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Read the lecture notes!

2.2 The 3-body problem

In the 3-body problem analytical (closed-form) solutions are no longer
possible. A simplification of the 3-body problem is that of a mass-
less particle being perturbed by a secondary (eg. planet) that moves
on a dircular orbit around the primary (star). This is known as the
circular, restricted 3-body problem CR3BF. We will focus exclusively
on this problem.

The equation of motion in a frame of reference rotating with an-
gular frequency o is:

F=—-V®-—Jwxi—wx(axr) (2.5}

In the CR3BI we will of course choose or = npe: such that @ - the
gravitational potential — is time-independent in the rotating frame.
Equation (2.5} can be integrated to give an integration constant J:*

1 1 W2
_Er]+¢—i(r.. xF) (2.6}

which is the Jacobi energy. In the 3-body problem it is the only integral
of motion.

Exercise 2.2 Jacobi integral:

fa} Converting Equation (2.6) back to the inertial frame, show that:

J:E—w-!:E—Jr_.,J-_ (27

where E and [are the energy and angular momentum measured in the
inertial frame. Hence, in the CR3BP interactions will :x.d'm.nsr E and
1, while | stays constant.

(b} Express | in orbital elements:
G, T
f:—%—lrpv'ﬂm.“—!ljﬂunf (28]

where iy, s the mean motion of the secondary and the other symbols
refier bo the test particle. Written in the form of Bquation {2.5) jor anal-
ogous) the Jacobi integral is called the Tisserand relation.

) Leta = g+ b with i, the semimajor axis corresponding to Hy anad
congider the limits where b/fap < 1, ( <2 1 and ¢ <2 1. Show that in
that case:
Giita 3P | 2+
.ll = 5 (_EEFT, o 3 ) g}
where we have discarded a constant term from [

It is instructive to redefine the potential in Equation (2.5), incor-

porating the centrifugal term:’

14, G

lt;ﬁEW:‘.-%—EJ!iJ‘J':—[%-F_ r]z:|+dh 210}
1

where we used the identity }¥r® = r. Consider the motion of the

test particle in the vicinity of ms, see Figure 2.4, and express the

potential in local coordinates (x, ) centered on ;. This amounts to

expanding the inverse distance 1/r) in terms of (the small) x and _t.r_i

FLANET DYMNAMICS

* Ta see this, multiply Equation (2.5) by
Fand write all lerms as me-differentials
(drdey 2851 = Fob, B < kT,
and £l = r)/2 = [wx o = o] - b Also,
ol xpy=0

Figure z.4: Definitiors of © and v i Hll’s
appraximation of the CRIER

'In cebestial mechanics text books it is
customary o define 4 with the oppo-
site sign.

Tthis becomes r7? = 1fa; — x/af +
e - WA ey~ 12 e, The beading
{constant) berm of the expansion can be
discarded from drg as it is a potential
functian. In addibien, in Equation {z.11)
we assumed that m; 3 my such that
Gy = gl

FLANET FORMATION

The result is (Hill's approximation):

3 1 Gz
Do = —EFFJ. + Eﬂgzl r (211}
with which the Jacobi energy is written:
1
Je irz + P (212)

Contours of @y, y) are known as zero velocity curtes; they de-
fime the regiﬂn where a particle of a certain | can move, since ®,.4 =
[ — ¥ = |. Therefore, although the 3-body problem is not inte-
grable, given |, we can constrain the regions where particles can
be found. Figure 2.5 shows contours of constant .y with lighter
contours having larger @4 The regions bounded by high & (the
darker contours) are therefore not accessible for low-energy particles
{low [). In particular, the high $.4 zero velocity curves have a horse-
shoe shape and the corresponding orbits are referred to as horseshoe
orbits as they make a U-turn. It must be emphasized however that
in general particles do not follow the zero velocity contours as # is
a hunction of time. Figure 2.6 gives examples of particle trajectories
obtained from integrating Hill's equation of motion. Three types of
orbits can be seem:

= Horseshoe orbits, which make a U-turn (impact parameter b g
1.7 Ry

Hill-penetrating orbits. They are strongly excited after they leave
the Hill sphere (L7Ryy = b = 25Ky

Circulating orbits, which are only modestly excited. (b 2 2580

Exercise z.3 Hill's equations:
{2} Sheww that the equations of motion in Hill's approximation are:

. Gy 2

i —‘—_'[ + Ly g + 3 s {213a)
G

¥= — ﬁ:Ii.l' — npury (2.13b}

whene ¢ = «% 4+ 42 if we restrict the motion to the erbital plane.

b} Show that zeno rn:lenhi.ci{}r Purﬁ:le:i at distances far from the sec-
ondary obey by = —il?nf and ¥y = 0. This (local) approximation of
the Keplerian flow is kaown as the shearing sheet,

{e) Equilibrivm points are points where F = ¢ = (L Show that these
Ligrange patnts are located at (x, y) = [+ Ry, U} where Ry is the Hill

ritchies: '
bet g L
Reqn = ap (3‘_’".- jl (2.14)

idd Are these stable or unstable equi]ibrium Pnu'nlei?

fe} What is the Jacobi constant at the Lagrange point (/0)? And what is
the Jacoli constant far from the perturber (), assuming ¢ = 0. What
is the half-width 1y, of the comesponding horseshoe orhit?

From this section it is clear that particles that enter the Hill sphere do
so at a velocity ~ Ry m, — the Hill pelocity. This is therefore the min-

imum (relative) velocity at which the gravitational scattering takes

s

-4

Figure 2.5: Fera velocity curves [contours
af Pl i the z = 0 plane. Contours
af larger @ are darker. The Lagrange
equilibrium points L1 and Lz are indi-
cated by circles. Distances are in units
af Hill sphere. Curves are aat arbits.

Figure 26 Examples of particle trajec-
tories {indtially on crculating orbits) in
the CR3BF, obtained by integrating Equa-
ton {2.13). Particles that enber the Hill
sphere (dashed circke) are highlighted.
Eed streams hit the planet (B <= By =
5= W0~ YRyy).



Planetary sizes

urg> 104 km
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Lecture 7: Particle Aerodynamics

Intro particle sizes

Disk review
MMSN, disk “headwind”

Aerodynamics

- gas drag laws, Reynolds numbers, stopping time, radial and
azimuthal drift, orbital decay, meter-size problem, Brownian
motion, random vs. systematic motions.

Turbulence-induced velocities

- Kolmogorov fully developed turbulence theory, large/small
eddies

Relative velocities
- Turbulence, total
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Review: the (Idealized) gas disk

* midplane
- properties PPD: o (7)==l _1( 2 )
_ thin, hy./r << 1, and flared Vamhy | 2\
- scaleheight: hgy,s = Cs/Qg
- Isothermal & pressure-supported in z
— partly pressure-supported in r L dp
— gas rotates sub Keplerian: ug,s = Vg -Nvg In=P gr

Chris Ormel (2016) [Star & Planet Formation || Lecture 7: particle aerodynamics] 13/38



Minimum-mass solar nebula

(Weidenschilling 1977, Hayashi et al. 1985)

Assume power-laws:

¥ =P ¥
Egaﬁ = 2 (A—U) ’ Tgas = I (E

MMSN choices (Hayashi et al. 1985):
p =15 g=0.5,
T,=300K; X, =1700 g cm™

Q: Criticism of MMSN model.:
Other choices for 2(r), T(r) possible

and arguably physically (or
observationally) more plausible!

Chris Ormel (2016) [Star & Planet Formation || Lecture 7: particle aerodynamics] 14@@’ eidenschilling 1977]
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Minimum-mass solar nebula

(Weidenschilling 1977, Hayashi et al. 1985)

Assume power-laws:

¥ =P ¥
Egaﬁ = 2 (A—U) ’ Tgas = I (E

MMSN choices (Hayashi et al. 1985):
p =15 g=0.5,
T,=300K; X, =1700 g cm™

Q: Criticism of MMSN model.:
Other choices for 2(r), T(r) possible

and arguably physically (or
observationally) more plausible!
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Blackboard

— gas drag low & (dimensionless) stopping time,
particle Reynolds number
Epstein/Stokes regimes

— headwind derivation nv,;
formal derivation for drift velocities
orbital decay timescale

— Brownian motion
systematic vs. random motions
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Drag regimes

— " e —
|~ Free molecular flow ——

Epstein drag

(s <9l /4)

mfp

% Stokes flow &

//\

Stokes drag
(Re, < 1)

Quadratic drag
(Re, > 800)
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Gas drag/ Flow past sphere/cylinder

m" (Vortex shedding) o A (Turbulent BL)
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Dimensionless stopping time 7, = t

Q

Stopping time log,, 7,

I l ! l | 1
1 AU

— 35 AU
[ — 10 AU N

Aerodynamical definition:

— pebble (T, <1)
— planetesimal (‘[p>>1)

o W B a

MMSN profile |

_4 | | | | | |
-2 -1 0 1 2 3 4 3

log 101'adius [cm]

Chris Ormel (2016) [Star & Planet Formation || Lecture 7: particle aerodynamics] 19/38



Dimensionless stopping time 7, = t

Q

Stopping time log,, 7,

Aerodynamical definition: 3 | | | | | !

4l 1 AU |
— pebble (T, <1) — 5 AU
— planetesimal (t,>>1) 3F——10AU N
2 _
1 _
| R I /S -
Q: why these inflections? 1
) @) o
i § —
MMSN profile
_4 | | | | | I

-2 -1 0 1 2 3 4 >
log 101'adius [cm]

Chris Ormel (2016) [Star & Planet Formation || Lecture 7: particle aerodynamics] 20/38



Dimensionless stopping time 7, = t

Q

Stopping time log,, 7,

Aerodynamical definition: 3 | | | | | !
al 1 AU =
— pebble (T, <1) — 5 AU
— planetesimal (t,>>1) 3F—— 10 AU —
2| ]
11— ]
| IS I . SRR -
Q: why these inflections? 1
Q: what happens to ty,, when ~ o N
i 2 3 ]
the gas disappears” 3 MMSN profile
_4 | | | | | |

-2 -1 0 1 2 3 4 >
log 101'adius [cm]
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Turbulence




Eddies...

LAMINAR TURBULENT

f

/
Dye Trace
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Fully developed turbulence

(Kolmogorov 1941)
A

energy dissipation
€ = VZ/t, = cnst

scale
(eddy size)
>
IKoI L
Dissipation scale: Driving scale: L, v, t,
YKol /Kol = Vimol - Re > LVL = Viurb
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Fully developed turbulence

(Kolmogorov 1941)
A

energy dissipation
€ = VZ/t, = cnst

t = (Ple)V3

scale
(eddy size)
>
IKoI L
Dissipation scale: Driving scale: L, v, t,
YKol /Kol = Vimol - Re > LVL = Viurb
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Fully developed turbulence

A

v, = (et)?

velocity

eddy turnover
> time

tKO| tL
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Fully developed turbulence

A

v, = (et)?

velocity

eddy turnover
> time

tKoI tstop t L
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Fully developed turbulence

A

small eddies large eddies
(random) (systematic)

v, = (et)?

velocity

eddy turnover
> time

tKoI t !
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Fully developed turbulence

A

small eddies large eddies
(random) (systematic)

v, = (et)?

velocity

eddy turnover
> time

tKoI tstop t L

Chris Ormel (2016) [Star & Planet Formation || Lecture 7: particle aerodynamics] 29/38



Small eddies: Random kicks

Small eddies: t; < tg,,

\,\od\ Eddy kicks a particle by

Vi~V bt IN @ random

direction

The particle “remembers”

N=t0p/t; Of these kicks

= — N1/2 — 1/2
> r =N Vi= (tl stop) i

tKOl t tL
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Large eddies: drift

112 Large eddies: {; > {,,

Particles obtain eddy

velocity v,
h,,.[@ Experience_pressu_r_e forces
O'O’J, g, ~ v/t, [Weidenschilling 1984]
= drift velocity: Vg ¢ ~0 tp
. with respect to eddy
Lol ¢ t

stop
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Relative velocity

Large eddies (systematic):
— Subtract velocities
(vanish equal ty;)

Small eddies (random):
— add velocities
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Exercise 1.2 (HW)

Exercise 1.2 particle scaleheight: When disks are turbulent, parti-
cles will diffuse along with the gas. A popular model for the turbulent
viscosity is the|Shakura & Sunyaev (1973) alpha-model, which param-
eterizes the turbulent viscosity as vy = acshgas. When particles are
small (1, < 1) this is also the particles diffusivity D, . The definition
of Dy is such that| particles move a distance /Dyt in time t.

(a) Find the equilibrium distance hj: the height where the settling
timescale (from h to the midplane) equals the time to diffuse the par-
ticles from the miplane to /,. Express the result in terms of a and
Tp.

(b) Naively, when 7, — 0, one obtains i, > hgas. Why is this result
incorrect?

“random walk”;
distance = rms
average

t giff tsettl Ih b

Chris Ormel (2016) [Star & Planet Formation || Lecture 7: particle aerodynamics] 36/38



Exercise 1.3

Exercise 1.3— individual drift velocities: These|two equations) al- 1. Force balance
low us to solve for the two unknowns (v, and vg). But we can greatly 2. Angular momentum loss

simplify the procedure by using that v;, vy, and the disk headwind
novg (see Equation (1.2)) are small with respect to the Keplerian ve-

locity vk. Expressions as (ugas + 04,)2 can then be approximated as

Warning:
—|_ zugac;vgb Il’l the same glst u p— (1 _ )2 2 ~ (1 . 2?7)0}(, and arn'ng

ga‘v gas — \’ V., V, are here defined relative to
d/dt(ugas + vg) ~ dog/dt. This linearization allows the expressions to the gas velocity (!) and are
be put in matrix form: therefore small w.r.t. to v and U,
A(U:‘) _ b (1.10) v = Keplerian velocity
V¢ U,qs = (1-n) = sub-Keplerian vel. gas

where A is a 2x2 matrix and b a 2x1 vector. |Inverting this systen] of
equations, show that the radial drift velocity becomes:

Tp
vy = —21UK 12 (1.11)
’ This is not necessary; plain
and the azimuthal velocity: substitution is easier
72
UOp = HO 2 1.12
¢ Ui Kl T T;:% ( )

(remark again that v,, vy are with respect to the gas velocity.)
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Exercise 1.4 (HW)

Exercise 1.4 turbulent velocities: Consider driving scales of t; =
1yr,cs = 1 kms ! and a turbulence Mach number of ~0.1, so that
v; = 0.1c,. Take a Reynolds number of Re = 10°.

(@) What are the values at the inertial scale, {x,), txol, and vkq1?

& (b) Given the toy model for the velocity excitation of particles above,

as summarized in Figure 1.6, we can derive expressions for the relative
velocities of particles. For example, for two particles of stopping times
tsg < Lt < tgol (Where tg; = tstop Of particle #1 and ts> of #2) all
eddies are large (top panel). In that case, argue that the relative velocity
becomes Av ~ |ty — ts1|vko1/tkol- (The minus sign is important: the
velocity will vanish for t5; = tsp. Why?).

(c) In the case where the largest particle (2) has a stopping time in the
inertial range, fi, < typ < t;, argue that the relative velocity becomes
Av ~ vy +/tsp/tp. Why does this expression not depend on £4?

(d) If both particles are large, t; < ts1 < tg, argue that it is the particle

of the shortest stopping time that determines the relative motions and
give Av.

(e) Between a very small particle (t;; < tg,;) and a very big one (5, >
t;) the relative collision velocity is Av ~ v;. Why?

Give order-of-magnitude expressions!
(no numerical prefactors)

712

e
(¥ (¥
©e
¢ ¢
>
tKoI tL
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