L13: Orbit crossing & Planet migration

Armitage

Core accretion model

Orbital stability

Chambers et al. (1996)

Hill stability criterion

from circular restricted 3-body problem, we can find allowed/forbidden regions..

 \rightarrow Δ > 3.46 R_{Hill} stable (no orbit crossing)

For general 3-body systems:

$$\Delta > 2.4a_{\rm in} (q_{\rm in} + q_{\rm out})^{1/3}$$

For true N-body systems there is no analytic theory. They are unstable, with the crossing time fitted as:

$$t_{cross} = a \exp[b^*\Delta]$$

Orbit crossing

Evolution

Initial conditions

(Raymond et al. 2006)

- no gas
- around 2,000 embryos
- separated by <1 R_{Hill}

Q: What is wrong with this initial setup? (authors improved initial conditions in later work)

Nevertheless, outcome is very similar to solar system

Q: except for....

Blackboard

Impulse approximation exists!

(c) wikipedia

Gaseous disks

Type I, Type II

Type I migration planets are embedded

Type II migration planets open a gap in the disk; migration slows down

→ (c) Phil Armitage; the movie shows 600 orbits

 $10 M_{Jup}$

 $3 M_{\text{Earth}}$

Disk-planet topology

Lindblad torque(s)

circulating orbits the star; distant encounters & small-angle delections; impulse approximation valid (until $b\sim h_{\rm gas}$); more thoroughly described with resonance theory.

Corotation torques(s)

make U-turn (librate); subsonic velocities. Hydro- & thermo-dynamics very important in determining the torque.

Migration time

Red curve

Type I, 2-sided isothermal EOS migration rate according to theory (Tanaka et al. 2002)

$$\tau = (2.7 + 1.1\alpha)^{-1} \frac{M_c}{M_p} \frac{M_c}{\sigma_p r_p^2} \left(\frac{c}{r_p \Omega_p}\right)^2 \Omega_p^{-1} .$$

Symbols

Simulations (D'Angelo et al. 2003)

There is a good perfect match b/w theory and simulations

→ migration very efficient!

Two-sided

Planet migration

Gas-free migration

Disk migration

Planet migration

Gas-free migration

Cas-free migration

Cas-free migration

Disk migration

- Kozai cycles
- planet-planet scattering
Usually invokes tidal interactions
with star to shrink planet's orbit

- Kozai cycles **Planet migration** - planet-planet scattering **Gas-free migration Disk migration Lindblad torque** impulse approximation *– or* resonance theory

(correct for fluid effects)

Usually invokes tidal interactions with star to shrink planet's orbit

Planet migration

Gas-free migration

Disk migration

- **Lindblad torque**
- impulse approximation
- or resonance theory(correct for fluid effects)
- **Co-orbital torque**

will greatly depend on flow pattern in vicinity planet (hydro- *and* thermodynamics)

- Kozai cycles
- planet-planet scattering
 Usually invokes tidal interactions

with star to shrink planet's orbit

Chris Ormel (2016) [Star & Planet Formation || Lecture 13: orbit crossing & planet migration] 16/22

Planet migration

Gas-free migration

Disk migration

Lindblad torque

- impulse approximationor resonance theory(correct for fluid effects)
- **Co-orbital torque**

will greatly depend on flow pattern in vicinity planet (hydro- *and* thermodynamics)

- Kozai cycles
- planet-planet scattering
 Usually invokes tidal interactions
 with star to shrink planet's orbit

Problem setup

2D or 3D?

E.O.S.?

Planet atmosphere (smoothing length)

1-sided or 2-sided? (differential)

Linear or non-linear? (high mass planets, eccentric planets, gap opening?)

Disk migration takeaways

Features

- result of near-cancellation of two opposing torques
- Type I and II
- rapid

Usually inward

key exception: positive co-orbital torque may dominate over (negative) Lindblad torque

Good for explaining hot-Jupiters

... and other close-in systems, but not solar system

Missing physics

Two-planet migration; flow w/i atmosphere, etc...

Gas disk-free migration mechanisms

Solid (planetesimal)-driven migration

in rings or early solar system

Planet-planet scattering

Kozai-Lidov cycles binary perturber

Planet Population synthesis models

Benz et al. (2013)

Planet Population Synthesis

Planet pop. synthesis

each of these line represents an evolving planet in a *different* disk.

Key advantage

This exercise attempts to match the observed exoplanet distribution

Key disadvantage

It's a weakest link game

Mordasini et al.

Exoplanet zoo

Exoplanets

Certainly much more diverse than the solar system!

A complete planet formation theory still awaits us!

