L12: Protoplanet growth, planet atmospheres, & giant planet formation

L12: Protoplanet growth, planet atmospheres, & giant planet formation

Features oligarchic growth

Towards oligarchy

- diverging (runaway) growth w/i same zone
- converging (normal) growth for different zones

2 components

- planetesimals (dominate Σ initially)
- embryos (dominate dynamics)

During oligarchy

embryos feast on planetesimals, but also merge; feeding zone stays several R_{Hill} .

Slower than R.G.

but can still feature large Θ especially when planetesimals are damped (by gas).

Log mass

Velocity regimes

Dispersiondominated regime

Relative velocity (v_∞) determined by eccentric motion of planetesimal

$$v_{\infty} = ev_{K}$$

Shear-dominated regime

v_∞determined by Keplerian shear

$$v_{\infty} = (3/2)b\Omega_{K}$$

Headwind regime

v_wdetermined by sub-Keplerian headwind gas

$$v_{\infty} = \eta v_{K}$$

Planetesimal Accretion

gas drag damps eccentricity on long timescales ($\tau_p >> 1$)

Pebble Accretion

gas drag acts during encounter (t_{stop} small)

Shear-dominated interactions

w/o gas drag

Hill accretion (shear-dominated; planetesimals)

- relevant when $ev_K < R_{Hill} \Omega_K$
- Only a small fraction of particles that enter the Hill sphere are accreted

Gas drag (small particles) changes this picture!

→ Pebble accretion

Shear-dominated interactions

w/o gas drag

Shear-dominated interactions

Isolation mass

$$M_{\rm iso}(R_{\rm Hill}) = 2 \pi a \Sigma \Delta a$$

Isolation mass

$$M_{\rm iso}(R_{\rm Hill}) = 2 \pi a \Sigma \Delta a$$

$$M_{\rm iso} = \frac{(2\pi \tilde{b}\Sigma r^2)^{3/2}}{(3M_{\oplus})^{1/2}} \simeq 0.25 \ M_{\oplus} \left(\frac{\tilde{b}}{10}\right)^{3/2} \left(\frac{\Sigma}{10}\right)^{-3/2} \left(\frac{a}{{
m AU}}\right)^3$$

Isolation mass

$$M_{\rm iso}(R_{\rm Hill}) = 2 \pi a \Sigma \Delta a$$

$$M_{\rm iso} = \frac{(2\pi \tilde{b} \Sigma \mathbf{a^2})^{3/2}}{(3M_{\oplus})^{1/2}} \simeq 0.25 \ M_{\oplus} \left(\frac{\tilde{b}}{10}\right)^{3/2} \left(\frac{\Sigma}{10}\right)^{-3/2} \left(\frac{a}{{
m AU}}\right)^3$$

Isolation mass

$$M_{\rm iso}(R_{\rm Hill}) = 2 \pi a \Sigma \Delta a$$

$$M_{\rm iso} = \frac{(2\pi \tilde{b} \Sigma \mathbf{a^2})^{3/2}}{(3M_{\oplus})^{1/2}} \simeq 0.25 \ M_{\oplus} \left(\frac{\tilde{b}}{10}\right)^{3/2} \left(\frac{\Sigma}{10}\right)^{+3/2} \left(\frac{a}{{
m AU}}\right)^3$$

Isolation mass

$$M_{\rm iso}(R_{\rm Hill}) = 2 \pi a \Sigma \Delta a$$

$$M_{\rm iso} = \frac{(2\pi \tilde{b} \Sigma \mathbf{a^2})^{3/2}}{(3M_{\oplus})^{1/2}} \simeq 0.25 \ M_{\oplus} \left(\frac{\tilde{b}}{10}\right)^{3/2} \left(\frac{\Sigma}{10}\right)^{+3/2} \left(\frac{a}{{
m AU}}\right)^3$$

Isolation mass

$$M_{\rm iso}(R_{\rm Hill}) = 2 \pi a \Sigma \Delta a$$

$$M_{\rm iso} = \frac{(2\pi \tilde{b} \Sigma \mathbf{a^2})^{3/2}}{(3M_{\oplus})^{1/2}} \simeq 0.25 \ M_{\oplus} \left(\frac{\tilde{b}}{10}\right)^{3/2} \left(\frac{\Sigma}{10}\right)^{+3/2} \left(\frac{a}{{
m AU}}\right)^3$$

Giant Planet formation

Disk instability model gravitational instab. gas

- Toomre-Q < 1
- efficient cooling

Giant Planet formation

Disk instability model gravitational instab. gas

- Toomre-Q < 1
- efficient cooling

Disk instability

Price (2014)
https://www.youtube.com/watch?v=hngA5CKIs58

Efficient cooling

Price (2014)
https://www.youtube.com/watch?v=_JgwlWDL3aw

Disk instability model

(Lecture 9)

- Toomre-Q < 1
- efficient cooling

Planetesimals

- sticking (L8)
- GI instability (L9)

Disk instability model

(Lecture 9)

- Toomre-Q < 1</p>
- efficient cooling

Planetesimals

- sticking (L8)
- GI instability (L9)

Runway and oligarchic growth, pebble accr. (L11)

Planetary embryos isolated

Disk instability model

(Lecture 9)

- Toomre-Q < 1</p>
- efficient cooling

Planetesimals

- sticking (L8)
- GI instability (L9)

Runway and oligarchic growth, pebble accr. (L11)

Planetary embryos isolated

small embryos

Gas disk disappears (Lecture 12)

Terrestrial planet orbit crossing

Disk instability model (Lecture 9)

- _ Toomre-Q < 1
- efficient cooling

Planetesimals

- sticking (L8)
- GI instability (L9)

Terrestrial planet

orbit crossing

Disk instability model

(Lecture 9)

- Toomre-Q < 1</p>
- efficient cooling

(Lecture 12)

Protoplanet embryo with an atmosphere

Giant planets

Planetesimals – sticking (L8) – GI instability (L9)

Disk instability model (Lecture 9) – Toomre-Q < 1

efficient cooling

Planetesimals – sticking (L8) – GI instability (L9)

Disk instability model (Lecture 9)

- Toomre-Q < 1</p>
- efficient cooling

Blackboard

Realistic atmosphere models

solve the stellar-structure equations:

Energy transport: $\nabla = \min(\nabla_{rad}, \nabla_{ad})$

- $-\nabla_{rad}$:transport by radiation
- $-\nabla_{ad}$:transport by convection

- boundary conditions
- Luminosity source

Continuity
$$rac{\partial M_{< r}}{\partial r} = 4\pi G r^2
ho$$

Hydrostatic balance
$$\frac{\partial P}{\partial r} = -\rho \frac{GM_{< r}}{r^2}$$

Energy transport
$$\frac{\partial T}{\partial r} = \frac{\partial P}{\partial r} \frac{T}{P} \nabla$$

Luminosity conservation
$$\frac{\partial L}{\partial r} = 4\pi r^2 \rho \left(\epsilon - T \frac{dS}{dt} \right)$$

E.O.S.
$$P = P(T, \rho)$$

$$\nabla_{\text{rad}} = \frac{3 \,\kappa \,L \,P}{64 \,\pi \,\sigma_{\text{sb}} \,G M_{\,<\text{r}} \,T^4} \qquad \nabla_{\text{ad}} = \left(\frac{\text{d} \log T}{\text{d} \log P}\right)_{\text{ad}}$$

Realistic atmosphere models

solve the stellar-structure equations:

Energy transport: $\nabla = \min(\nabla_{rad}, \nabla_{ad})$

- $-\nabla_{rad}$:transport by radiation
- $-\nabla_{ad}$:transport by convection

- boundary conditions
- Luminosity source

Continuity
$$rac{\partial M_{< r}}{\partial r} = 4\pi G r^2
ho$$

Hydrostatic balance
$$\frac{\partial P}{\partial r} = -\rho \frac{GM_{< r}}{r^2}$$

Energy transport
$$\frac{\partial T}{\partial r} = \frac{\partial P}{\partial r} \frac{T}{P} \nabla$$

Luminosity conservation
$$\frac{\partial L}{\partial r} = 4\pi r^2 \rho \left(\epsilon - T \frac{dS}{dt} \right)$$

E.O.S.
$$P = P(T, \rho)$$

$$\nabla_{\text{rad}} = \frac{3 \,\kappa \,L \,P}{64 \,\pi \,\sigma_{\text{sb}} \,G M_{\,<\text{r}} \,T^4} \qquad \nabla_{\text{ad}} = \left(\frac{\text{d} \log T}{\text{d} \log P}\right)_{\text{ad}}$$

Realistic atmosphere models

solve the stellar-structure equations:

Energy transport: $\nabla = \min(\nabla_{rad}, \nabla_{ad})$

- $-\nabla_{rad}$:transport by radiation
- $-\nabla_{ad}$:transport by convection

- boundary conditions
- Luminosity source

Continuity
$$rac{\partial M_{< r}}{\partial r} = 4\pi G r^2
ho$$

Hydrostatic balance
$$\frac{\partial P}{\partial r} = -\rho \frac{GM_{< r}}{r^2}$$

Energy transport
$$\frac{\partial T}{\partial r} = \frac{\partial P}{\partial r} \frac{T}{P} \nabla$$

Luminosity conservation
$$\frac{\partial L}{\partial r} = 4\pi r^2 \rho \left(\epsilon - T \frac{dS}{dt} \right)$$

E.O.S.
$$P = P(T, \rho)$$

$$\nabla_{\text{rad}} = \frac{3 \,\kappa \,L \,P}{64 \,\pi \,\sigma_{\text{sb}} \,GM_{\,<\text{r}} \,T^4} \qquad \nabla_{\text{ad}} = \left(\frac{\text{d} \log T}{\text{d} \log P}\right)_{\text{ad}}$$

Realistic atmosphere models

solve the stellar-structure equations:

Energy transport: $\nabla = \min(\nabla_{rad}, \nabla_{ad})$

- $-\nabla_{rad}$:transport by radiation
- $-\nabla_{ad}$:transport by convection

- boundary conditions
- Luminosity source

Continuity
$$rac{\partial M_{< r}}{\partial r} = 4\pi G r^2
ho$$

Hydrostatic balance
$$\frac{\partial P}{\partial r} = -\rho \frac{GM_{< r}}{r^2}$$

Energy transport
$$\frac{\partial T}{\partial r} = \frac{\partial P}{\partial r} \frac{T}{P} \nabla$$

Luminosity conservation
$$\frac{\partial L}{\partial r} = 4\pi r^2 \rho \left(\epsilon - T \frac{dS}{dt} \right)$$

E.O.S.
$$P = P(T, \rho)$$

$$\nabla_{\text{rad}} = \frac{3\kappa L P}{64 \pi \sigma_{\text{sb}} G M_{\text{cr}} T^4} \qquad \nabla_{\text{ad}} = \left(\frac{\text{d} \log T}{\text{d} \log P}\right)_{\text{ad}}$$

Realistic atmosphere models

solve the stellar-structure equations:

Energy transport: $\nabla = \min(\nabla_{rad}, \nabla_{ad})$

- $-\nabla_{rad}$:transport by radiation
- $-\nabla_{ad}$:transport by convection

- boundary conditions
- Luminosity source

Continuity
$$rac{\partial M_{< r}}{\partial r} = 4\pi G r^2
ho$$

Hydrostatic balance
$$\frac{\partial P}{\partial r} = -\rho \frac{GM_{< r}}{r^2}$$

Energy transport
$$\frac{\partial T}{\partial r} = \frac{\partial P}{\partial r} \frac{T}{P} \nabla$$

Luminosity conservation
$$\frac{\partial L}{\partial r} = 4\pi r^2 \rho \left(\varepsilon - T \frac{dS}{dt} \right)$$

E.O.S.
$$P = P(T, \rho)$$

$$\nabla_{\text{rad}} = \frac{3\kappa L P}{64 \pi \sigma_{\text{sb}} G M_{\text{cr}} T^4} \qquad \nabla_{\text{ad}} = \left(\frac{\text{d} \log T}{\text{d} \log P}\right)_{\text{ad}}$$

Realistic atmosphere models

solve the stellar-structure equations:

Energy transport: $\nabla = \min(\nabla_{rad}, \nabla_{ad})$

- $-\nabla_{rad}$:transport by radiation
- $-\nabla_{ad}$:transport by convection

- boundary conditions
- Luminosity source

Continuity
$$\frac{\partial M_{< r}}{\partial r} = 4\pi G r^2
ho$$

Hydrostatic balance
$$\frac{\partial P}{\partial r} = -\rho \frac{GM_{< r}}{r^2}$$

Energy transport
$$\frac{\partial T}{\partial r} = \frac{\partial P}{\partial r} \frac{T}{P} \nabla$$

Luminosity conservation
$$\frac{\partial L}{\partial r} = 4\pi r^2 \rho \left(\varepsilon\right) \left(T\frac{dS}{dt}\right)$$

E.O.S.
$$P = P(T, \rho)$$

$$\nabla_{\text{rad}} = \frac{3\kappa L P}{64 \pi \sigma_{\text{sb}} G M_{\text{cr}} T^4} \qquad \nabla_{\text{ad}} = \left(\frac{\text{d} \log T}{\text{d} \log P}\right)_{\text{ad}}$$

Phase I

M_{tot} increases steeply

Phase II

M_{tot} slowly increases

Phase III

M_{tot} rapidly increases

Phase IV

growth M_{tot} stops

Phase I

M_{tot} increases steeply

Phase II

M_{tot} slowly increases

Phase III

M_{tot} rapidly increases

Phase IV

growth M_{tot} stops

Phase I

 M_{tot} increases steeply

Phase II

M_{tot} slowly increases

Phase III

M_{tot} rapidly increases

Phase IV

growth M_{tot} stops

Phase I

M_{tot} increases steeply

Phase II

M_{tot} slowly increases

Phase III

M_{tot} rapidly increases

Phase IV

growth M_{tot} stops

Phase I

M_{tot} increases steeply

Phase II

M_{tot} slowly increases

Phase III

M_{tot} rapidly increases

Phase IV

growth M_{tot} stops

Exercise 1.20

Exercise 1.20 Radiative zero solution: Assume the following:

- κ and L are constant and define $W \equiv 3\kappa L/64\pi\sigma_{\rm sb}$ (also constant);
- The gravitational mass interior to r, $GM_{< r}$ can be approximated by the total mass of the planet+atmosphere, GM_{tot} , which is a constant;
- The atmosphere is radiatively supported: $\nabla = \nabla_{\rm rad} = WP/GM_rT^4$;
- An ideal EOS, $P = k_B \rho T / \mu$.
- (a) Under these assumptions, show that Equation (1.58c) gives:

$$P = \frac{GM_{\text{tot}}T^4}{4W}; \qquad \rho = \frac{GM_{\text{tot}}\mu T^3}{4k_BW}$$
 (1.60)

where we neglected the boundary condition (the solutions are valid only in the "deep" atmosphere).

(b) Continue, by invoking Equations (1.58b) and (1.58c), to derive the atmosphere temperature and density profiles:

$$T(r) \simeq \frac{GM\mu}{4k_B} \frac{1}{r}; \qquad \rho(r) \simeq \frac{1}{W} \left(\frac{GM\mu}{4k_B}\right)^4 \frac{1}{r^3}.$$
 (1.61)

Integrating these gives the mass of the atmosphere:

$$M_{\text{atm}} = \frac{4\pi}{W} \left(\frac{GM_{\text{tot}}\mu}{4k_B} \right)^4 \Lambda, \tag{1.62}$$

Assessment: oligarchic growth model

Key advantage oligarchic growth model/planetesimal accretion
Tailored to solar system

Drawbacks...

Assessment: oligarchic growth model

Key advantage oligarchic growth model/planetesimal accretion

Tailored to solar system

Drawbacks...

- growth limited to isolation mass
- planetesimals prone to fragmentation
- all growth is local
- planetesimal accr. slow in outer disk

Architecture solar system

Kepler-56

Gliese 581

Kepler 11

