L11: Runaway & Oligarchic growth

Large and small

During planet formation

Consider a large body interacting with small body/particle, e.g.:

- massive vs light planetesimal
- embryo vs planetesimal
- embryo vs particle

Large body is on a circular (e=0), Keplerian orbit b/c of:

- dynamical friction
- tidal damping

Condition becomes invalid when:

- resonances
- removal gas → orbit crossing

Velocity regimes

Dispersiondominated regime

Relative velocity (v_∞) determined by eccentric motion of planetesimal

$$v_{\infty} = ev_{K}$$

Shear-dominated regime

v_∞determined by Keplerian shear

$$V_{\infty} = (3/2)b\Omega_{K}$$

Headwind regime

v_wdetermined by sub-Keplerian headwind gas

$$v_{\infty} = \eta v_{K}$$

Planetesimal Accretion

gas drag damps eccentricity on long timescales ($\tau_{stop} >> 1$)

Pebble Accretion

gas drag acts *during* encounter (t_{stop} small)

Guiding center approximations

GC-approximation

$$r = a - e \cos M$$
$$v = M + 2e \sin M$$

$$x = r \cos(v - M) - a \approx e a \cos M$$
$$y = r \sin(v - M) \approx 2 e a \sin M$$

Use:

$$\cos(x) \approx 1 + O(x^2)$$

$$\sin(x) \approx x + O(x^3)$$

Guiding center approximations

GC-approximation

$$r = a - ea \cos M$$
$$v = M + 2e \sin M$$

velocity w.r.t. GC-motion

$$v_r \approx e v_K \sin M$$

$$v_{\theta} \approx v_{K} (1 + e \cos M)$$

velocity w.r.t. *local* circular velocity (v_c)

$$v_r \approx e v_c \sin M$$

$$v_{\theta} \approx v_c (1 + \frac{e}{2} \cos M)$$

Viscous stirring

Velocities with respect to local circular motion

Scatterings

A close encounter randomizes the phase (argument of periapsis), while preserving the magnitude of relative velocity vector (δv)

Imagine an encounter with a more massive body moving on a circular orbit

A scattering from $P \rightarrow Q$ (or $A \rightarrow Q$) decreases the eccentricity by a factor 2

Viscous stirring

Viscous stirring

Conversely, a scattering from $Q \rightarrow P$ doubles the eccentricity

The averaged effect (of $P \rightarrow Q$ and $Q \rightarrow P$) is positive:

 $<\Delta e> = (+e - e/2)/2 = e/4$

This net growth in *e* is referred to as *viscous stirring*

As e increases the GFF factor Θ decreases.

Viscous stirring provides negative feedback to the growth of runaway bodies!

Runway growth → Oligarchy

Runway growth → Oligarchy

Stages runaway growth → oligarchy

Initial

(color = GFF wrt largest body in simulation)

Larger bodies are kept cool by dynamical friction (energy equipartition)

Large bodies growth faster than smaller ones

Runaway growth peaks

GFF are huge and growth is very rapid!

Yet 1 embryo has already excited the bodies in its feeding zone

It's growth stalls relative to bodies in neighboring zones, identifying the transition to oligarchic growth

Stages runaway growth → oligarchy

Oligarchic growth

- embryos in neighboring zones converge on each other in terms of mass
- embryos in same zones separate

Oligarchic growth

Embryos merge once their "dynamical spacing" (=distance in terms of Hill radii) decreases.

GFF decrease, growth slows down

Towards oligarchy

Towards oligarchy

- diverging (runaway) growth w/i same zone
- converging (normal) growth for different zones

During oligarchy

embryos feast on planetesimals, but also merge; feeding zone stays several R_{Hill}.

Log mass

Exercise 1.15 (HW)

Exercise 1.15 oligarchy: Assume that the separation between embryos is a couple of mutual Hill radii, $\Delta a \sim \tilde{b}R_{\text{Hill}}$. Then, it may be argued that the (effective) number density of embryos seen by a planetesimal is $n_M \simeq [(2\pi a) \times (\tilde{b}R_{\text{Hill}}) \times (2ia)]^{-1}$.

(a) Argue that viscous stirring increases the eccentricity of the planetesimals at a rate:

$$\left(\frac{de}{dt}\right)_{VS} \sim (n_M \sigma_{90} \Delta v) \Delta e \sim \frac{q_p^{5/3} \Omega_K}{e^3 \tilde{b}}$$
 (1.47)

where $q_p = M/m_{\star}$. Gas friction, on the other hand, damps the eccentricity of the planetesimals. For planetesimals, the gas drag law depends quadratically on velocity/eccentricity. Let us therefore define:

$$\left(\frac{de}{dt}\right)_{\rm gas} \equiv -e^2 \Omega_K \mathcal{F}_{\rm aero}$$
 (1.48)

where the dimensionless \mathcal{F}_{aero} depends on the aerodynamical properties of gas and planetesimals.

- (b) Give the expression for $\mathcal{F}_{\text{aero}}$. Balancing viscous stirring and gas damping gives therefore an *equilibrium eccentricity* of $e \sim q_p^{1/3}/(\tilde{b}\mathcal{F}_{\text{aero}})^{1/5}$.
- **(c)** Show that for these eccentricities, the Safronov numbers are constant. How far out in the disk can 10 Earth-size planets form within 10 Myr?

Exercise 1.14

Exercise 1.14 gravitational scattering: Calculate the trajectory of a gravitational scattering. Consider polar coordinates (r, θ) with $\theta = 0$ the *direction* of the unperturbed velocity and $r(\theta = -\pi) = \infty$ initially (see Figure 1.15). Let primes denote derivatives towards θ ;

- (a) show that energy conservation implies $v_r v_r' + v_\theta v_\theta' + GMr'/r^2 = 0$ and that conservation of angular momentum gives $v_\theta = bv_\infty/r$ with b the impact parameter and v_∞ the initial velocity.
- **(b)** Show that $v_r = bv_{\infty}r'/r^2$ and retrieve the following ODE for $r(\theta)$:

$$rr'' - 2(r')^2 - r^2 + r^3 \frac{b_{90}}{b^2} = 0 {(1.39)}$$

where $b_{90} \equiv GM/v_{\infty}^2 (= \Theta R)$. This equation can be simplified by substituting u = 1/r:

$$u'' + u = \frac{b_{90}}{b^2}. (1.40)$$

which has the solution $u = A\cos\theta + B\sin\theta + b_{90}/b^2$ where A and B are integration constants.

(c) Determine these to find:

$$r(\theta) = \frac{b}{b_{90}(1 + \cos\theta)/b - \sin(\theta)}.$$
 (1.41)

- (d) Find the angle θ corresponding to the collisional focusing impact parameter of Equation (1.38), *i.e.* the location where the particle impacts the big body.
- **(e)** Finally, derive the scattering angle the direction the test particle is heading to after the scattering:

$$\theta_{\text{scat}} = \arcsin\left(\frac{2bb_{90}}{b^2 + b_{90}^2}\right) \tag{1.42}$$

and explain the meaning of " b_{90} ".