


Lecture 10: two and three body problem

* Two body problem
Relative motion, Integrals of motion, orbit solution,
anomalies, guiding center approximation, the orbit in space,
orbital elements

 Three body problem
— Circular, restricted three body problem, Jacobi energy, zero
velocity curves, Tisserand relation, Hill's equations
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Blackboard

— Angular momentum, energy conservation, eccentricity
vector, true anomaly, mean anomaly

— Guiding center approximation
— Circular, restricted three body problem: Jacobi integral
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Guiding center approximation

X=—aecosM

y=2aesin M
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Historical epicycles

Epicycles on
picycles

Ptolemaic model
This matches observations
very precisely! (but is wrong)

Planet
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Kepler orbit

reference plane

e, unit vector (coordinate frame)
i Q longitude ascending node
orbital elements: node 9 ) g_
a semi-major axis W argument of periapsis
e eccentricity v true anomaly
I inclination
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Kepler orbit

longitude of periapsis:

W=+ Qnode
mean longitude:
AN=w+M

pericenter

unit vector (coordinate frame)
longitude ascending node

argument of periapsis
true anomaly

mean anomaly
Inclination

Mean anomaly

True anomaly

(c) Wikipedia by TfrO00 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=44300489
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Distributions

Swarms of bodies (planetesimals)
Provided that there are many mutual
dynamical interactions, they follow
distributions:

Rayleigh distributions
inclination, eccentricity

Uniform distribution

mean anomaly, argument of
periapsis, longitude of ascending
node, etc.
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Rayleigh distribution

By Krishnavedala - Own work, C
CO, https://commons.wikimedia.
org/w/index.php?curid=25067844
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CR3BP

CR3BP
Circular, restricted three-body problem:

— secondary on circular orbit
— tertiary a test particle (massless)

One constant of motion
J: Jacobi energy
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properties/applications Jacobl energy

rotating frame:

1 1
J = Ef‘z—I—(D—E(wxr)z

inertial frame (Exc. 2.2a):

interpretation: energy E and
A.M. I, are exchanged, while J is

conserved!
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properties/applications Jacobl energy

rotating frame:

1 1
J = Ef‘z—#@—i(wxr)z

inertial frame (Exc. 2.2a):

interpretation: energy E and
A.M. I, are exchanged, while J is

conserved!

In orbital elements (Exc 2.2b):

- Gm* v, .
J=— > —np\/Gm*(l—e)acosz

a.k.a. Tisserand relation; written a = ap+b
we can approximate (Exc. 2.2c)

i Gm*( Ebz_i_ez—l—iz)

I:f'-p _SQ% 2

A change in e (or J) results in a change in
b and vice-versa!
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Zero velocity curves

CR3BP concepts

J: Jacobi energy
(integral of motion)
d . effective potential

(includes centrifugal
term)

zero-velocity curves:
constant ®

Hill approximation:
local frame (x,y)
centered around planet

— neglects curvature
— approximates @
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zero-velocity curves
These are not orbits!
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Hill's approximation (Exc. 2.3)

EOM in Hill's approximation The unperturbed solution
(for O-eccentricy & far from the
i Gmy 5 planet)
¥= — 3 x—|—2npt}y—|—3npx ;
) Gmy v,=0 VyT= T X
= — 3 Yy — 21,0y o .
which is known as the shearing

Sheet
Equilibrium point at (x,y) = (R, 0)

Hill radius R, ;: ¢ i

oy
Ryin = ap 3
+*

EOM in Hill units:
. 3
s=—2X4oy 43x  y=—L42v, T
r r ?
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Encounters

close, distant encounters
There are 3 types of interactions:

1. Horseshoe orbits
2. Close (Hill-penetrating) encounters
3. Distant encounters

— encounters for e = 0:
approach velocity is v, = 3npx/2

dispersion- and shear-dominated regimes:
1. d.d.: v, is set by eccentricity: v, ~ ev,
2. s.d.: v is set by shear: v, ~ n Ry,

or:
e >~ R, /a: d.d.-regime
e <~ R, /a: s.d.-regime

rd

[Hill units]
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Horseshoe orbits (global frame)
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Reading material

Best overall guide to planet formation

See also
http://arxiv.org/abs/1509.06382

Commigh

Fluid Mechanics

2nd edition

Fluid dynamics:
Turbulence, flows,
hydro numbers

Landau and Lifshitz
Course of Theoretical Physics

Astrophysics of ==
Planet Formation SR
PHILIP ). ARMITAGE & ‘, 'Y X | (hard to read)

v N

CAMBRIDGE
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http://arxiv.org/abs/1509.06382

Reading material

James Binney and Scott Tremaine

GALACTIC
DYNAMICS

Second Edition

Gas & stellar dynamics 2-body, 3-body problem (Ch. 2, 3)
Gravitational interactions, Toomre-

Q, epicycle approx, etc.



Exercise 2.1

Exercise 2.1 Guiding center:

(a) Consider two bodies in Kepler orbits separated by Aa in semimajor
axis where Aa < a and a is the semimajor axis of one of the bodies.
Show that the synodical period, which is the time between successive
conjunctions (close encounters), is

2 ()

where P is the orbital period corresponding to a.

Bonus HW
Synodical period

(b) Show that for ¢ < 1 the equations of motions (Eq. [2.1]) can be
approximated:

r—a~ —aecos(M) (2.4a)
v — M =~ 2aesin(M) (2.4b)

which is the guiding center approximation. The Keplerian motion is ap-
proximated by a superposition of a circle and an ellipse.
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Exercise 2.2

Exercise 2.2 Jacobi integral:

(a) Converting Equation (2.6) back to the inertial frame, show that:
J]=E—-—w-1=E—nyl; (2.7)

where E and [ are the energy and angular momentum measured in the
inertial frame. Hence, in the CR3BP interactions will exchange E and
I, while | stays constant.

(b) Express | in orbital elements:

B Gty

/= 2a

— np-\/Gm* (1 —e?)acosi (2.8)

where 1), is the mean motion of the secondary and the other symbols
refer to the test particle. Written in the form of Equation (2.8) (or anal-
ogous) the Jacobi integral is called the Tisserand relation.

(c) Let a = ap + b with a, the semimajor axis corresponding to n, and
consider the limits where b/ay < 1, i < 1 and ¢ < 1. Show that in

that case:
G 3p2 212
I~ (‘g;ﬁ 2 28

where we have discarded a constant term from J.

1 1

(a) Find relation for velocity in
local frame and inertial frame

(b) Insert orbital elements

(c) Taylor-expands in terms of
bla, <<1
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Exercise 2.3 (HW)

Exercise 2.3 Hill’s equations:

(@) Show that the equations of motion in Hill’s approximation are:

Gm

X= — r—3px + 2npvy + Srzix (2.13a)
Gm

= — r—SPy — 2npUy (2.13b)

where r? = x* + y* if we restrict the motion to the orbital plane.

(b) Show that zero eccentricity particles at distances far from the sec-
ondary obey v, = — %n px and vy = 0. This (local) approximation of
the Keplerian flow is known as the shearing sheet.

(c) Equilibrium points are points where # = # = 0. Show that these
Lagrange points are located at (x,y) = (£Ry, 0) where Ry is the Hill

radius: L3
m
Ryin = ap (3mp ) (2.14)

*

(d) Are these stable or unstable equilibrium points?

(e) What is the Jacobi constant at the Lagrange point (J; )? And what is
the Jacobi constant far from the perturber (J), assuming ¢ = 0. What
is the half-width xy,¢ of the corresponding horseshoe orbit?

(e) You can assume dr/dt = 0 at
the Lagrange point
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