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1 Goals
This project consist of two steps:

1. Program a small N-body code and test several algorithms (Section 2)
2. Choose a project from the list (Section 3), investigate the problem, and deliver a report and a

presentation.

You can show the instructors your results on part #1, to ensure you are on the right track. Part #2 is an
open project: you should justify the choices/assumptions you make here and defend them (usually there
are multiple strategies possible). The written report should focus on the second part.

It is advised that you discuss your progress with an instructor on a weekly basis!

Grading
is based on:

− A 10min presentation +10min discussion during the final lecture block.
− A short report. Try to be to-the-point like you are writing a scientific article: intro/motivation,

methods, result, and discussion/conclusion. 3-4 pages in two-column layout is more than sufficient.
Summarize your results in a couple of figures, which you discuss in some depth.

− The project level. One-star (?) and double-star (??) projects require a little more effort. If con-
ducted satisfactory, 1

2 resp. 1 pt. bonus will be added to your mark.

2 An N-body tutorial

2.1 Python syntax
We will adopt Python to program a simple N-body code. But it must be stressed that Python is not
ideal for N-body simulations, particular at large N when number crunching becomes important. Here, we
mainly use it for illustrative purposes as Python syntax is very readable. We do not optimize our code
for speed (ambitious students are encouraged to proceed with this or to adopt a different language like C
of Fortran).

We further use the numpy module for efficient array operations. We use three main arrays:

− the positions of the particles (xarr). This is a two-dimensional array of size 3×N: 3 for the number
of spatial dimensions (x, y, and z) and N for the number of particles. For example, xarr[:,i] gives
the spatial position of the ith particle.

− the velocities of the particles varr. This is also a 3 × N array.
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− the masses of the particles, marr. This is a 1-dimensional array of length N. The masses don’t
change.

We will use some of python/numpy’s vectorial features. For example:

sqrt((xarr**2).sum(axis=0))

will result in a 1-dimensional array of size N giving the distance to the particles from the origin, while

(xarr*mass).sum(axis=1) /sum(mass)

gives the center-of-mass coordinates. If you adopt a different programming language, such statements
have to be modified.

2.2 Program layout
We also use a modular approach. This means that we have 3 files:

− a main program file, eg. 2body.py for the 2-body problem
− a file pars.py which stores all the constants and parameters of the problem;
− a file functions.py which contains key functions, like the computation of the forces on the par-

ticles.

In the examples below, we will work in cgs-units. Professional N-body coders sometimes normalize units
and put, e.g., Newton’s gravitational constant to unity, G = 1, as well as the mass of the Sun. But we will
not adopt dimensionless units here. In addition we will treat the Sun as a normal N-body particle.

Our pars.py file is very simple indeed:

#file pars.py

#constants

gN = 6.67408e-08 #Newton’s gravitational constant

mSun= 1.9884754153381438e+33 #mass of the Sun (in grams)

mEarth = ...

au = 1.495978707e13 #astronomical unit (in cm)

yr = 2*pi /sqrt(gN*mSun/au**3) #1 year in seconds

...

#problem parameters

Np = 2 #2 particles

This is included in the main program using an import pars statement. For example, it is used in the
main program to assign the values to the variables tfinal and dt:

Box 1: Main program

#main program file

from numpy import *

import functions as fn

import pars

#assign the initial positions, velocities, masses

xarr, varr, marr = fn.init_2body()

#declarations

time = 0 #start time

tfinal = 1e8 #end time (seconds)

dt = 0.01*pars.yr #timestep
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#compute the total energy, used for verification

etot0 = fn.e_tot (xarr, varr)

#start main loop

while time<tfinal:

#calculate forces, update positions and velocities

#this involves calling the function that computes

#the accelerations

...

acc = fn.forces(xarr,varr,marr)

...

#increment time

time += dt

etot = fn.e_tot (xarr, varr, marr)

error = (etot -etot0) /etot0

In this program, we call three functions in the functions.py file: init 2body(), e tot and forces.
The first initializes the position and velocities, the second calculates the energy, and the third computes
the forces: accelerations and (for Hermite schemes) ”jerks”. Let us start with the function that initializes
the 2-body program:

Box 2: Initialize 2-body

from numpy import *

import pars

def init_2body (ecc=0.5):

"""

construct the 2body problem; initialize at aphelion

"""

#declare the parameters as zeros

xarr = zeros((3,pars.Np))#positions

varr = zeros((3,pars.Np))#velocities

marr = zeros(pars.Np) #masses

#consider the Sun (particle 0) and Earth (particle 1)

marr[0] = pars.mSun

marr[1] = pars.mEarth

#Keplerian velocity corresponding to 1 AU

vKep = sqrt(pars.gN*(pars.mSun+pars.mEarth) /pars.au)

#initialize at aphelion

xarr[:,1] = [pars.au *(1+ecc), 0., 0.]

varr[:,1] = [0., vKep *sqrt((1-ecc) /(1+ecc)), 0.]

return xarr, varr, marr

Note that the Sun is initialized at x = v = 0 and the second particle has been given the mass of the Earth
(but that is arbitrary). Also note that it has been initialized with a zero radial velocity and a azimuthal
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velocity less than its local Keplerian value. Convince yourself that the particle is then at apoastron.
The most important function is the calculation of the gravitational forces:

ai =
∑
j,i

Gm j

|x ji|
3 x ji; x ji = x j − xi (1)

Note the signs. The summation contains N − 1 terms and the calculation should be conducted for each
of the N particles. However, this can be halved by virtue of Newton’s 3rd law. Hence, we ”only” need
1
2 N(N − 1) calculations. This may be the most direct way to code this up:

Box 3: force computation (accelerations)
def forces (xarr, marr):

"""

xarr(3,Np) :positions

marr(Np) :masses

Calculates the gravitational force (accelerations)

on each particle

returns the accelerations

"""

acc = zeros((3,pars.Np))

for i in range(pars.Np):

for j in range(i+1, pars.Np):

rji = xarr[:,j] -xarr[:,i] #relative position (vectorial)

r2 = (rji**2).sum(axis=0) #squared distance (scalar)

r1 = sqrt(r2) #distance

r3 = r1*r2 #cubed distance

force = pars.gN*rji/r3

acc[:,i] += force*marr[j] #add to i

acc[:,j] -= force*marr[i] #reverse sign

return acc

In Python, such an implementation with two for-loops is far from optimal. We can, quite easily, get rid of
the inner for loop. But the goal is here to get the code working and consider optimizations later.

The remaining function in our program above is e tot, which calculates the total energy of the
system. This is super useful as it will allow us to check the accuracy of the various algorithms that
integrate the equation of motions.

Exercise 1:
(a) In Box 2 we initialized the star at x = v = 0. But it will not stay there. Why?

(b) Write the function e tot, which returns the total energy of the system, ie. the sum of the kinetic and
potential energies:

E =
1
2

∑
i

miv
2
i −

∑
i

∑
j>i

Gmim j

|x j − xi|
(2)

Of course, you can – and should – extend the program, for example to print intermediate results.

2.3 The forward Euler, midpoint, Runge-Kutta and Leapfrog schemes
In the forward Euler scheme, the velocities and positions are updated simply as:
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Box 4: Forward Euler

acc = fn.forces(xarr, marr)

xarr += varr*dt

varr += acc*dt

Exercise 2: Run the 2-body code and verify that the error is order unity. Plot the orbit and convince yourself
that something is very wrong. Try the integration with a smaller value for the timestep parameter dt. How
small should you set dt in order to get a ”decent” result?

Clearly, the forward Euler scheme will be very inefficient for 2-body – let alone N-body – calculations.
The result already improves for the midpoint algorithm:

Box 5: Midpoint method

acc = fn.forces (xarr, marr)

xmid = xarr +varr*dt/2

vmid = varr +acc*dt/2

amid = fn.forces (xmid, marr)

xarr += vmid*dt

varr += amid*dt

In the midpoint method, we first take a half-step, re-calculate the forces at the midpoint, and then use the
velocities and forces of the midpoint to advance over the full timestep. You can verify that this already
performs much better than the forward Euler, albeit at the expense of an additional force calculation.

Continuing the approach, more intermediate evaluations can be conducted to produce more accurate
results. Together, this schemes are known as Runge-Kutta methods. In particular, the fourth order method,
RK4, is frequently-used and requires four evaluations of the force function. A sample algorithm (there
are several variations) could read:

xi+1 = xi + (vk1 + 2vk2 + 2vk3 + vk4)∆t/6 (3)
vi+1 = vi + (ak1 + 2ak2 + 2ak3 + ak4)∆t/6 (4)

where the {vk} and {ak} are intermediate results:

vk1 = vi ak1 = ai (5)
vk2 = vi + ak1∆t/2 ak2 = a(xi + vk1∆t/2) (6)
vk3 = vi + ak2∆t/2 ak3 = a(xi + vk2∆t/2) (7)

vk4 = vi + ak3∆t ak4 = a(xi + vk3∆t) (8)

2.4 The Leapfrog scheme
For gravitational N-body simulations (where energy is conserved) there is a simple and accurate alterna-
tive scheme: the Leapfrog. In its simplest form it considers half steps:

vi+ 1
2

= vi− 1
2

+ ai∆t (9)

xi+1 = xi + vi+ 1
2
∆t (10)

from which the name ”Leapfrog” is obvious. The key property of the Leapfrog is its time-reversibility:
reversing the sign of ∆t guarantees that you will follow the same orbit, but backwards. Integrators that
harbour time-reversal are called symplectic.
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Box 6: Leapfrog scheme

varr += acc*dt/2

xarr += varr*dt

acc = fn.forces (xarr, marr) #update accelerations

varr += acc*dt/2

Box 7: Alternative Leapfrog scheme (predictor-corrector)

old_x = copy(xarr) #use numpy’s copy function to produce a clone of arrays

old_v = copy(varr)

old_a = copy(acc)

xarr += varr*dt +acc*dt**2/2 #predicted position

acc = fn.forces (xarr, marr)

varr += (acc+old_a)*dt/2

xarr = old_x +(old_v+varr)*dt/2 +(old_a-acc)*dt**2/4 #corrected position

Another way to write the Leapfrog without the need for introducing half-steps is as follows:

xi+1 = xi + vi∆t +
1
2

ai(∆t)2 (11a)

vi+1 = vi +
1
2

(ai + ai+1)∆t (11b)

Yet another method to write the Leapfrog is using a predictor-corrector scheme. First, we express the
Leapfrog in implicit form:

vi+1 = vi +
1
2

(ai + ai+1)∆t; (12a)

xi+1 = xi +
1
2

(vi + vi+1)∆t +
1
4

(ai − ai+1)(∆t)2 (12b)

Appreciate again the symmetry in these expression. The ”problem” now is that we don’t know the accel-
eration at the next timestep, which occurs in Equation (12) on the RHS. To solve this, we first calculate a
predicted position, xp, based on a Taylor series around the point xi. Thus:

1. Predict:
xp = xi + vi∆t +

1
2

ai(∆t)2 (13)

2. Calculate the forces at the predicted position: ap = a(xp)
3. Correct according to the time-symmetric equations above:

vi+1 = vi +
1
2

(ai + ap)∆t. (14)

and Equation (12b).

Such schemes are known as predictor-corrector schemes. Steps 2 and 3 may be repeated more than once
for increased precision.
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Exercise 3:
(a) Convince yourself that Equation (11) is time-reversible and that Equation (12) is equivalent to Equation
(11).

(b) An implementation of the Leapfrog scheme of Equation (11) is given in Box 6. Verify that the algorithm
indeed corresponds to Equation (11). However, the program may crash or give erroneous results, as the accel-
erations in the top line are not yet known when the program first enters the while loop. How should you correct
this?

(c) An implementation for the predictor-corrector variant of the leapfrog is given in Box 7. Note the use of
numpy’s copy() function to produce a clone of the array.

(d) Program the midpoint, and both leapfrog methods (Eq. [11] and Eq. [12]). Then, do an algorithmic com-
parison among the methods by calculations of the energy error in the 2-body problem after t = 108 s. Construct
a table like:

∆t [yr] Euler Midpoint RK4 Leapfrog Leapfrog-2 Hermite

10−2

10−3

10−4

10−5

(You can fill in the Hermite column in the next section.)

2.5 Hermite integration
The Hermite algorithm can be regarded as a higher-order generalization of the predictor-corrector variant
of the Leapfrog. First we predict the new positions/velocities:

xp = xi + vi∆t +
1
2

ai(∆t)2 +
1
6

ji(∆t)3 (15a)

vp = vi + ai∆t +
1
2

ji(∆t)2 (15b)

where ji – the ”jerk” term – is the time-derivative of the accelerations ji = ȧi. We will see that for
the calculation of j we also need the velocities. Hence, the predicted velocity vp. After approximating
ai+1 and ji+1 from the predicted positions and velocities, we ”correct” these using a similar scheme as in
Equation (12):

vi+1 = vi +
1
2

(ai + ai+1)∆t +
1

12
(ji − ji+1)(∆t)2 (16a)

xi+1 = xi +
1
2

(vi + vi+1)∆t +
1

12
(ai − ai+1)(∆t)2 (16b)

where, in the numerical implementation, the i + 1 terms on the RHS should be replaced by the predicted
values. There is some freedom in choosing the coefficients of the higher-order terms in Equation (16b)
(eg. Kokubo & Makino 2004). Here we have chosen a scheme such that the O(∆t)3 term disappears (Hut
et al. 1995). The expressions above guarantee that the error is O(∆t)5 – in other words, the Hermite is
an 4th order scheme. Like the Leapfrog schemes the forces (accelerations and jerk terms) have to be
calculated only once per iteration in the while loop.

Taking the time-derivative of Equation (1), and applying the chain rule, the jerk term readily follows:

ji =
d
dt

ai =
∑
k,i

Gmk

|xki|
3 vki −

∑
k,i

Gmk

|xki|
5 (3vki · xki)xki (17)
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(Here I switched the dummy index j to k to avoid confusion with the vectorial j on the LHS). Equation
(17) looks intimidating, but in fact the only novelty is the calculation of the relative velocity vki and of the
(3vki · xki) dot product. Box 8 gives an example of how the main part of the forces function may look
like (again without considering optimizations):

Box 8: forces (Hermite schemes)

def forces_Hermite (xarr, varr, marr):

"""

computes the accelerations and the jerk terms

"""

acc = zeros((3,pars.Np))#accelerations

jer = zeros((3,pars.Np))#time-derivative of accelerations

for i in range(pars.Np):

for j in range(i+1, pars.Np):

rji = xarr[:,j] -xarr[:,i] #relative position

vji = varr[:,j] -varr[:,i] #relative velocity

r2 = sum(rji**2)

r1 = sqrt(r2)

r3 = r1*r2

rv = sum(rji*vji) #calculate the dot product

rv /= r2

force = pars.gN*rji/r3

acc[:,i] += force*marr[j]

acc[:,j] -= force*marr[i]

#add the jerk terms

jerk = pars.gN *(vji -3*rv*rji)/r3

jer[:,i] += jerk*marr[j]

jer[:,j] -= jerk*marr[i]

return acc, jer

2.6 Individual timesteps??

Until now, our program featured a single timestep. While this is sufficient for many applications, a fixed
∆t becomes problematic in the case of close encounters. In close encounters, for example, the timestep
should certainly be less than the duration of the encounter, tint,1 ∼ xi j/vi j where xi j, vi j are the magnitudes
of xi j, vi j. In that case the timestep must be reduced. An alternative estimate for the interaction time, in
case of low (initial) velocities, is tint,2 '

√
xi j/ai j.

In the force computation algorithm above we could simply calculate these timescales at every point
in the double for loop. The timestep over which particle i should be advanced is then the minimum in
{tint,i j} for all j.

There are many alternative, more sophisticated expressions for the timestep calculation. A popular
choice for Hermite scheme’s is (Aarseth 2003):

∆ti+i = η

√√√√ ai+ia
(2)
i+1 + ȧ2

i+1

ȧi+1a(3)
i+1 +

(
a(2)

i+1

)2 (18)
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where η is a control parameter. In this method the timestep calculation does not involve the double
while loop, but is calculated from the acceleration and its higher order derivatives. Note that only the
accelerations ai+1 and jerks ȧi+1 are calculated explicitly. Using a Taylor series, we therefore estimate the
higher-order time derivatives from the old values of these quantities:

a(2)
i+1 ≈

6(ai − ai+1) + (2ȧi + 4ȧi+1)∆ti
(∆ti)2 (19)

a(3)
i+1 ≈

12(ai − ai+1) + 6(ȧi + ȧi+1)∆ti
(∆ti)3 (20)

Now that each particle has a different timestep ∆ti how should we modify the algorithm? There are
several options:

− Keep a global timestep (same ∆t for every particle), but take it the minimum of all the ”interaction
times” {tint}. We update all particles. This conservative approach will work, but for large N it comes
at a significant efficiency overhead, as most of the particles do not need to be advanced over such
small timesteps.

− Quantize time. Every particle is advanced over a time ∆ti = A2n with A constant and n the largest
integer that satisfies ∆ti ≤ tint. This means that particles will be updated at (future) times {tn} and
that at time t only a subset of the particles (those where t = tn) will be advanced. This is the
so-called block timestep method.
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3 Projects
For each of the project you should decide which of the algorithms above is the best-suited for your
projects.

The meaning of the stars is the following:

(no stars): a 3-body problem. Should be relatively straightforward to program, so you can focus on the physics.
?: a little more challenging

??: quite challenging. You will probably want to apply some optimizations to your code as it would
otherwise be slow.

A starless project does not imply you cannot get a high grade.

3.1 3-body problem: interactions near the Hill sphere
Consider three particles:

1. The Sun;
2. The Earth, approximated to move on a circular orbit (e = 0), placed at a distance of aE =1 AU;
3. A test particle (”test” means very low mass), which has s semi-major axis axis similar (but not

entirely the same) as the Earth, aT = aE + ∆a but is initialized at the opposite side of the Sun, also
at zero eccentricity.

Because the semi-major axis differ (slightly), the distance between the test particle and the Earth will
decrease; after half the synodical time, they will hence experience an interaction. Your task is to explore
this 3-body interaction as function of ∆a. When do you see horseshoe orbits, Hill-penetrating orbits, or
encounters that show little interaction (distant encounters). Plot, for example, the change in eccentricity
the test particle has experienced as function of ∆a.

3.2 Orbital decay
In this 2-body problem (the Sun and a test particle), you investigate the rate of orbital decay by adding a
gas drag force of the form:

F = −
v − vgas

tstop
; vgas = (vK(a) − vhw)eφ (21)

to the equations of motion. For simplicity, let the headwind velocity be a constant. The goal is to test
the radial and azimuthal drift formulas that you derived in class. You can first start with a fixed tstop or a
fixed τp ≡ tstopΩ but at some point you should switch to a fixed particle size and allow tstop to depend on
position (since the gas density in the disk also depends on radius).

3.3 Pressure bump?

This is a variation of the above, but modify it at two points:

− instead of taking a power law for the disk (midplane) pressure profile, P ∝ rp, (with p < 0 for a
positive headwind) modify it in such a way that P has a local maximum at a certain radius r0. This
will make vhw(r) a function of radius r.

− also add a small radial component to vgas in such a way that Ṁ = vrΣ(2πr) is constant and negative
(gas is accreting onto the star).

Use reasonable parameters. We are interested in the behavior around r = r0. What happens to the drifting
particles?
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3.4 Settling
Consider a particle at 3 scaleheights, z = 3hgas in the protoplanetary disk. Because of the vertical com-
ponent of the solar gravity, the particle settles to the midplane. Your task is to describe this behavior as
function of particle size. You can again take Equation (21) for the gas drag law.

3.5 Pebble accretion or escape?

Consider three bodies:

1. The Sun;
2. A protoplanet of mass 10−3M⊕ ≤ Mp ≤ M⊕ located on a circular orbit
3. A pebble, characterized by a fixed dimensionless friction time τp = tstopΩ. In addition to the 2-body

forces, the pebble also experiences a gas drag force of Equation (21).

The pebble starts at a radius exterior to the protoplanet, but it will drift inwards due to radial drift. There-
fore, it will either be accreted by the protoplanet or pass by it. Start with τp = 1 particles (when radial
drift is fastest) and determine the fraction of particles that will be accreted.

3.6 Viscous stirring of planetesimals??

In this N-body project, consider N equal mass planetesimals orbiting the Sun. Place the planetesimals
initially on near-circular orbits with a very low eccentrity e and inclination i, for example with rms-values
of ≈ 10−8. Space them randomly (however, they should not be initialized too close to each other!). The
goal is to plot the rms-values of the eccentricity and inclination as function of time.

3.7 Scattering of planetesimals??

Like the previous project, but make one of the planetesimals 1000x more massive and place it at the center
of the belt. Describe what happens.

3.8 Resonance trapping?

Consider three bodies:

1. A solar-mass star;
2. A Jupiter-mass planet at 1 AU;
3. An Earth-mass planet at 2 AU.

Initialize the planets on circular orbits. However, assume that the outer planet experiences a gravitational
force from the gas disk, which damps the eccentricity of the planet (confusingly, this force is sometimes
referred to as the tidal force). For simplicity, let the form of the gravitational force be given by Equation
(21), except that we substitute tgrav for tstop. Take tgrav at least 10 yr. The second parameter is the value of
vhw.

Because of the gravitational gas drag force, the Earth-mass planet will migrate inwards. However,
at some point it could end up (”captured”) in resonance with the Jupiter-mass planet. Your task is to
investigate when resonance trapping takes place and when not.

11



3.9 Orbit crossing??

Consider 10 (or more) Mars-sized protoplanets (M = 0.1 M⊕) separated by b̃ mutual Hill radii around
1 AU. Initially, the N-bodies are on circular orbits. Integrate the system in time until the point of the
first orbit crossing tcross, that is, until the point that the apoapsis and periapsis of neighboring protoplanets
start to become equal. Stop the simulation and record the crossing time tcross(b̃). Start with b̃ = 4 and
subsequently choose larger b̃. Consider at least 3 simulations for every b̃ to get some estimate in the
spread of tcross.
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A Orbital elements
Here is a short algorithm to obtain the orbital elements (a, e, i, etc.) from the positions x and velocities v.
In this calculations x and v are always relative to the central body.

1. Calculate the angular momentum vector l = r × v. The vertical component is lz. The inclination of
the orbit is given by i = arccos(lz/|l|).

2. Calculate the eccentricity vector:

e =
v × l

G(m? + mp)
−

r
r

(22)

It can be shown that e is a constant of motion and that it points in the direction of periapsis (you
can verify this). The eccentricity of the orbit is the magnitude of the eccentricity vector e = |e|.

3. The semi-major axis is given by:

a =
h2

G(m? + mp)(1 − e2)
(23)

4. Calculate the node vector: n = ẑ × l This vector points in the direction of the ascending node,
providing the orientation of the orbit in space. In case the motion lies in the plane (such that the
cross product is identically zero) you can assign it arbitrarily, eg. n = (1, 0, 0).

5. The longitude of ascending node Ωnode, argument of periapsis ω, and true anomaly ν are:

Ωnode = arccos
(

nx

|n|

)
(24)

ω = arccos
(

n · e
|n|e

)
(25)

ν = arccos
(

e · x
|x|e

)
(26)
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