Gravitational instability & planetesimal formation

67P/Churyumov– Gerasimenko

HR8799 Marois et al. 2010

Gravitational instability and planetesimal formation

- Dispersion relation
 - for thin disks, Toomre-Q
 - giant planet formation
 - planetesimal formation: Goldreich-Ward (GW) mechanism
- Collective effects
 - Collective particle velocities, Kelvin-Helmholtz instability,
 Streaming instability

From last week...

Sticking of **micron**-size grains ✓

- low Δv
- large $v_{\rm stick}$

Sticking of mm/cm-size pebbles?

- $-\Delta v$ increases (turbulence, drift)
- v_{stick} decrease

Meter-size boulders unlikely to stick

- "meter size" (τ_p ~1) barrier
- caveat: fractal growth (?)

Perhaps growth by sticking stalls (bouncing, fragmentation)

However: (even small) particles can settle into a very thin midplane

The *dust-dominated* midplane may become gravitationally-unstable and collapses (fragments) into planetesimals!

Blackboard

Dispersion relation results

	Gas	Solids
Name	Disk instability	Goldreich-Ward mechanism
Important scales	$λ_c = 2c_s^2/GΣ_{gas}$ (most unstable λ)	$λ_c = 4π^2 Σ_p / Ω^2$ (λ>λ _c unstable)
Condition instability	Q _T < 1 Also: cooling gas	$h_{\rm p} < \lambda_{\rm c}$
Outcome	Gas giants	Planetesimals
Problem:	Need massive diskrapid coolingtoo massive planets?	Kelvin-Helmholtz (KH) turbulence

Kelvin-Helmholtz turbulence

Kevin Schaal/youtube

Chris Ormel (2016) [Star & Planet Formation \parallel Lecture 9: Gravitational instability and planetesimal formation] 9/25

Dust-dominant layer

Driving equations

(Sometimes referred to as NSH-solutions, after Nagakawa et al. 1986)

solids:
$$\left| \frac{Dv}{Dt} \right| = \left| -\frac{v - u}{t_{\text{stop}}} \right| - 2\Omega_K \times v + F_{\text{Euler-dust}}$$
 (1.34a)

gas: $\left| \frac{Du}{Dt} \right| = \left| \frac{\rho_p}{\rho_g} \frac{v - u}{t_{\text{stop}}} \right| - 2\Omega_K \times u + F_{\text{Euler-gas}} + F_{\text{pres}}$ (1.34b)

net acceleration in rotating frame (approximate 0)

Back reaction (Newton's 3rd law)

Pressure gradient (involves ηv_k)

4 equations, 4 unknown

→ solve u_r , u_ϕ , $v_r v_\phi$ as function of ρ_p , t_{stop}

For the KH-instability we are interested in u_{ω} at midplane

Q: Instability when: A) $u_{\omega} = 0$

B) $u_{\varphi} = -\eta v_{K}$

Solution

Solids

$$v_r = -rac{2 au_p}{ au_p^2 + (1+Z)^2} \eta v_K$$
 $v_\phi = -rac{1+Z}{ au_p^2 + (1+Z)^2} \eta v_K$

Gas

$$u_r = \frac{2Z\tau_p}{\tau_p^2 + (1+Z)^2} \eta v_K$$

$$u_{\phi} = -\frac{1+Z+\tau_p^2}{\tau_p^2 + (1+Z)^2} \eta v_K$$

Z :dust-to-gas ratio "metallicity"

 $\tau_{\rm n}$:dimensionless tstop

η :pressure gradient parameter

HW 1.10

interpret limits

$$\begin{array}{l} Z \ \rightarrow \ 0 \\ \tau_p \rightarrow \ 0, \ \infty \end{array}$$

For the KHI u_{φ} is the most relevant

 $u_{\phi} \rightarrow 0$: midplane rotates Keplerian, vertical shear (KHI)

 $u_{\phi} \rightarrow -\eta v_{K}$: midplane rotates subKeplerian, no vertical shear

NSH solution

Whether or not the KHI is triggered depends on the *Richardson number*:

$$Ri = \frac{-(g_z/\rho)(\partial \rho/\partial z)}{(\partial u_\phi/\partial z)^2} < Ri_{crit}$$

nominator

buoyancy (stabilizing)

denominator

shear (destabilizing)

Ricrit

critical Richardson number; around unity; Ri > Ri_{crit} for stability

Recapitulate...

No planetesimals

KH-stable?

In HW 1.11 you will assess w/r or not the GW-mechanism is viable

A: only for very massive disks

Alternative:

One can conduct a linear perturbation analysis to the (KH-stable) NSH-solutions for the 2-fluid (dust+gas) mixture!

It turns out that the 2-fluid harbors exponentially-growing modes for ρ_p , especially for τ_p ~1 particles. This is known as the **streaming instability** (Youdin & Goodman 2005)

$$Ri = \frac{-(g_z/\rho)(\partial \rho/\partial z)}{(\partial u_\phi/\partial z)^2} < Ri_{crit}$$

Streaming instability (SI)

Linear perturbation analysis (Youdin & Goodman 2005) quite technical.

SI occurs even in absence of self-gravity!

Best analogies are clusters of cyclists or geese that organize themselves in the optimal way to deal with the headwind!

Nonlinear effects occur when perturbations gets large; can best be investigates by hydrodynamical simulations

... and *bound* clumps when gravity is accounted for

Initial condition: dense-layer of pebble-size particles: $\tau_{\text{p}} \sim 0.25\text{--}1$

Unit of mass is Ceres (already 1,000 km)

Very big planetesimals form, but this may be a question of resolution

Johansen, Klahr, & Henning (2011)

Initial condition: dense-layer of pebble-size particles: $\tau_{\text{p}} \sim 0.25\text{--}1$

Unit of mass is Ceres

(already 1,000 km)

Very big planetesimals form, but this may be a question of resolution

Johansen, Klahr, & Henning (2011)

Initial condition: dense-layer of pebble-size particles: $\tau_{\text{p}} \sim 0.25\text{--}1$

Unit of mass is Ceres (already 1,000 km)

Very big planetesimals form, but this may be a question of resolution

Johansen, Klahr, & Henning (2011)

Homework set changes

- New deadline: Tuesday 13:00 (sharp! no delays/exceptions!)
- No more scans!
- Bonus questions (updated problem set on BB)

Project (2 more weeks)

Communicate!

Exercise 1.9

Exercise 1.9:

(a) From Equation (1.31), show that the scale most 'vulnerable' to instability is $\lambda_c = 2c_s^2/G\Sigma$ (where we switched to a spatial scale $\lambda = 2\pi/k$) and that instability is triggered when

$$Q_T \equiv \frac{c_s \Omega}{\pi G \Sigma} < 1, \tag{1.32}$$

where Q_T is the *Toomre-Q parameter*.

(b) A physically-intuitive way to obtain Q_T approximately is to compare the total internal, rotational, and gravitational energies. When

$$\left| \frac{E_{\text{therm}}}{E_{\text{grav}}} \right| \times \left| \frac{E_{\text{rot}}}{E_{\text{grav}}} \right| < 1$$
 (1.33)

the gravitational energy dominates over the combined rotational and thermal energies, leading to instability. Show that the above estimate results in Q_T , barring a factor of unity.

- (c) Take a disk with a solar-mass star and, sound speed $c_s = 1 \text{ km s}^{-1} \times r_{\text{AU}}^{-1/4}$ and $\Sigma = 10^3 \text{ g cm}^{-2} \times r_{\text{AU}}^{-1}$. Where does the disk become unstable and what is the corresponding disk mass?
- (d) What is the mass associated with the scale λ_c ?

Bonus HW

compare the (specific) energy across a scale λ

e.g.
$$E_{therm} \sim \lambda^2 c_s^2$$

only Toomre-Q criterion

Exercise 1.10 (HW)

$$v_r = -\frac{2\tau_p}{\tau_p^2 + (1+Z)^2} \eta v_K \qquad u_r = \frac{2Z\tau_p}{\tau_p^2 + (1+Z)^2} \eta v_K$$
$$v_\phi = -\frac{1+Z}{\tau_p^2 + (1+Z)^2} \eta v_K \qquad u_\phi = -\frac{1+Z+\tau_p^2}{\tau_p^2 + (1+Z)^2} \eta v_K$$

Exercise 1.10: It is interesting to consider the limiting expressions of Equation (1.35). Verify that:

- (a) $\tau_p \gg 1$ (big rocks): $v_r = u_r = v_\phi = 0$ and $u_\phi = -\eta v_K$.
- **(b)** Z=0 (negligible dust): solutions are the same as the individual solutions of Equations (1.11) and (1.12)
- (c) $Z \gg 1$ (dust-dominated): $v_r = v_\phi = u_r = u_\phi = 0$
- (d) $\tau_p \ll 1$ and $Z \ll 1$ (tracer dust): $v_r = u_r = 0$ and a reduced gas headwind velocity with an "effective" $\eta \to \eta/(1+Z)$.

Explain these limits physically.

- (a)–(c) You get kudos only for the *physical interpretation!* ("What does it mean")
- (d) More challenging. Take τ_p = 0 and show that this effectively lowers η . Consider the definition of η to see why you get a reduced headwind?

Exercise 1.11 (HW)

Exercise 1.11: Give an order-of-magnitude expression for Ri, by evaluating Equation (1.36) at $z=h_p$, the particle scaleheight. Assume that the dust has settled such that dust dominates ρ up to $\sim h_p$. For g_z consider both the self-gravity limit (*i.e.* g_z is determined by the dust) and the stellar gravity limit ($g_z=g_{\star,z}$). Taking a critical Richardson number of Ri_{crit} = $\frac{1}{4}$, what is the smallest scaleheight into which the dust can settle? How does this height compare to the critical wavelength λ_c of the GW-model? (Note that $h_p < \lambda_c$ is required for the GW-instability.)

This is a challenging exercise. See HW-notes for instructions!

You should "estimate" the gradients involved in the definition of Ri, e.g.,

$$d\rho \rightarrow \Delta\rho = ...$$

 $dz \rightarrow \Delta z = ...$
 $du_{\omega} \rightarrow \Delta u_{\omega} = ...$

$$Ri = \frac{-(g_z/\rho)(\partial \rho/\partial z)}{(\partial u_\phi/\partial z)^2} < Ri_{crit}$$

Exercise 1.12 (HW)

Exercise 1.12: Consider a test body of mass M immersed in a sea of smaller bodies of mass m. Assume that the M-body is on a circular orbit at semi-major axis a and orbital frequency Ω_K , while the m-bodies are in Kepler orbits with eccentricity e and inclinations $i \simeq e$.

(a) Ignoring (for the moment) gravitational focusing, show that the growth timescale of the *M*-body is:

$$t_{\rm growth} \equiv \frac{M}{dM/dt} \simeq \frac{R\rho_{\bullet}}{\Sigma_m \Omega_K}$$
 (no focusing) (1.37)

where R is the radius corresponding to M, ρ_{\bullet} the internal density of the material and Σ_m the surface density in m-bodies.

- **(b)** How long would it take to form an Earth-mass planet at: 0.1, 1, and 10 AU?
- (c) How much shorter are growth times in the 2D case (i = 0)?

This is another $n*\sigma*\Delta v$ exercise.

You can assume that Δv is given by the eccentricity of the planetesimals (dispersiondominated regime)