we
never accidentally run an outdated specialization.

Fig. 5 illustrates this solution on our running example of the rank-generic
convolution kernel. Compare the situation, in particular, with the file system
layout in Fig. 3. The shape encoding has now become yet another level in
the file system hierarchy and the actual binary code resides in a collection of
dynamic libraries whose names are hash sums of their intermediate represen-
tations.

6 Experimental Evaluation

In our experimental evaluation of persistent asynchronous adaptive specializa-
tion, we repeat a series of experiments initially reported on in [11]. These in-
volve three different benchmarks: generic multi-dimensional convolution with
periodic boundary conditions and convergence test, repeated matrix multi-
plication and n-body simulation. The uniform test system for all three case
studies is a large 48-core SMP machine with 4 AMD Opteron 6172 Magny-
Cours processors running at 2.1 GHz. All reported figures are best of five
independent runs.

In [11] we explicitly discussed the combination of automatically parallelized
applications with multiple concurrent specialization controllers. In the follow-
ing we restrict ourselves to sequential program execution and a single special-
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ization controller to isolate the effect of the proposed persistence layer, which
is the novel contribution of this paper.

One may say that the variants that employ adaptive specialization effec-
tively use more resources than the ones without, more precisely two cores
instead of one, and that this constitutes an unfair comparison. We do not sub-
scribe to this point of view for the following reasons. Firstly, on the 48-core
machine used we would need to compare using all 48 cores for parallel execu-
tion of the application with only using 47 cores for the application and one
for asynchronous adaptive specialization. Even with (unlikely) perfect linear
scaling of the application, the performance difference between using 47 cores
or 48 core would be marginal. Secondly, faster execution of the application due
to parallelization would indeed change the speed ratio between the applica-
tion and the compiler. However, this would not be different from increasing or
decreasing the problem size, that we rather arbitrarily chose with the purpose
of best possible illustration.

6.1 Generic convolution with convergence test

Our first benchmark is the fully rank-generic convolution kernel with conver-
gence check introduced in Section ??. For more discussion of this benchmark
in the context of overall language design as well as asynchronous adaptive spe-
cialization we refer the interested reader to [3,11]. In essence, the benchmark
alternately computes one convolution step and the convergence check. Both
functions, hereafter named step and check for brevity, are defined in a rank-
invariant style, i.e. they can be applied to argument arrays of any rank (num-
ber of axes) and shape. The step function uses a star-shaped neighbourhood.
For a 2-dimensional argument array this results in a 5-point stencil, for a 3-
dimensional argument array in a 7-point stencil, etc. Fig. 6 shows the outcome
of our experiments for a case of 3-dimensional convolution with 100x100x100
double precision floating point numbers. On the x-axis we show 29 iterations
and on the y-axis the execution time for each iteration as measured by a high
precision clock.

Without runtime specialization, i.e. when continuously running fully rank-
generic code, each iteration takes about 4.4 seconds. The computation is com-
pletely uniform across iterations. Thus, the small variations in the execution
time are purely caused by (negligible) operating system and other activities
on the system and the corresponding measurement inaccuracies.

With runtime specialization enabled and an empty (or cold) specialization
repository the first four iterations take 5.2 seconds each. During this time the
concurrently running specialization controller generates an optimized variant
of the convolution step function, as this is the first of the two relevant func-
tions to be applied. A shape-specialized version of the convolution, while still
running the rank-generic convergence check, brings the average execution time
per iteration down to about 0.65 seconds. After 13 further iterations the spe-
cialization controller has additionally generated a shape-specialized version of
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Fig. 6 Performance impact of the persistence layer for the generic convolution kernel with
convergence check

the convergence check, which brings down the average execution time per it-
eration to approximately 0.28 seconds. Since the actually running code is now
fully shape-specific, no further changes in the execution time can be expected.

The third line in Fig. 6 shows the runtime behaviour if the needed special-
ization of the convolution step already exists in the specialization repository.
If so, per iteration execution time is 0.65 seconds from the first iteration on.
In this scenario we immediately start the specialization of the convergence
check, which becomes available after 19 iterations, further reducing the per
iteration execution time to the optimal value of 0.28 seconds. Note that the
absolute performance is considerably better than in the previous scenario as
19 iterations are much earlier reached than the 17 iterations that led to optimal
performance in the previous scenario.

The fourth line in Fig. 6 shows the inverse case where the specialization
repository contains the required version of the convergence check but not that
of the convolution step. Since the performance impact of the convolution step
is far greater than that of the convergence check, we observe a moderate perfor-
mance improvement for the first four iterations. If both required specializations
are already present in repository at program startup, all iterations execute in
about 0.28 seconds from the very beginning

These observations can be considered representative. Using different prob-
lem sizes changes the ratio between dynamic re-compilation times and applica-
tion execution times in the foreseeable way. We thus do not report on further
problem sizes and refer the interested reader to [10] for a detailed discussion
and further experimental data.

6.2 Repeated matrix multiplication

Repeated matrix multiplication is a benchmark that is again adopted from [11].
Here we apply a shape-generic matrix multiplication function to two argument
matrices of 1000x1000 double precision floating point numbers. Then we re-
peatedly multiply the resulting temporary matrix with the second argument
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Fig. 7 Impact of the persistence layer on runtime performance for the repeated matrix
multiplication benchmark for the concrete problem size 1000x1000

matrix for a given number of times, see [11] for the complete source code.
In this case we have only one function relevant for dynamic specialization:
matmul. Fig. 7 shows the outcome of our experiment. We essentially observe a
similar runtime behaviour as in the case of the rank-generic convolution kernel,
but only one step of performance improvement.

Comparing our latest findings with Fig. 8 in [11] we can see that the addi-
tional overhead due to the persistence layer is below measurement accuracy:
We essentially observe the same overhead as in our previous experiments. If
the right variant of the matmul function can directly be retrieved from the
persistent specialization repository, we immediately obtain the best possible
performance from the first iteration onwards

6.3 N-body simulation

N-body simulation is our third benchmark adopted from [11]. A comprehensive
account of n-body simulation in SaC can be found in [12]. Here, we again have
two different generic functions: advance for computing one simulation step and
energy to assess the overall energy in the simulated system. Compared with
the convolution kernel an important difference in code structure is that the
energy function is exactly called twice once before and once after the time
iteration. In practice, the energy function’s impact on overall performance
depends on the number of time steps simulated and usually becomes irrelevant
at some level. Still our compiler specializes it with the outcome shown in Fig. 8.

Since the energy function is the first of the two relevant functions to be ap-
plied, it will also be specialized first. This occupies the specialization controller
for a substantial amount of time and, thus, delays the much more important
runtime specialization of the advance function. Although the energy function
is not really performance-critical, having the right variant in the persistent
specialization repository has a disproportional positive performance impact as
the specialization controller can now immediately start to generate the appro-
priate specialization of the more important advance function.
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Fig. 8 Performance impact of persistence layer in n-body simulation

application compiler
no runtime specialization 75.75 0.00
cold repository 63.19 38.77
repository with energy function 50.36 23.43
repository with advance function 35.00 15.21
warm repository 34.96 0.00

Fig. 9 Complete application runtimes (core 1) and compiler runtimes (core 2)

In Fig. 9 we look at the same experimental data from a different per-
spective. We show whole program runtimes for different initial states of the
persistent specialization repository as well as for runtime specialization dis-
abled for the same 100 iterations as before. In other words, the numbers refer
to the integrals below the lines in Fig. 8. Additionally, we show accumulated
runtimes of the specialization controller. Even for a cold specialization reposi-
tory we achieve better results as without dynamic adaptation. These numbers
would quickly move further in favour of our technique as we run more itera-
tions of the n-body simulation. Likewise, we can see that almost all remaining
overhead can be avoided by the persistence techniques proposed in this paper.

7 Related Work

Our approach is related to a plethora of work in the area of just-in-time com-
pilation; for a survey see [13]. Our work, however, differs from just-in-time
compilation of Java- or Python-like byte code in various aspects. They identify
hot spots of code during program execution and aim at realizing performance
benefits from two sources: generating native machine code that avoids inter-
pretive overhead and simplifying control structures. An extreme example is
tracing jit compilation [14].

In contrast, we adapt the intermediate code to properties of the data it
operates on, namely rank and shape. This is an incremental process that may
or may not reach a fixed point. Even our relatively slow generic array code



16 Clemens Grelck, Heinrich Wiesinger

already is native binary machine code. Notwithstanding, adapting binary ma-
chine code to the exact processor, chip set and cache hierarchy of the ma-
chine an application is running on is likely to harness further performance
improvements. However, in our approach this opportunity rather comes as a
by-product rather than as the primary motivation. Consequently, we have not
made use of this additional optimization opportunity during our experimental
evaluation and leave investigation of its potential impact to future work.

None of the major Java virtual machine implementations makes use of
persistent compiled code repositories. The main arguments brought forward
are that redoing the jit-compilation could even be faster than loading pre-
generated code from disc and that disambiguating previously compiled code
is a difficult semantic problem [?,?]. This again sets our work apart from
standard just-in-time compilation as we have a clearly defined abstractions.

Sambamba [15] is an LLVM-based system that generates parallel exe-
cutable binaries from sequential source code through runtime analysis of data
dependencies. While this is conceptually similar to our system, the focus of
Sambamba is on optimizing towards the runtime platform and not towards
the data that is being worked with. Furthermore, the functional semantics of
SaC statically solves many of the cases that Sambamba aims at with runtime
compilation.

We shall also mention COBRA [16] (Continuous Binary Re-Adaptation).
COBRA collects hardware usage information during application execution and
adapts the running code to select appropriate prefetch hints related to coherent
memory accesses as well as reduce prefetching to avoid system bus contention.
The use of a controller thread managing optimization potential and a sepa-
rate optimization thread applying the selected optimizations bears similarities
with our adaptive specialization framework. One of the main differences be-
tween COBRA and our approach is that COBRA relies on information from
hardware performance counters to trigger optimizations, whereas our approach
triggers optimizations based on data format differences. Another difference is
that COBRA works on binary executable code as input data, whereas we
base our work on richly compiler-decorated intermediate code that gives us
optimization opportunities on a much higher level of abstraction. Of course,
we are restricted to SaC as development platform while COBRA works on
any binary.

Another related project is Jikes RVM [17], an adaptive optimization sys-
tem that monitors the execution of an application for methods that can likely
improve application performance if further optimized. These candidates for
optimization are put into a priority queue, which in turn is monitored by a
controller thread. The controller dequeues the optimization request, forwards
it to a recompilation thread which invokes the compiler and installs the re-
sulting optimized method into the virtual machine. While this architecture
matches our framework quite closely, the optimizations performed are entirely
platform oriented, and not application or data oriented. Other similar systems
include ADAPT [18], a system that uses a domain specific language to specify
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optimization hints that can be made use of at runtime, and ADORE [19], a
predecessor of COBRA for single threaded applications.

It is noteworthy that while we explore our dynamic compilation approach
in the context of the functional data-parallel language SaC, our work is not
specific to SaC, but can be carried over to any context of data-parallel array
processing. Interpreted array languages such as APL, J or MatLab are obvious
candidates to look at, but we are not aware of any dynamic specialization
attempts in these domains. Likewise, the concept of persistent dynamically
generated code repositories, the central topic of this papers, appears not to
be popular across the whole range of programming languages, and we found
rather little directly related work.

8 Conclusions and Future Work

Asynchronous adaptive specialization is a viable approach to reconcile the de-
mand for generic program specifications in (functional) array programming
with the need to achieve competitive runtime performance when compile time
information about array ranls and shapes lacks. Beyond potential obfuscation
of shape relationships in user code, data structures may be read from files or
functional array code could be called from less information-rich environments
in multi-language applications. Furthermore, the scenario is bound to become
reality whenever application programmer and application user are not iden-
tical, which rather is the norm than the exception in (professional) software
engineering.

With our proposed persistence layer we demonstrate how asynchronous
adaptive specialization overhead can drastically be reduced in practice. Fol-
lowing some training phase the vast majority of required specializations have
already been generated in preceding runs of the same application or even inde-
pendent applications with overlapping code base. If successful, pre-generated
specializations merely need to be loaded from a specialization repository into
a running application on demand.

In this paper we identified a number of issues related to correct function
dispatch in the presence of specialization and overloading, use of the file system
as code data base, revision control in the potential presence of semantically
different function definitions. We sketched out our solutions found for each of
these issues and thus have come up with a fairly complete account of the ins
and outs of persistent asynchronous adaptive specialization for generic array
programming in SaC.

We currently follow various directions of future work beyond the obvious:
gaining more experience with our approach in practice. One such direction is
the exploitation of platform-specific code generation opportunities that would
adapt the running code step by step to the exact instruction set. Another area
of active research is the control of the repository size, which onviously cannot
grow forever.
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