Parallel Processing Letters
© World Scientific Publishing Company

SAC — FROM HIGH-LEVEL PROGRAMMING WITH ARRAYS
TO EFFICIENT PARALLEL EXECUTION

CLEMENS GRELCK

Institute of Software Technology and Programming Languages, University of Libeck
Ratzeburger Allee 160, 23538 Liibeck, Germany

and

SVEN-BODO SCHOLZ

Institute of Computer Science and Applied Mathematics, University of Kiel
Olshausenstr. 40, 24098 Kiel, Germany

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

SAC is a purely functional array processing language designed with numerical ap-
plications in mind. It supports generic, high-level program specifications in the style
of ApL. However, rather than providing a fixed set of built-in array operations, SAC
provides means to specify such operations in the language itself in a way that still al-
lows their application to arrays of any rank and size. This paper illustrates the major
steps in compiling generic, rank- and shape-invariant SAC specifications into efficiently
executable multithreaded code for parallel execution on shared memory multiprocessors.
The effectiveness of the compilation techniques is demonstrated by means of a small case
study on the PDE1 benchmark, which implements 3-dimensional red/black successive
over-relaxation. Comparisons with HPF and ZPL show that despite the genericity of code,
SAC achieves highly competitive runtime performance characteristics.

1. Introduction

Programming language design is basically about finding the best possible trade-
off between support for high-level program specifications and efficient runtime be-
havior. In the context of array programming, the approach taken by the so-called
data parallel languages seems to be well suited to meet this goal: using functions
that operate on entire arrays rather than loop nestings on individual elements does
not only improve program specification but also provides opportunities for compilers
to generate parallel code.

Intrinsic array operations in FORTRAN-90/HPF allow for very concise specifica-
tions of algorithms that manipulate entire arrays in a homogeneous way. However,
if operations depend on the structure of argument arrays, things become more dif-
ficult. One remedy to this problem, other than using conventional loop nestings,
is the so-called triple-notation. Unfortunately, it has some drawbacks as well: pro-

Parallel Processing Letters

gram specifications become less readable, more error-prone, and triple-annotated
assignments restrict the arrays involved to particular ranks.

The programming language ZPL [4] offers a more elegant solution for this prob-
lem by introducing regions [5]. Regions are either statically or dynamically defined
sets of array indices. They can be used to map any scalar operation to all the
elements referred to by a region. In order to enable more sophisticated mappings,
e.g. stencil computations, ZPL provides prepositions. They specify mappings of the
indices, e.g., linear projections or permutations. Due to the dynamic scoping of
regions, in ZPL entire procedures can be applied to arrays of varying ranks. Unfor-
tunately, this concept precludes applications where the functionality of a procedure
also depends on the shape of its argument arrays rather than solely on their element
values because regions and prepositions are not first-class objects in ZPL.

The functional array language SAC (for Single Assignment C) [14] takes the
idea of high-level generic array programming even one step further. SAC introduces
arrays as abstract data objects with certain algebraic properties rather than merely
as mappings into memory; in particular, all memory management for arrays is done
implicitly by the runtime system. In contrast to FORTRAN-90/HPF, SAC does
not provide compound array operations as intrinsics. Instead, so-called WITH-loop
expressions (or WITH-loops for short) allow to define such array operations in SAC
itself. Still, they may be applied to arrays of any rank and size, a property which
in other languages is usually restricted to built-in primitives.

Similar to the region concept of ZPL, WITH-loops can be used to map scalar
operations on subsets of the elements of argument arrays. However, there are two
main differences between WITH-loops and regions. First, WITH-loops are legitimate
right-hand-side expressions that evaluate to complete arrays, and second, the set
of array indices to which a scalar operation is to be applied as well as mappings of
index vectors are specified by ordinary (first-class) expressions. The latter property
allows for much more generic program specifications in the style of APL.

The functional side-effect free semantics in general and the WITH-loop-construct
in particular are amenable to implicit parallelization. At the time being the SAC
compiler on demand generates multithreaded code for parallel execution on shared
memory multiprocessors [6,9]. In conjunction with rigorous type specialization and
optimization schemes runtime performance characteristics have been achieved which
despite the high-level generic programming methodology have been found to be
highly competitive with other approaches [12,8].

This paper outlines the major steps in compiling rank- and shape-invariant high-
level SAC programs into efficiently executable multithreaded code. For illustration
purposes, we refrain from giving exact compilation schemes and employ a rather
simple example instead: rotation of an array along multiple axes. Starting out
from a high-level, generic rank- and shape-invariant SAC specification taken from
the standard array library, effects of major compilation phases towards efficiently
executable C code are identified in a step-by-step process.

Advantages of the generic programming model encouraged by SAC and the ef-
fectiveness of the associated compilation technique in order to still achieve compet-
itive performance characteristics are demonstrated by means of a small case study.
The PDE1 benchmark realizing 3-dimensional red/black successive over-relaxation

SAC — From High-level Programming with Arrays to Efficient Parallel Ezecution

is implemented as two layes on top of multi-axis rotation. While the first layer
consists of a completely benchmark-independent generic relaxation kernel, all code
specific to the PDE1 benchmark is added as a second layer. Despite this generic
approach experiments show that SAC manages to substantially outperform more
conventional benchmark implementations in HPF and in ZPL both sequentially as
well as in parallel.

The paper is organized as follows. Following a brief introduction to SAC in
Section , the compilation process is sketched out in Section . Section describes the
small case study involving the PDE1 benchmark while Section concludes.

2. SAC — Single Assignment C

The core language of SAC is a functional subset of C, a design which aims at
simplifying adaptation for programmers with a background in imperative program-
ming techniques. This kernel is extended by n-dimensional arrays as first class
objects. Array types include arrays of fixed shape, e.g. int[3,7], arrays of fixed
rank, e.g. int[.,.], arrays of any rank, e.g. int [+], and, last but not least, a most
general type encompassing both arrays and scalars: int [*]. SAC provides a small
set of built-in array operations, basically primitives to retrieve data pertaining to
the structure and contents of arrays, e.g. an array’s dimension (dim(array)), its
shape (shape(array)), or individual elements (arraylindez-vector]).

modarray (Exzpr , Expr)
fold (FoldOp, Expr , Expr)

WithLoopExpr = with (Generator) Operation
Generator = Expr Relop Identifier Relop Expr [Filter]
Relop = < | <=
Filter = step Empr[width Expr]
Operation = genarray (Expr , Ezxpr)

|

|

Figure 1: Syntax of with-loop expressions.

Compound array operations are specified using WITH-loop expressions, whose
syntax is outlined in Fig. 1. A wrTH-loop basically consists of two parts: a generator
and an operation. The generator defines a set of index vectors along with an index
variable representing elements of this set. Two expressions, which must evaluate to
vectors of equal length, define lower and upper bounds of a rectangular index vector
range. An optional filter may further restrict this selection to grids of arbitrary
width. Let a, b, s, and w denote expressions that evaluate to vectors of length n,
then

(a <= ivec < b step s width w)
defines the following set of index vectors:
{ivec | Vje{o,..n-1} : aj < ivec; <bj A (ivec; —a;) mod s; <w;}
The operation specifies the computation to be performed for each element of the
index vector set defined by the generator. Let shp denote a SAC expression that
evaluates to a vector, let i_vec denote the index variable defined by the generator,
let array denote a SAC expression that evaluates to an array, and let expr denote

Parallel Processing Letters

any SAC expression. Moreover, let fold_op be the name of a binary commutative
and associative function with neutral element neutral. Then

e genarray(shp, expr) creates an array of shape shp whose elements are the
values of expr for all index vectors from the specified set, and 0 otherwise;

e modarray(array, expr) defines an array of shape shape (array) whose el-
ements are the values of expr for all index vectors from the specified set, and
the values of array[i_vec] at all other index positions;

e fold(fold-op, meutral, expr) specifies a reduction operation; starting out
with neutral, the value of expr is computed for each index vector from the
specified set and these are subsequently folded using fold_op.

The usage of vectors in WITH-loop generators as well as in the selection of array
elements along with the ability to define functions which are applicable to arrays
of any dimension and size allows for implementing APL-like compound array op-
erations in SAC itself. This feature is exploited by the SAC array library, which
provides, among others, element-wise extensions of arithmetic and relational oper-
ators, typical reduction operations like sum and product, various subarray selection
facilities, as well as shift, rotate, and transpose operations. More information on
SAC is available at http://www.sac-home.org/ .

3. The compilation process

This section sketches out the major steps in compiling rank- and shape-invariant
high-level SAC program specifications into efficiently executable multithreaded code.
For illustration purposes, we focus on a single example rather than providing com-
plete compilation schemes. Consider for example the function

int[*] rotate (int[.] offsets, int[*] A)
which rotates the given integer array A in each dimension by as many elements as
are specified by the corresponding element of the vector offsets. Note that the
function rotate is applicable to arrays of any rank and, hence, the first argument
offsets may be a vector of varying length.

The implementation of rotate, as it may be found in the SAC array library, is
shown in Fig. 2. Rotation along multiple axes is realized as a sequence of rotations
along a single axis. If the length of the vector of offsets does not match the rank of
the given array, either the array remains unrotated along rightmost axes or surplus
rotation offsets are ignored. Rotation along a single axis starts with extracting
the respective offset from the vector offsets and its normalization to the range
between 0 and the extent of A along this axis.

Rotation itself is realized by dividing the set of legitimate index vectors of A
into two partitions a and b, as illustrated in Fig. 3 for the 2-dimensional case. The
genarray-WITH-loop defines an intermediate array B of the same shape as A, which
contains all elements belonging to partition b of array A being correctly rotated to
their new locations. According to the semantics of the WITH-loop, the remaining
elements of B (the white box in Fig. 3) are set to zero. The modarray-wITH-loop
defines the result array C with partition a from array A being rotated to its new loca-
tion and with the remaining elements being implicitly taken from the corresponding

SAC — From High-level Programming with Arrays to Efficient Parallel Ezecution

int [*] rotate (int[.] offsets, int[*] A)
{
for (i=0; i < min(shape(offsets)[[0]], dim(A)); i+=1)
{
max_rotate = shape(A)[[i]];
offset = offsets[[i]] % max_rotate;
if (offset < 0) offset += max_rotate;

lower_bound
upper_bound

modarray(O * shape(A), [i], offset);
modarray (shape(A), [i], offset);

B

with (. <= iv < upper_bound)
genarray(shape(A), A[iv + shape(A) - upper_bound]);

Q
n

with (lower_bound <= iv <= .)
modarray(B, A[iv - lower_bound]);

A =C;
T

return(A);

}

Figure 2: SAC implementation of multi-axis array rotation.

=TT

/////] -

| ower _bound upper _bound

Figure 3: Illustration of rotation along single axis.

index positions of the array B. The boundary vectors of the WITH-loop generators
are defined using the SAC function modarray (array, indez,value), which yields
a new array identical to array except for position indez which is set to value.

Note that we have intentionally defined rotate on the most general type int [*],
which includes zero-dimensional arrays aka scalars. In this case, the FOR-loop is
executed zero times, and rotate degenerates to the identity function.

The first major step in the compilation of SAC programs is a rigorous type
inference and specialization scheme. Type specifications are assigned to each ex-
pression, and type declarations for local variables are inserted where missing. As
for the hierarchy of array types, the inference scheme aims at identifying types as
specific as possible, preferably ones with complete shape information. Step by step,
rank- and shape-invariant program specifications are transformed into collections of
functions tailor-made for specific problem sizes. Fig. 4 shows a specialized version
for rotating 2-dimensional arrays with 50 rows and 80 columns (int [50,80]).

After type inference, various conventional optimization techniques [1] such as
function inlining, constant folding, constant propagation, loop unrolling, or dead
code removal are repeatedly applied to the type- and shape-annotated code. As-
suming an application of the specialized version of rotate to a constant offset

Parallel Processing Letters

int [*] rotate (int[2] offsets, int[50,80] A)
{
int [50,80] B, C;
int [2] iv, upper_bound, lower_bound;
int i, offset, max_rotate;

for (i=0; i < min(shape(offsets)[[0]], dim(A)); i+=1)
{

max_rotate = shape(A)[[i]];

offset = offsets[[i]] % max_rotate;

if (offset < 0) offset += max_rotate;

lower_bound
upper_bound

modarray(O * shape(A), [i], offset);
modarray (shape(A), [i], offset);

B = with (. <= iv < upper_bound)

genarray(shape(A), A[iv + shape(A) - upper_bound]);

C = with (lower_bound <= iv <= .)
modarray(B, A[iv - lower_bound]);

A =C;
}

return(A);

}

Figure 4: Function rotate after type specialization.

vector [-1,2] and an array A, i.e, a rotation of A upwards by one row and to the
right by two columns, these optimizations yield a code fragment similar to the one
shown in Fig. 5. To maintain some resemblance with preceding versions, dead code
is displayed in the shaded grey areas rather than being removed.

Exact shape information allows the compiler to replace applications of the built-
in functions dim and shape by the corresponding values. This creates many addi-
tional opportunities for constant propagation and folding. Moreover, knowledge of
the rank of A and of the shape of offsets determines the number of iterations of
the FOR-loop and, hence, allows its unrolling. As a consequence, the loop variable
i becomes constant in both iterations, enabling further optimization. Eventually,
all but the four WITH-loops can be eliminated as dead code.

Although this implementation avoids expensive modulo operations in index cal-
culations, it is still far from being efficient. A naive compilation would lead to the
creation of three temporary arrays before the function result itself is computed. The
creation of many temporary arrays has several serious drawbacks. The predominant
problem is the increase in memory accesses that are required. As for most modern
computer architectures intensive memory accesses are by far the most performance
limiting operations, the ratio between memory accesses and value transforming op-
erations should be kept as low as possible.

Other problems occur at the compilation into concurrently executable code. The
data dependencies between the various temporary arrays increase the demand for
synchronization. As a consequence, the granularity of tasks is decreased which has
a direct impact on the overall performance achieved.

SAC — From High-level Programming with Arrays to Efficient Parallel Ezecution

max_rotate = 50;
offset = -1;
offset = 49;

lower_bound = [49, 0];
upper_bound = [49,80];

B = with ([0,0] <= iv < [49,80])
genarray([50,80], A[iv + [1,0]]1);

C = with ([49,0] <= iv < [50,80])
modarray(B, A[iv - [49,0]]1);

A =C;

max_rotate = 80;
offset = 2;

lower_bound = [0,2];
upper_bound = [50,2];

B = with ([0,0] <= iv < [50,2])
genarray([50,80], C[iv + [0,78]]);
C = with ([0,2] <= iv < [50,80])

modarray(B, C[iv - [0,2]1]1);

Figure 5: rotate([-1,2], A) after general optimizations.

To avoid all these problems, a SAC-specific optimization technique called WITH-
LOOP-FOLDING [13] aims at eliminating costly creation of temporary arrays by con-
densing subsequent WITH-loops into a single though more general variant. Fig. 6
illustrates the effect of WITH-LOOP-FOLDING on the running example.

C = with (iv)

[0, 0] <= iv < [49, 2] : A[iv + [1, 78]];
[0, 2] <= iv < [49,80] : A[iv + [1, -2]1];
[49, 0] <= iv < [560, 2] : A[iv + [-49, 78]];
[49, 2] <= iv < [50,80] : A[iv + [-49, -21];

genarray([50,80]);

Figure 6: rotate([-1,2], A) after WITH-LOOP-FOLDING.

WITH-LOOP-FOLDING results in a special (compiler internal) form of WiTH-loops
called multigenerator WITH-loop. Rather than specifying a single generator and
a single associated element definition with an implicit default specification for all
elements not covered by the generator, multigenerator WITH-loops consist of a com-
plete partition of the target array defined by a set of generators each with associated

Parallel Processing Letters

explicit element specification. For the 2-dimensional rotation example, the four or-
dinary WITH-loops can be condensed into a single multigenerator WITH-loop with
four sets of index vectors. All four operations attached to these index ranges are
selections into the original array A. They only differ by the offsets added to the
running index iv.

As the compiler ensures that all index sets are mutually disjoint, in the final
code generation phase arbitrary traversal orders through the array elements can be
chosen. This flexibility allows cache or scheduling considerations to be taken into
account (cf. [10]).

Fig. 7 sketches out the nestings of FOR-loops that are generated for the running
example. A closer examination of the loops shows that the generators are not
compiled individually. Instead, loop nestings are generated that linearly traverse
the associated memory for improved locality of array references. Code shown in
Fig. 7 is simplified in various aspects to maintain readability, e.g., reference counting
instructions for implicit memory management are omitted, and array references are
still written in SAC style.

int [60,80] rotate (int[2] offsets=[-1,2], int[50,80] A)
{
C = ALLOCATE_ARRAY([50,80], int);
for(iv0=0; iv0<49; iv0++) {
for(ivi=0; ivi<2; ivi++) {
C[iv0,iv1] = A[ivO+1, iv1+48];
}
for(ivi=2; ivi<80; ivi++) {
CLiv0,iv1] = A[ivO+1, ivi-2];
}
T
for(iv0=49; iv0<50; ivO0++) {
for(ivi=0; ivi<2; ivi++) {
C[iv0,iv1] = A[iv0-49, iv1+48];
}
for(ivi=2; ivi<80; ivi++) {
C[iv0,ivi] = A[iv0-49, ivi-2];
}
}
return(C);

}

Figure 7: rotate([-1,2], A) after code generation.

As pointed out earlier, the SAC compiler also supports generation of multi-
threaded code for parallel execution on shared memory systems. The code gener-
ated for the rotate example is outlined in Fig. 8. Whereas the initial allocation of
memory for the result array may be adopted from the sequential code generation
scheme, the iteration space traversed by the following loop nestings needs to be par-
titioned into several disjoint subspaces, one for each thread. The pseudo statement
MT_EXECUTION specifies that the following code block may be executed by multiple
threads. Their exact number is given by the runtime constant #THREADS; individual
threads are identified by the variable tid.

Since parallelization of code and transformation of multigenerator WITH-loops
into potentially complex nestings of FOR-loops are to some extent orthogonal issues,

SAC — From High-level Programming with Arrays to Efficient Parallel Ezecution

int[560,80] rotate (int[2] offsets=[-1,2], int[50,80] A)
{
C = ALLOCATE_ARRAY([50,80], int);
MT_EXECUTION(O <= tid < #THREADS) {
do {
sb0, se0, sbl, sel, cont
= SCHEDULE(tid, #THREADS, shape(C), STRATEGY);

for(ivO=max(0,sb0); ivO<min(49,se0); ivO++) {
for(ivi=max(0,sbl); ivi<min(2,sel); ivi++) {
CLiv0,iv1] = A[ivO+1, ivi+48];
T
for(ivi=max(2,sbl); ivi<min(80,sel); ivi++) {
CLiv0,iv1] = A[iv0+1, ivi-2];
}
}
for(ivO=max(49; ivO<min(50,se0); ivO0++) {
for(ivi=max(0,sbl); ivi<min(2,sel); ivi++) {
C[iv0,iv1] = A[iv0-49, ivi+48];
T
for(ivi=max(2,sbl); ivi<min(80,sel); ivi++) {
C[iv0,ivi] = A[iv0-49, ivi-2];
T
}
}
while (cont);
T
return(C);

}

Figure 8: rotate([-1,2], A) after multithreading.

we aim at reusing existing sequential compilation technology as far as possible.
This is achieved by introducing a separate loop scheduler SCHEDULE, which based
on the total number of threads and individual thread identifyers computes disjoint
rectangular subranges of the iteration space. The original loop nesting is only
modified insofar as each loop is restricted to the intersection of its original range
and the iteration subspace defined by the scheduler. As indicated by the additional
scheduler argument STRATEGY this design offers the opportunity to plug-in different
scheduling techniques including dynamic load balancing schemes. A more detailed
description of compilation to multithreaded target code as well as the associated
runtime system may be found in [6,9].

4. Performance evaluation

This section is to investigate and to quantify the performance impact of the
highly generic programming style encouraged by SAC in general and the effective-
ness of the compilation techniques introduced in the previous section in particular.
Since a simple rotate operation, as used in the previous section for illustration pur-
poses can hardly be considered a representative operation by itself, we choose the
PDE1 benchmark instead, which approximates solutions to 3-dimensional discrete
Poisson equations by means of red/black successive over-relaxation. It has pre-
viously been studied in compiler performance comparisons in the context of HPF

Parallel Processing Letters

[11,2], and reference implementations are available for various languages.

double[+] RelaxKernel(double[+] u, double[+] weights)
{
res = with (O*shape(weights) <= iv < shape(weights))
fold(+, weights[iv] * rotate(1-iv, u));

return(res);

}

double[+] PDE1(int iter, double hsq, double[+] f, double[+] u,
bool[+] red, bool[+] black, double[+] weights)
{
for (nrel=1; nrel<=iter; nrel+=1) {
u = where(red, hsq * f + RelaxKernel(u, weights), u);
u = where(black, hsq * f + RelaxKernel(u, weights), u);

}

return(u);

}

Figure 9: SAC implementation of PDE1 benchmark.

Fig. 9 shows a SAC implementation of PDE1. It is based on a highly generic aux-
iliary function RelaxKernel, which is designed to be applicable in various contexts
where relaxation is required. It realizes a single relaxation step on the argument
array u, which may be of any rank and of any size. The operation is parameterized
over a stencil description specified by an array of weights which implicitly steers the
summation of weighted neighbor elements. Using the rotate function discussed in
the previous section this operation can be specified elegantly without any explicit
element selections. The key idea is to sum up entire arrays, that are derived from
the original array by rotation and multiplication with the respective component of
the array of weights.

In case of PDE1, relaxation is performed on a 3-dimensional array using a 6-point
stencil with identical weights for all six direct neighbors. Therefore, the (constant)
array of weights has to be chosen as follows:

[LCCod, 0d, 0d], [0d, 1d/6d4, 0d], [o4, 0d, 0d] 1,
[[od, 1d/6d, 0d], [1d/6d, 0d, 1d/edl, [od, 1d/éd, 0d] 1,
[[od, 0d, 0d], [0d, 1d/6d, od], [od, 0d, 0d] 1 1]

Governed by the shape of this array, i.e. [3,3,3] the argument array is rotated
in all 27 possible directions and multiplied by the corresponding weight coefficient.
However, as most of the weights turn out to be zero, after optimization, only 5
additions remain.

The alert reader may observe that using rotate as basis for RelaxKernel implic-
itly implements periodic boundary conditions. As PDEI1 requires fixed boundary
conditions the application of RelaxKernel has to be restricted to the inner elements
of the array. This is achieved by embedding the relaxation step into the where func-
tion from the SAC standard library. It takes a boolean mask and two arrays of equal
shapes as arguments and yields an identical-shaped array as result. Depending on
individual mask elements it either selects the corresponding element of the second
argument array (true) or that of the third one (false). This flexibility allows the

SAC — From High-level Programming with Arrays to Efficient Parallel Ezecution

restriction to inner elements to be combined with the benchmark requirement to
restrict relaxation alternatingly to two different sets of elements, the red set and
the black set. These two applications of where are finaly embedded into a simple
for-loop realizing the desired number of iterations, which makes up the entire body
of the function PDE1.

Experiments with respect to the runtime performance of this SAC implemen-
tation of PDE1 have been made on a 12-processor SUN Ultra Enterprise 4000.
They are compared with the outcomes of similar experiments involving an HPF
implementation compiled by the ADAPTOR HPF-compiler v7.0 [3] using PvMm as
communication layer and ZpPL implementation using zc v1.15.7 and MpicH. Both
the HPF as well as the ZPL implementation of the PDE1 benchmark are taken from
the corresponding compiler’s demo codes. In order to compare all three codes on a
reasonably fair basis despite the usage of different underlying communication layers
startup overhead is eliminated by statistical measures.

80| o u
o o
& = E F I E
6.0
40 |2 8] |8 o [o] o
3 18 2§ 8
© <
O [
643, 1 iteration 2563. 1 iteration

Figure 10: Single processor runtime performance.

g 10 ‘ \ g 10 ; ‘ ‘
5 64 x 64 x 64 5 256 x 256 x 256
£ 9 —e— SAC £ 9 —*— SAC
5 ---e— HPF P 5 ---e--- HPF
s oo ZPL 5 L[---e--- ZPL
g 8 / g 8
g 7 2 7
S 6 8 6 e
< <]
(=% o
@ 5 @ 5 &
= g
o 4 g 4
=}
ERE 2 s 4
&] _e - -
® 2 e 2 4 e
=3 PSR S <% T
S 1 - : 3 1 s
@ o 5 - o e®
L o Lozt g 0 BEreer ST
) (%)
1 2 4 6 8 10 1 2 4 6 8 10
Number of processors involved. Number of processors involved.

Figure 11: Multiprocessor runtime performance.

Fig. 10 shows sequential runtimes for two different problem sizes: 64% and 2563
grid elements, respectively. It turns out that despite the high-level generic approach
characterizing the SAC implementation it clearly outperforms both the HPF and the

Parallel Processing Letters

ZpL implementation. Multiprocessor performance achieved by all three candidates
is shown in Fig. 11 relative to sequential execution of SAC code. While SAC achieves
a maximum speedup of about eight using ten processors for both problem sizes, HPF
and ZpL also achieve substantial gains by parallel execution, but substantially suffer
from their inferior single processor performance.

Being powers of two, both benchmarking problem sizes may produce cache effects
which could render the findings unrepresentative in general. Whereas the SAC
compiler addresses the issue of cache effects by specific code optimizations [7,6], the
other compilers may or may not have similar capabilities. To quantify these effects
we have repeated all experiments with two slightly different problem sizes which
are unlikely to be subject to cache thrashing. Sequential and parallel performance
figures for grid sizes of 682 and 260° elements are given in Fig. 12 and in Fig. 13,
respectively.

8.0 QO o [1] Q o)
d T N T N
6.0] (] (7]
1S 1S = %) %) %)
8.9 |0 w0
4.0 X 8 16 e
2.0
YO]
683, 1iteration 2603. 1 iteration

Figure 12: Single processor runtime performance.

g 12 T T g 12 T T T
= 68 x 68 x 68 S 260 x 260 x 260
g 11 [—e— SAC ¢ 11 ff—e— SAC
5 ——e— HPF 5 -—e— HPF
€10 e zpL € 10M o zpL
2 9 2 9
o o
8 8 3 8 %
s 7 s 7
(=8 o
2 6 2 6 e
<) > .
£ 5 = 5
n 2]
= Sy
2 3 2 3
°© ° IO -
g 2 S 2 -
S 1 oS 1 el
§_ o Lg § o j_iiff./,]:w'-f‘"""'”"””W“
7] (7]
1 2 4 6 8 10 1 2 4 6 8 10
Number of processors involved. Number of processors involved.

Figure 13: Multiprocessor runtime performance.

Whereas sequential SAC runtimes increase more or less proportionally to the
increase in grid elements, substantial performance gains can in fact be observed for
HPpF and for ZrL. However, SAC still outperforms both of them by factors. Hence,
cache effects play some role in the initial experiments but not the dominant one.

With respect to parallel performance, as shown in Fig. 11, it can be observed that

SAC — From High-level Programming with Arrays to Efficient Parallel Ezecution

SAC even achieves superlinear speedups for the problem size 68% while speedups
for 260° grid elements are identical to what is observed for 256° elements. In con-
trast, scalability of both the HPF and the ZPL implementation is less than before.
Although they start from a better sequential base line relative to SAC maximum
speedups are about the same. This observation can be explained by the fact that
unlike SAC they both use distributed memory models as underlying communication
layers. Consequently, memory layouts are different for each number of processors
and, hence, some of the cache problems are solved incidentally by employing increas-
ing numbers of processors. This effect improves scalability in the initial experiments.
In contrast, the SAC implementation uses the same memory layout for any number
of processors and, thus, does not show similar effects.

5. Conclusion

The major design goal of SAC is to combine highly generic specifications of array
operations with compilation techniques for generating efficiently executable multi-
threaded code. This paper illustrates the major steps in the compilation process by
means of a basic SAC-implemented array operation from the standard library: a
rank- and shape-invariant implementation of multi-axis rotation. The effectiveness
of the measures described is investigated by means of a highly generic SAC imple-
mentation of the PDE1 benchmark based on multi-axis rotation. Despite its high
level of abstraction the SAC implementation substantially outperforms benchmark
implementations in the data parallel languages HPF and ZPL both in sequential and
in parallel execution. This shows that high-level generic program specifications and
good runtime performance not necessarily exclude each other.

References

[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2001. ISBN 1-55860-286-0.

[2] Inc. Applied Parallel Research. xhpf benchmark results. Technical report, Applied
Parallel Research, Inc., Roseville, CA, 1995.

[3] T. Brandes and F. Zimmermann. ADAPTOR - A Transformation Tool for HPF Pro-
grams. In Programming Environments for Massively Parallel Distributed Systems,
pages 91-96. Birkhiuser Verlag, 1994.

[4] B.L. Chamberlain, S.-E. Choi, E.C. Lewis, C. Lin, L. Snyder, and W.D. Weath-
ersby. ZPL: A Machine Independent Programming Language for Parallel Computers.
IEEE Transactions on Software Engineering, 26(3):197-211, 2000. Special Issue on
Architecture-Independent Languages and Software Tools for Parallel Processing.

[6] B.L. Chamberlain, E.C. Lewis, C. Lin, and L. Snyder. Regions: An abstraction for
expressing array computation. In O. Levefre, editor, Prceedings of the International
Conference on Array Processing Languages (APL’99), Scranton, Pennsylvania,
USA, volume 29-1 of APL Quote Quad, pages 41-49. ACM Press, 1999.

[6] C. Grelck. Implicit Shared Memory Multiprocessor Support for the Functional
Programming Language SAC - Single Assignment C. PhD thesis, Institut fiir
Informatik und Praktische Mathematik, Universitat Kiel, 2001.

[7] C. Grelck. Improving Cache Effectiveness through Array Data Layout in SAC. In
M. Mohnen and P. Koopman, editors, Proceedings of the 12th International Work-
shop on Implementation of Functional Languages (IFL’00), Aachen, Germany,

Parallel Processing Letters

[9]

[10]

[11]

[12]

[13]

[14]

selected papers, volume 2011 of Lecture Notes in Computer Science, pages 231-248.
Springer-Verlag, Berlin, Germany, 2001.

C. Grelck. Implementing the NAS Benchmark MG in SAC. In Proceedings of the
16th International Parallel and Distributed Processing Symposium (IPDPS’02),
Fort Lauderdale, Florida, USA. IEEE Computer Society Press, 2002.

C. Grelck. A Multithreaded Compiler Backend for High-Level Array Programming.
In M.H. Hamza, editor, Proceedings of the 21st International Multi-Conference
on Applied Informatics (AI'03), Part II: International Conference on Parallel
and Distributed Computing and Networks (PDCN’03), Innsbruck, Austria. ACTA
Press, 2003.

C. Grelck, D. Kreye, and S.-B. Scholz. On Code Generation for Multi-Generator WITH-
Loops in SAC. In P. Koopman and C. Clack, editors, Proc. of the 11th International
Workshop on Implementation of Functional Languages (IFL’99), Lochem, The
Netherlands, Selected Papers, volume 1868 of LNCS, pages 77-95. Springer, 2000.
C. Lin, L. Snyder, R.E. Anderson, et al. ZPL vs HPF: A Comparison of Performance
and Programming Style. Technical Report 95-11-5, University of Washington, 1995.
S.-B. Scholz. On Programming Scientific Applications in SAC - A Functional Language
Extended by a Subsystem for High-Level Array Operations. In Werner Kluge, edi-
tor, Implementation of Functional Languages, 8th International Workshop, Bad
Godesberg, Germany, September 1996, Selected Papers, volume 1268 of LNCS,
pages 85-104. Springer, 1997.

S.-B. Scholz. With-loop-folding in SAC-Condensing Consecutive Array Operations.
In C. Clack, K.Hammond, and T. Davie, editors, Implementation of Functional
Languages, 9th International Workshop, IFL’97, St. Andrews, Scotland, UK,
September 1997, Selected Papers, volume 1467 of LNCS, pages 72-92. Springer,
1998.

Sven-Bodo Scholz. Single Assignment C — efficient support for high-level array oper-
ations in a functional setting. Journal of Functional Programming, 2002. Accepted
for publication.

