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Abstract
S-NET is a declarative coordination language and component tech-
nology aimed at modern multi-core/many-core architectures and
systems-on-chip. It builds on the concept of stream processing to
structure dynamically evolving networks of communicating asyn-
chronous components. Components themselves are implemented
using a conventional language suitable for the application domain.
This two-level software architecture maintains a familiar sequential
development environment for large parts of an application and of-
fers a high-level declarative approach to component coordination.

In this paper we present a conservative language extension for
the placement of components and component networks in a multi-
-memory environment, i.e. architectures that associate individual
compute cores or groups thereof with private memories. We de-
scribe a novel distributed runtime system layer that complements
our existing multithreaded runtime system for shared memory mul-
ticores. Particular emphasis is put on efficient management of data
communication. Last not least, we present preliminary experimen-
tal data.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent ProgrammingDistributed program-
ming; D.3.3 [PROGRAMMING LANGUAGES]: Language Con-
structs and FeaturesConcurrent programming structures; D.3.4
[PROGRAMMING LANGUAGES]: ProcessorsRun-time environ-
ments

General Terms design, languages, performance

Keywords stream processing, component coordination, hybrid
memory architectures, multicore programming

1. Introduction
Today’s hardware trend towards multi-core/many-core chip archi-
tectures [15, 24] places immense pressure on software manufac-
turers. For the first time in history software does not automati-
cally benefit from new generations of hardware. Today, software
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must become parallel in order to benefit from future processor gen-
erations! However, existing software is predominantly sequential,
and writing parallel software is notoriously difficult. So far, paral-
lel computing has been confined to supercomputing. Now, it must
go mainstream. This step requires new tools and techniques that
radically facilitate parallel programming.

S-NET [11] is such a novel technology: a declarative coordi-
nation language and component technology. The design of S-NET
is built on separation of concerns as the key design principle. An
application engineer uses domain-specific knowledge to provide
application building blocks of suitable granularity in the form of
(rather conventional) functions that map inputs into outputs. In
a complementary way, a concurrency engineer uses his expert
knowledge on target architectures and concurrency in general to
orchestrate the (sequential) building blocks into a parallel applica-
tion. While the job of a concurrency engineer does require extrin-
sic information on the qualitative and the quantitive behaviour of
components, it completely abstracts from (intrinsic) implementa-
tion concerns.

In fact, S-NET turns regular functions/procedures implemented
in a conventional language into asynchronous, state-less compo-
nents communicating via uni-directional streams. The choice of
a component language solely depends on the application domain
of the components itself. In principle, any conventional program-
ming language can be used, and a single S-NET network can man-
age components implemented using different languages. In prac-
tice, there are, of course, limitations concerning the interoperabil-
ity of languages and the technical interplay between coordination
and computation layer. For the time being we provide interface im-
plementations for the functional array language SAC [9] and for a
subset of ANSI C.
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Figure 1. Illustration of an S-NET streaming network of asyn-
chronous components

Fig. 1 shows an example of an S-NET streaming network. Note
that any base component is characterised by a single input and a
single output stream. This restriction is motivated, again, by the
principle of separation of concerns. The concern of a box is map-
ping input values into output values, whereas its purpose within
a streaming network is entirely opaque to the box itself. Concur-
rency concerns like synchronisation and routing that immediately
become evident if a box had multiple input streams or multiple out-



put streams, respectively, are kept away from boxes. Our solution
achieves a near-complete separation of computing and coordination
aspects. We have identified four fundamental construction princi-
ples for streaming networks:

• serial composition of two (potentially) different components
where the output stream of one component becomes the input
stream of the other;
• parallel composition of two (potentially) different networks

where some routing oracle decides on which branch data takes;
• serial replication of a single network where data is streamed

through the same network a dynamically determined number of
times; and
• indexed parallel replication of a single network where an index

attached to the data determines which branch (or which replica
of the network) is taken.

These four construction principles allow concurrency engineers to
define complex streaming networks of asynchronous components
and, thus, to turn sequential code blocks into a parallel application.

While today small scale multicore processors with shared mem-
ory prevail, it is very unlikely that memory remains shared if the
number of cores grows as predicted. It is time now to consider a
more complex memory architecture to address likely future scenar-
ios. In our memory model multiple cores share the same memory,
but communication between one such group of cores and all other
cores is by means other than shared memory. More precisely, we
assume some form of network on the hardware side and message
passing on the software side. This two-tier memory organisation is
of interest for essentially two reasons. Firstly, for now the number
of cores per chip is still very limited, only clusters of multicores
provide the compute power required by challenging applications.
Secondly, as soon as the number of cores on a chip exceeds a certain
limit, any shared memory is likely to produce a performance bottle-
neck and future multicores most likely will have a memory organ-
isation similar to our model described in order to deliver scalable
performance. Contemporary manycore architectures (e.g. NVidia
CUDA) already demonstrate this by a number of different memo-
ries.

As a high-level coordination language, S-NET in general is not
bound to any memory model. The language concepts, however, fit
in rather well with the basic concept of programming distributed-
memory systems, i.e. message passing. S-NET boxes and networks
are indeed asynchronous components that communicate with each
other by sending messages via communication channels. In princi-
ple, the language could be used to define distributed memory sys-
tems as it is by mapping components directly to nodes of the sys-
tem. However, direct mapping of components may not be sensible
as we must take the cost of data transfers between nodes into ac-
count. Execution times of components may vary significantly from
simple filters performing lightweight operations to boxes consist-
ing of heavy computations. Another obstacle is the dynamic nature
of S-NET networks that evolve over time due to serial and parallel
replication.

What we need instead of a one-to-one mapping of boxes to com-
pute nodes is a veritable distribution layer within an S-NET net-
work where coarse-grained network islands are mapped to different
compute nodes while within each such node networks execute us-
ing the existing shared memory multithreaded runtime system [8].
Each of these islands consists of a number of not necessarily con-
tiguous networks of components that interact via shared-memory
internally. Only S-NET streams that connect components on differ-
ent nodes are implemented by means of message passing. From the
programmer’s perspective, however, the implementation of individ-

ual streams on the language level by either shared memory buffers
or distributed memory message passing is entirely transparent.

In principle, it would be desirable if the decomposition of net-
works into islands would be transparent as well, thus resulting in
a fully implicit parallelisation architecture, that balances itself au-
tonomously as the network evolves over time. With our shared
memory runtime system, we have done exactly this. However,
given the substantial cost of inter-node data communication in re-
lation to intra-node communication between S-NET components
the right selection of islands is crucial to the overall runtime per-
formance of a network. Therefore, we postponed the idea of an
autonomously dynamically self-balancing distributed memory run-
time system for now and instead carefully extend the language
in order to give the programmer control over placement of boxes
and networks. In addition to the four above mentioned construction
principles of networks we add two more:

• static placement of a network on some node;
• indexed placement of a network where an index attached to the

data determines the node on which that data is to be routed to.

These extensions are transparent with respect to S-NET seman-
tics, i.e. if an S-NET program is not specifically compiled for a
distributed memory environment, placement has no effect. While
static placement is just ignored, dynamic placement behaves like
standard indexed parallel replication.

The concept of a node in S-NET is a very general one, and its
concrete meaning is implementation-dependent. We use simple in-
teger numbers to identify nodes because that choice fits the concept
of tag values in S-NET, and, thus, allows programmers to com-
pute placements both on the coordination language level (S-NET)
and on the box language level. For our reference implementation
we chose MPI [13] as communication middleware, mainly for its
paramount availability and well-known efficiency. Hence, S-NET
nodes map one-to-one to MPI process numbers. In fact, we use
very few of the MPI features in order to maintain compatibility
with future, potentially more lightweight middleware implementa-
tions specifically geared at multi-memory multicores, where node
numbers may well denote concrete hardware cores.

The specific contributions of the paper are

• the proposal of a conservative language extension for semi-
explicit placement of networks;
• description of a distributed memory runtime system implemen-

tation on top of the existing multithreaded runtime system;
• outline of a data manager service for optimised communication;
• preliminary performance figures.

The remainder of the paper is organised as follows. In Section 2
we provide a more detailed introduction to S-NET, while Section 3
introduces a running example that we come back to throughout the
remainder of the paper. Section 4 describes the language extensions
of Distributed S-NET in greater detail. Sections 5 and 6 illustrate
the distributed runtime system and the design of the data manager,
respectively. Eventually, we provide some preliminary runtime fig-
ures in Section 7, discuss related work in Section 8 and conclude in
Section 9.

2. S-Net in a Nutshell
As a pure coordination language S-NET relies on a separate com-
ponent language to describe computations. Such components are
named boxes in S-NET terminology, their implementation lan-
guage box language. Any box is connected to the rest of the net-
work by two typed streams: an input stream and an output stream.
Messages on these typed streams are organised as non-recursive



records, i.e. sets of label-value pairs. Labels are subdivided into
fields and tags. Fields are associated with values from the box lan-
guage domain. They are entirely opaque to S-NET. Tags are asso-
ciated with integer numbers that are accessible both on the S-NET
and on the box language level. Tag labels are distinguished from
field labels by angular brackets.

On the S-NET level, the behaviour of a box is declared by a type
signature: a mapping from an input type to a disjunction of output
types. For example,

box foo ({a,<b>} -> {c} | {c,d,<e>})

declares a box that expects records with a field labelled a and a tag
labelled b. The box responds with a number of records that either
have just a field c or fields c and d as well as tag e. Both the number
of output records and the choice of variants are at the discretion of
the box implementation alone. The use of curly brackets to define
record types emphasises their character as sets of label-value pairs.

As soon as a record is available on the input stream, a box
consumes that record, applies its box function to the record and
emits the resulting records on its output stream. In the simple but
common case of a one-to-one mapping between input and output
records the box function’s result value may determine the output
record. In the general case, our box language interface provides a
box language specific abstraction named snet_out to dynamically
produce output records during the execution of the box function. As
soon as the evaluation of the box function is complete, the S-NET
box is ready to receive and process the next input record.

S-NET boxes are stateless by definition, i.e., the mapping of
an input record to a stream of output records is free of side-effects.
We exploit this property for cheap relocation and re-instantiation of
boxes; it distinguishes S-NET from most existing component tech-
nologies. In particular if boxes are implemented using imperative
languages, S-NET, however, can only guarantee that box functions
actually adhere to the box language contract as far as the box lan-
guage supports such guarantees. This is in the end the same in any
functional language that supports calling non-functional code.

In fact, the above type signature makes box foo accept any input
record that has at least field a and tag <b>, but may well contain
further fields and tags. The formal foundation of this behaviour is
structural subtyping on records: Any record type t1 is a subtype
of t2 iff t2 ⊆ t1. This subtyping relationship extends nicely to
multivariant types, e.g. the output type of box foo: A multivariant
type x is a subtype of y if every variant v ∈ x is a subtype of some
variant w ∈ y.

Subtyping on the input type of a box means that a box may
receive input records that contain more fields and tags than the box
is supposed to process. Such fields and tags are retrieved from the
record before the box starts processing and are added to each record
emitted by the box in response to this input record, unless the output
record already contains a field or tag of the same name. We call
this behaviour flow inheritance. In conjunction, record subtyping
and flow inheritance prove to be indispensable when it comes to
making boxes that were developed in isolation to cooperate with
each other in a streaming network.

It is a distinguishing feature of S-NET that we do not explicitly
introduce streams as objects. Instead, we use algebraic formulae to
define the connectivity of boxes. The restriction of boxes to a sin-
gle input and a single output stream (SISO) is essential for this.
As pointed out earlier, S-NET supports four network construction
principles: static serial/parallel composition and dynamic serial/-
parallel replication. We build S-NET on these construction princi-
ples because they are pairwise orthogonal, each represents a funda-
mental principle of composition beyond the concrete application to
streaming networks (i.e. serialisation, branching, recursion, index-
ing), they naturally express the prevailing models of parallelism
(i.e. task parallelism, pipeline parallelism, data parallelism) and,

last not least, we believe that these four principles are sufficient to
construct most streaming networks that prove useful on a coarse-
grained coordination level. The four network construction princi-
ples are embodied by network combinators. They all preserve the
SISO property: any network, regardless of its complexity, again is
a SISO component.

Let A and B denote two S-NET networks or boxes. Serial com-
position (denoted A..B) constructs a new network where the output
stream of A becomes the input stream of B while the input stream of
A and the output stream of B become the input and output streams of
the compound network, respectively. As a consequence, instances
of A and B operate asynchronously in a pipelined fashion. In the
intuitive example of Fig. 1 serial composition can be identified be-
tween the left, the middle and the right subnetworks.

Parallel composition (denoted (A|B)) constructs a network
where all incoming records are either sent to A or to B and the
resulting record streams are merged to form the overall output
stream of the compound network. Type inference [3] associates
each operand network with a type signature similar to the anno-
tated type signatures of boxes. Any incoming record is directed
towards the operand network whose input type better matches the
type of the record itself. The example network in Fig. 1 features
parallel composition in combining A and B.

If both branches in the streaming network match equally well,
one is selected non-deterministically. More precisely, the routing
of such a record is underspecified and, hence, implementation-
dependent. While in principle an implementation could send all
such records to the, say, left branch, a more useful implementation
employs some statistical distribution. However, we deliberately
do not specify properties of such a statistical distribution in the
language definition for now.

Serial replication (denoted A*type) constructs an unbounded
chain of serially composed instances of A with exit pattern type.
At the input stream of each instance of A, we compare the type of
an incoming record (i.e. the set of labels) with type. If the record’s
type is a subtype of the specified type (we say, it matches the
exit pattern), the record is routed to the compound output stream,
otherwise into this instance of A. Fig. 1 illustrates serial replication
as a feedback loop; however, it is not. Indeed, serial replication
means the repeated instantiation of the operand network A and,
thus, defines a streaming network that evolves over time (though in
a controlled and restricted way) depending on the data processed.

With S-NET as described so far serial replication and feed-
back loop are semantically equivalent, indeed. However, S-NET
also features a synchronisation primitive, named synchrocell that
is described in more detail further below. Synchrocells join two
or more records on their input stream to form a single record on
their output stream. In a feedback loop, a synchrocell would gen-
erally join records that have made different numbers of iterations
through the loop. Instead, our concept of serial replication ensures
that synchrocells only receive records on the same level of network
instantiation.

Indexed parallel replication (denoted A!<tag>) replicates in-
stances of A in parallel. Unlike in static parallel composition we
do not base routing on types and the best-match rule, but on a
tag specified as right operand of the combinator. All incoming
records must feature this tag; its value determines the instance
of the left operand the record is sent to. Output records are non-
deterministically merged into a single output stream similar to par-
allel composition. In Fig. 1 we can identify parallel replication of
network C. To summarise we can express the S-NET sketched out
in Fig. 1 by the following expression:

(A|B) .. (C!<t>)*{p} .. D



assuming previous definitions of A, B, C and D. While this example
remains in the abstract, concrete S-NET applications can be found
in [10, 12].

We already mentioned S-NET’s synchronisation component
called synchrocell. It takes the syntactic form [|type,type|].
Similar to serial replication the types act as patterns for incoming
records. A record that matches one of the patterns is kept in the syn-
chrocell. As soon as a record arrives that matches the other pattern,
the two records are merged into one, which is forwarded to the out-
put stream. Incoming records that only match previously matched
patterns are immediately forwarded to the output stream. Hence,
a synchrocell becomes an identity after successful synchronisation
and may be removed by a runtime system. The extremely sim-
plified behaviour of synchrocells captures the essential notion of
synchronisation in the context of streaming networks. More com-
plex synchronisation behaviours, e.g. continuous synchronisation
of matching pairs in the input stream, can easily be achieved using
synchrocells and network combinators. See [12] for more details
on this and on the S-NET language in general.

3. Running Example
Our running example is a very simple dictionary-based password
cracker. It takes a dictionary and a number of Md5-encoded pass-
words as its input and produces the corresponding decoded pass-
word for each entry that can be cracked with the given dictionary.
The cracking is done by encrypting words of the dictionary one
by one and comparing the resulting hash value with the encoded
password. Each password is associated with a cryptographic salt
to make the cracking more time-consuming. We use the standard
glibc function crypt to perform the relevant computations. Fig. 2
shows the complete S-NET implementation.

net c r y p t o ( { d i c t , e n t r i e s , < d i c t _ s i z e > ,
< n u m _ e n t r i e s > , <num_branches >}
−> { word , < e n t r y >} | {< f a l s e > , < e n t r y >})

{
box s p l i t t e r ( { e n t r i e s , < n u m _ e n t r i e s >}

−> { password , s a l t , < e n t r y >}) ;

box c r a c k e r ( { password , s a l t , d i c t , < d i c t _ s i z e >}
−> { word } | {< f a l s e >}) ;

net l o a d _ b a l a n c e r
connect [{ < e n t r y > , <num_branches >}

−> {< e n t r y > ,
<branch = e n t r y % num_branches >}] ;

}
connect s p l i t t e r . . l o a d _ b a l a n c e r . . c r a c k e r ! < branch >;

Figure 2. S-Net code of our running example: password cracker

The code defines a network named crypto that consumes
records containing two fields and three tags. The field dict con-
tains the dictionary and the field entries contains a list of all the
passwords and their salts. The tags dict_size and num_entries
contain the number of words in the dictionary and the number of
passwords, respectively. The tag num_branches is used to define
in how many parallel branches the processing can be made. The
network produces records that either contain the decoded word and
the number of the password or a tag that indicates that the password
could not be cracked.

The crypto network consists of two boxes and one subnetwork.
The box splitter takes records that hold the field containing the
passwords and their salts and the tag representing the number of
passwords and splits these records into smaller records, each hold-
ing fields for one password and its salt and a tag containing the
ordinal number of the password. The box cracker does the ac-
tual password cracking. It consumes records containing the pass-

word data and the dictionary and produces decoded words or false
tags in case the password could not be cracked. The subnetwork
load_balancer consists of a single filter box. Filter boxes, or fil-
ters, are S-NET-defined boxes that do simple computations on the
structure of records (e.g. removing or duplicating fields) or on the
values of tags (integer arithmetic and boolean algebra). The filter
in Fig. 2, for example, takes records containing the ordinal number
produced by the splitter box and assigns each record a branch
number according to the ordinal number. In conjunction with the
indexed parallel replication combinator around the cracker box,
our filter realises a simple round-robin scheduler.

The records flowing in the crypto network are first passed
in the box splitter which is then serially connected to the
load_balancer network. This combination is then serially con-
nected to the next network which is built by embedding the
box cracker into an index split combination. The index split
combinator is controlled by the tag branch assigned by the
load_balancer, which means that the work is shared between
num_branches parallel cracker boxes. This allows the time-
consuming decoding operation to be performed in parallel to multi-
ple passwords in case the system contains more than one processing
unit.

The example also demonstrates the practical use of flow inher-
itance, introduced in the previous section. While the crypto net-
work as a whole expects to receive records with a total of two fields
and three tags, its first box (i.e. splitter) only expects to see one
field and one tag per record. Due to flow inheritance the excess
fields and tags are routed around the box itself and are transparently
attached to records produced by the splitter box. The advantage
here is that boxes like splitter can be defined and implemented
in a context-free manner focussing only on fields and tags that are
relevant for the box itself. Still, on the coordination level the box
can be integrated into a streaming network even if concrete records
at some location carry additional fields and tags. As this example
demonstrates, flow inheritance is a prerequisite for compositional-
ity of streaming networks in S-NET.

4. Distributed S-Net
We extend S-NET by two placement combinators that allow the
programmer to map networks to processing nodes either statically
or dynamically based on the value of a tag contained in the data. Let
A denote an S-NET network or box. Static placement (written A@42)
maps the given network or box statically to one node, here node 42.
A location assigned to a network recursively applies to all of those
subnetworks and boxes within the network whose location is not
explicitly specified by another placement combinator. If no location
is specified at the outermost scope of S-NET network definition
hierarchy, a default location, zero, is used instead.

The second placement combinator is actually an extension of
the indexed parallel replication combinator. Instead of building
multiple local instances of the argument network, it distributes
those instances over several nodes. Let A denote an S-NET network
or box, then A!@<tag> creates instances of A on each node referred
to by <tag> in a demand driven way. Effectively, this combina-
tor behaves very much like regular indexed parallel replication, the
only difference being that each instance of A is located on a differ-
ent node.

Placement combinators split a network into sections that are
located on the same node; each node may contain any number of
network sections. Sections located in the same node are executed
in the same shared memory, which means that data produced in
one section can be consumed in another section on the same node
without any data transfers between address spaces.

We use ordinal numbers as the least common denominator to
identify nodes. These nodes are purely logical; any concrete map-



ping between logical nodes identified by ordinal numbers and phys-
ical devices is implementation dependent. The motivation for this is
that defining the actual physical nodes in the language level would
bind the program to the exact system defined at compile time. Using
logical nodes allows the decisions about the physical distribution to
be postponed until runtime. With MPI as our current middleware of
choice the number directly reflects an MPI node. In more grid-like
environments it may be more desirable to have a URL instead. We
consider this mapping of numbers to actual nodes to be beyond the
scope of S-NET.

When the placement of a network is defined, the end of the
input and the beginning of the output stream of the network are
always located on the given node. If the location of the network is
not explicitly defined, the end of the input stream of the network
is located in the node where the first component of the network is
located at. Correspondingly, the beginning of the output stream of
the network is located on the node in which the last component of
the network is located at. The input and output streams of a network
do not have to be on the same node. This feature allows an S-NET
application to move data from one node to another while processing
it.

net c r y p t o ( { d i c t , e n t r i e s , < d i c t _ s i z e > , < n u m _ e n t r i e s > ,
<num_nodes > , <num_branches >}
−> { word , < e n t r y >} | {< f a l s e > , < e n t r y >})

{
box s p l i t t e r ( { e n t r i e s , < n u m _ e n t r i e s >}

−> { password , s a l t , < e n t r y >}) ;

net l o a d _ b a l a n c e r ({ < e n t r y > , <num_nodes > ,
<num_branches >}
−> {< e n t r y > , <node > , <branch >})

connect [{ < e n t r y > , <num_nodes > , <num_branches >}
−> {< e n t r y > , <node = e n t r y % num_nodes > ,

<branch = ( e n t r y / num_nodes )
% num_branches >}] ;

net d i v i d e r ( { password , s a l t , d i c t ,
< d i c t _ s i z e > , <branch >}
−> { word } | {< f a l s e >})

{
box c r a c k e r ( ( password , s a l t , d i c t , < d i c t _ s i z e >)

−> ( word ) | ( < f a l s e > ) ) ;
}
connect c r a c k e r ! < branch >;

}
connect s p l i t t e r . . l o a d _ b a l a n c e r . . d i v i d e r !@ <node >;

Figure 3. Distributed S-Net specification of our running example

Fig. 3 shows a distributed version of our running example in-
troduced in the previous section; a graphical representation of the
network can be found in Fig. 4. We assume a system that consists
of multiple computing nodes each of which contains a number of
processing units, i.e. processors or cores. If each node had only
contained a single processor, it would be straightforward to run a
single cracker box on each node, and replacing the original index
split combinator around the box cracker by a placement split com-
binator would have achieved exactly this. Consequently, we cold
have achieved a distributed memory password cracker with chang-
ing only a few characters in the original S-NET code of Fig. 2.

However, assuming nodes with multiple cores, we have wrapped
the box cracker and the index split combinator inside another
subnetwork that is embedded into a placement split combinator.
This solution with the help of information about the number of
nodes and the updated load_balancer network extend the record
scheduling scheme to manage multiple nodes each containing the
same number of boxes. As the result of these modifications the
S-NET network is spread over multiple computing nodes. The ini-
tialization tasks including the splitting of the data and the load
balancer are still executed on the same node. The new divider

subnetwork will be built into each of the nodes and the records are
scheduled to each instance of the network in a round-robin fashion.

< < B o x > >
Splitter

< < F i l t e r > >
Load Balancer

< < B o x > >
Cracker

< < B o x > >
Cracker

...

< < B o x > >
Cracker

< < B o x > >
Cracker

...

...

Node 0

Node N

Figure 4. Illustration of the network presented in Fig. 3

Low-level non-declarative cost intuiton would suggest that
sending substantial constant data structures like the dictionary in
our running example repeatedly from one node to another can
hardly be efficient. However, S-NET is indeed a declarative lan-
guage and the chosen specification merely says that data like the
dictionary need to be present when needed. In Section 6 we will
describe techniques for data management that avoid useless data
transfers through runtime system support.

5. Distributed Runtime System
The runtime support for distributed-memory systems is built as
a separate layer on top of our existing shared memory runtime
system. One of the main design principles is to separate these layers
from each other as completely as possible. In principle, no S-NET
component needs to know about the distribution as the distribution
layer is entirely hidden by the realisation of streams. This design
facilitates maintenance and further development of both the shared
and the distributed memory versions inside the same code base.

As mentioned before we chose MPI as middleware for its wide-
spread availability and because it satisfies our basic needs for asyn-
chronous point-to-point communication and data marshalling. Each
of the logical nodes is implemented as an MPI process. The logical
node identifiers defined at the S-NET language level correspond di-
rectly to MPI process ranks. Accordingly, we leave the exact map-
ping of logical nodes to physical resources to the MPI implementa-
tion.

To ensure scalability of the S-NET runtime system implementa-
tion, the system nodes cooperate as peers: there is no central control
or name servers in the system that could become a performance bot-
tleneck. Each node is identical apart from the S-NET components
it contains.

On the language level, placement can be applied to any valid
network or box. The placement combinators divide the network
representation into multiple sections, each containing contiguous
sequences of runtime components that are mapped into the same
node. Each node may contain an unbounded number of sections
like this. If a subnetwork of some network is mapped into a differ-
ent node, a section is divided into multiple smaller sections. Due to
parallel composition, each section may have more than one input
and output stream.



The components do not send records directly to other nodes,
but the boundaries between the nodes are hidden behind streams.
To manage these streams each node has two active components:
an input manager and an output manager. Figure 5 illustrates the
architecture of a single node.

The output buffer of a section and the input buffer of the next
section can be considered as instances of the same buffer on differ-
ent nodes. Output and input managers transparently move records
between these buffers. Both managers are implemented with mul-
tiple threads, one for each connection. The reason for this is that
with blocking communication the threads can be used to propa-
gate congestion of the streams to preceding nodes without blocking
the whole node. Secondly, multi-threading is used to prevent dead-
locks. S-NET implementation uses bounded-size streams to prop-
agate congestion within the nodes. In single-threaded implementa-
tion in cases where there are two such sections in the same node
that one is reachable from the other, a dead-lock may occur if the
input manager blocks because of a full stream. In multi-threaded
implementation a dead-lock is not possible, because only one of
the inputs is blocked, not all of them. All the threads work com-
pletely independently and there is no shared state between them.

The input manager consists of one control thread that listens
for control messages sent by the other nodes and one input thread
per stream that arrives in to the node. The control thread listens
to requests to create new network sections and update messages
that contain information about new connections. Update messages
trigger creation of a new input thread. Each input thread listens to
exactly one connection, deserialises incoming records and passes
them to the input stream of the corresponding network section.

The output manager consists of an output thread per stream that
leaves the node. Each thread serves as a counterpart for an input
thread on some other node. Output threads simply serialise records
and send them to the node containing the next section.

Data management is separated from the stream management.
The box language data is not transferred between the nodes with
the records. Instead only a representation of the data, consisting of
the label of the field, the unique data identifier (UDI) of the data
and the current location of the data with accuracy of a node, is sent.
The real data is later fetched separately on demand. A UDI is a
globally unique name for a data item, that is used to refer the data
item without exact knowledge of its location in the memory.

The motivation for separation of the data and the records is that
a record may flow through several nodes before a particular data
element is consumed. By fetching a data element only into those
nodes where it is actually needed, unnecessary data transfers can be
avoided. Another motivation to separate the data and the records is
that, even though both of them are moved from one node to another,
the needs may be quite different. For example, records are assumed
to be relatively small messages, while the size of the data elements
may range from bytes to gigabytes.

Another active component, the data manager, is used to handle
data management needs of the distributed S-NET. References to all
data elements are stored into a hash table named data storage that
allows tracking of data elements currently residing on a node. UDIs
are used as hash table keys for searching specific data elements.

In general, the input manager controls all the communication
between the nodes, except the communication related to remote
data operations explained more in Section 6. This also gives the
input manager an important role in creation of new network sec-
tions. This is discussed more in the next section.

6. Managing Data Communication
In Distributed S-NET boxes are mapped to certain nodes. Hence,
data needs to be moved between the nodes. Data transfers may have
a serious effect on runtime performance, depending on the under-

lying system, amount of data to be moved and data access patterns
of the program. The programmer has the main responsibility in
achieving performance and can affect the performance by choos-
ing the right data access patterns, that is, minimising data transfers
between the nodes. This section describes how the prototype im-
plementation manages the box language data.

One of S-NET’s main design principles is to separate coordina-
tion from computation. As the result, the current shared-memory
implementation of S-NET is almost unaware of the box language
data. The data elements are simply collected into records and man-
aged through opaque pointers and copy and delete functions offered
by the language interfaces. Only the boxes know the data represen-
tation and can operate directly on the data. In a distributed memory
environment data management becomes somewhat more complex.
To be able to move data between the nodes in potentially heteroge-
neous environments the runtime system requires more information
about the data representation.

Motivated by the performance penalty of the data transfers, the
main principle of the data management is to avoid any unnecessary
data movement. In the shared memory S-NET implementation each
data element is directly stored into a record. In Distributed S-NET,
the box language data is not transferred inside the records over node
boundaries, but instead only a representation of the data consisting
of the labels and locations of each data element is included. The
motivation for this is that the fact that a record is passed to a node
does not imply that all the data of the record is needed there. In fact,
a record may flow through several nodes carrying exactly the same
data, in which case most of the data transfers would be unnecessary.
The tag values are always transferred with the records as they might
be needed for routing purposes.

S-NET requires abstract copy and delete operations from the
language interfaces, but doesn’t particularly define how the oper-
ations are to be performed. The current language interface imple-
mentations for C and SAC use reference counting, which goes well
hand-in-hand with S-NET’s functional behaviour requirements for
the boxes. In the distributed memory implementation, deep mem-
ory copies may be wasted in case the data is not used on the same
node but instead transferred to another node after the copy. Ref-
erence counting is a cheaper operation in this case. On the other
hand, always assuming reference counting unnecessarily limits the
language interface implementation.

This problem is solved by postponing the language interface
level copy until the copied data is actually needed. This is done
by implementing reference counting mechanism inside the runtime
system and only performing language interface level copy if there
are multiple fields referring the same data when one of the fields is
consumed by a box. This decision does not restrict possible future
language interfaces that perform real copying instead of reference
counting or inherent reference counting of any box language, as the
language specific copy operation is eventually done if it is actually
required.

There is also another advantage in introducing the runtime sys-
tem level reference counting. In addition to avoiding unnecessary
copies, also unnecessary data transfers may be avoided in some
cases. Since only the boxes can modify data and because of their
functional behaviour, it is safe to make assumptions about which
data elements are identical. Copies of a data element can be tracked
and in case a node contains a real copy of the data at the time when
another fetch for the same data occurs, the fetch can be satisfied
much more efficiently by using the local copy instead and simply
adjusting the reference counts properly.

The opaque data pointers in records are replaced by reference
objects. A reference object holds the label of the referred data ele-
ment and accounting information like the count of fields referring to
that particular data element through that reference. Data elements
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are identified by their UDIs. UDIs in our case consist of the identi-
fier of the node where the data is originally created and a running
counter specific to that node. UDIs never change during the life
time of a reference object. As data regularly migrates, the node part
of the UDI is not used for locating the data; that information is sep-
arately contained within the reference object. References in records
always point directly to the data element; no reference chains need
to be collapsed upon data access. The reference objects are used
to hide the reference counting and distribution of the data from the
rest of the runtime system.

In S-NET it is not generally decidable where some data element
is actually needed. This rules out any push communication. Only
when some data is actually requested by a box, the runtime system
transparently fetches the data as necessary. An exception are filters:
they may copy or discard data elements, but do not require us to
actually fetch the data at all. Instead we use remote copy and delete
operations: rather than loading the data onto the node that executes
the filter, the appropriate command is sent to the node that currently
hosts the data.

A node’s data manager organises all remote fetch, copy and
delete operations transparently to the rest of the runtime system.
Having such a unique component on each node ensures that, for
example, repeated fetch operations to identical data are avoided. In
a way, our data management system resembles a software COMA
(cache only memory architecture) where the data elements are
freely replicated and migrated to the nodes’ local memories [20].
Pulling data into nodes just before it is required by a box introduces
delays on box processing. Here, it becomes apparent why our
nodes are again multi-threaded themselves even if the number of
cores per node is small or the nodes are effectively unicores. In
a sequential node implementation the deferred data fetch would
have an adverse effect on performance as the actual processing
of data would generally be postponed until the last piece of data
has arrived. With our multi-threaded node implementations we
effectively hide the latencies inflicted by fetching remote data as
late as possible.

A data fetch protocol consist of three MPI messages. First a
request message is sent to the node where the data currently resides.
This request identifies the requested data element by its UID. The
data manager of that node then replies with a message containing
representation of the data type of the requested data element. The
data type is reconstructed in the other node and memory is allocated
for the data based on the type. After this the data manager transmits
the actual data. Since the S-NET runtime system is unaware of the
data representations of the box language interfaces, the language
interfaces play a crucial role in the data transfers. They for example
manage data type and data marshalling with the help of the MPI
library.
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Fig. 6 illustrates data management by means of an example. the
original instance of the data resides on node 1 and is locally referred
to by a single record. References to the data have been carried by
records to every other node in the system. None of the records
referring to the data has yet been consumed on nodes 2 and 4.



Both the nodes contain several records referring the data, possibly
as the result of local copies. These copies have been satisfied by
increasing the reference count. The local reference in these nodes
points to the original reference in node 1, as there is no local copy
of the real data in these nodes. In node 3 the case is somewhat
different: there have been at least two records referring to the data,
and one of them has been consumed. Because of this, the real data
has been fetched into the node and all the local references point
to the local copy instead of the original copy on node 1. In case
the record on node 3 is moved, for example to node 4, the record
is modified to point to the reference on that node, and the data in
node 3 is deleted, as the last reference to it would be lost.

7. Experimental Evaluation
We experimentally evaluate our approach using the running exam-
ple of a password cracker. The boxes of the program are imple-
mented as C language functions using S-Net’s C language inter-
face. We use Ubuntu’s British-English dictionary containing about
100,000 entries.

In the absence of multi-memory multicore processors for the
time being, our first test environment is a small cluster of 1.8
GHz Dual-Core AMD Opteron 1210 processors connected through
Gigabit Ethernet and running Ubuntu Linux and MPICH-2 [2] with
maximum threading support enabled. We investigate three problem
sizes trying to crack 12, 36 and 60 passwords, respectively. We
always use the same word as passwords, which generates more or
less even workloads on our system.

nodes 12 36 60
1 1.006 1.002 1.002
2 0.503 0.502 0.504
3 0.337 0.337 0.337

Figure 7. Relative wall clock execution times of the running ex-
ample using 1, 2 or 3 nodes and dictionaries with 12, 36 and 60
entries

Fig. 7 shows relative wall clock execution times measured on
our experimental setup, i.e. the execution time of a distributed
version of our running example on 1, 2 or 3 nodes divided by
the execution time of a non-distributed version running on a single
node. We observe nearly linear speedups for all size classes. If you
wonder why we do not see a 6-fold speedup given that we have
a total of six cores, bear in mind that the non-distributed version
used as the baseline of this experiment already makes effective use
of the two cores of a single machine. Because of this the increase
in computing power is only threefold.

Our second experimental setup consists of a cluster of 14
Pentium-III based dual-processor nodes running at 1.4GHz con-
nected through 100Mbit Ethernet. We use a similar software in-
stallation as before: Ubuntu Linux and OpenMPI. Fig. 8 demon-
strates that the problem scales well for this larger number of dual-
processor compute nodes.

In Fig. 9 we show results from using the same experimental
setup as before, but changing the password cracking problem such
that we actually search for random words from the dictionary. This
naturally results in an uneven workload distribution. Nevertheless,
the figures demonstrate good scaling behaviour, although absolute
performance degrades slightly as expected.

Indeed, our chosen application is embarrassingly parallel, but
one needs to take into account that these speedups on distributed
memory architectures have been achieved without any classical

parallel programming involved, solely by means of S-Net coordi-
nation of conventional C-implemented components. 1

8. Related Work
The coordination aspect of the proposed stream processing lan-
guage is related to a large body of work in so-called data-driven
coordination, see [18] for a survey of this area. An early, lay-
ered approach that, like S-NET, treats coordination and computa-
tion as strictly orthogonal concerns is Linda [7]. As S-NET, Linda
is not a “complete” programming language as such, as it exclu-
sively administers process creation and the coordination of com-
putation which is implemented in a separate language. Implemen-
tations of the Linda model can be found for many programming
languages, see [21, 23, 25] for a non-exhaustive selection. Unlike
in S-NETwith its stream based communication model, communi-
cation in Linda uses a shared tuple space which allows processes
to interact with each other by adding, reading and removing data
tuples from this shared space.

The earliest closer related proposal, to our knowledge, is the co-
ordination language HOPLa from the Utrecht University’s Ariadne
project [6]. It is again a Linda-like coordination language, which
uses record subtyping (which they call “flexible records”) in a man-
ner similar to S-NET, but does not handle variants as we do, and has
no concept of flow inheritance. Also, HOPLa has no static “wiring”
and does not use type to establish a stream configuration.

Another early source to mention is the language SISAL [5],
which pioneered high-performance functional array processing
with stream communication. SISAL was not intended as a coordi-
nation language, though, and no attempt at the separation of com-
munication and computation was made in it. Still it is important to
acknowledge the stream variables of SISAL as an early example of
task decomposition using streams.

Also functionally based is the language Hume [17]. Hume’s
conceptual design is not that of a pure coordination language, but
a fully-featured programming language, primarily aimed at em-
bedded and real-time systems. Programming in Hume follows a
layered approach. Values and functions are defined in a fully-
functional expression language, and interaction between functions
is defined in a coordination language. The finite-state machine
based coordination language connects any desired amount of in-
bound and outbound “wires” to a function to allow for interac-
tion between the components (i.e. the functions) of a program.
Originating from Hume’s primary domain and the related neces-
sity for space- and time bound analysis [14], the expression lan-
guage is an inherent part of the system and cannot be freely chosen
as in S-NET. For the same reason, dynamically evolving network
structures as are possible in S-NET using serial and parallel repli-
cation, are not expressible in Hume.

We shall also cite the work on the language Eden [16] as re-
lated to our effort, since it is based on the concept of stream com-
munication. Here streams are lazy lists produced by processes de-
fined in Haskell using a process abstraction and explicitly instan-
tiated, which are coordinated using a functional-style coordination
language. Also, like S-NET, Eden defines a connection topology
for the processing entities; it however deploys the processes com-
pletely dynamically and even allows completely dynamic channels.
Eden has no provision for subtyping and does not integrate topol-
ogy with types.

Another recent advancement in coordination technology is
Reo [1]. The focus of the language Reo is on streams but it concerns
itself primarily with issues of channel and component mobility, and

1 We are fully aware that both architectural setups are not ideal to demon-
strate what our system is intended for, but for the time being we had no
access to a larger cluster of up-to-date multicore nodes.
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it does not exploit static connectivity and type-theoretical tools for
network analysis.

Thematically closely related to the presented distributed run-
time system of S-NET are many systems that aim to orches-
trate computation in a distributed memory setting. We cite here
FASAN [4], a coordination language primarily designed for re-
cursive numerical algorithms. A FASAN program describes the
data-flow graph of an application whose nodes are sequential mod-
ules written in an external computation language like C or Fortran.
Distributed execution of a FASAN program is implemented using
PVM [22].

Outside the domain of high-level programming languages we
acknowledge integrated problem solving environments for scien-
tific computing, e.g. SciRun [26]. These are graphical environments
that allow the construction of simple data flow style applications
based on standard component models for distributed computing.
They show a surprising similarity with graphical representations of
S-NET, the difference being that we use graphical notation merely
for the sake of illustration for a component network itself described
as data flow program, whereas integrated problem solving environ-

ments take graphics first and generally lack the foundations of a
programming language based solution.

9. Conclusion
We extended the S-NET data flow coordination language by two
new network combinators in order to support architectures where
several cores share their memory while communication between
different groups of course is based on message passing. These are
the static placement combinator and the dynamic indexed place-
ment combinator. They allow programmers to partition an S-NET
network over several compute nodes. As a result the runtime sys-
tem deals with two levels of concurrency: coarse-grained concur-
rency on the level of compute nodes using distributed memory com-
munication and fine-grained concurrency within each node using
shared memory communication managed by our existing runtime
system [8].

The main challenges addressed by the implementation are the
dynamic construction of the S-NET network runtime representa-
tion spanning over several nodes, routing of records between the



nodes and data management problems caused by the separation of
the network into multiple distinct address spaces. Preliminary ex-
periments show that the approach taken allows us to achieve con-
siderable speedups on clusters of multicore processors with a dis-
tributed memory architecture without compromising the high-level
programming style of S-NET, i.e. without addressing architectural
detail or low-level organisational concerns.

An interesting area of future research is the combination of Dis-
tributed S-NET with the ongoing research on reconfiguration and
self-adaptivity described in S-NET [19]. In conjunction, the two
lines of research add further expressiveness to S-NET: distributions
of networks across distributed memory environments can dynami-
cally be changed either through external events (reconfiguration) or
internal observation (self-adaptivity).
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