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∗ For comparison, a dust grain is made
up of ∼1010 atoms and there are "only"
∼1011 stars in the galaxy.

† This is a broad size range that does not
correspond to the geologist definition of
a pebble.

1
Planet Assembly

1.1 Introduction: Planetary size ladder

Planet formation takes place over a variety of size scales. In the core
accretion model for planet formation it is postulated that solid par-
ticles drive this process, starting from (sub)micron sized grains and
ending with cores that can contain ∼10 Earth masses onto which the
gas of the disk will finally accrete. This transformation corresponds
to an astonishing increase of a factor 1040 in terms of mass.∗ Because
of the range in scales there are quite a number of physical processes
that operate during planet formation. Perhaps the most important
two are surface forces (e.g. van der Waal’s forces), which bind mate-
rial at small scales, and gravity.

μm mm m km 103 km

grains             aggregates     pebbles              boulders            planetesimals      embryos          giants

104 km

Figure 1.1: The planetary size ladder.
From left to right: (i) porous chon-
drite IDP; (ii) laboratory dust aggregate
(Blum et al. 1998); (iii) Allende me-
teorite, showing chondrules; (iv) boul-
ders on the Moon – NASA photograph
AS17-140-21496; (v) Comet 67P on 19

September 2014 – NavCam mosaic by
ESA/Rosetta/NAVCAM; (vi) Mars on
23 August 2003 – The Hubble Heritage
Team (STScI/AURA); (vii) Jupiter in true
color from NASA’s Cassini spacecraft on
December 7, 2000.

Let us briefly review some of the terminology used in this chapter:

• Grains – up to 1 µm. These are either inherited from the collapse
of the parent molecular cloud or have been condensed from the
cooling protoplanetary nebula.

• Aggregates/fractals – ∼µm up to a unspecified upper size. The
first product of dust coagulation. They can be very porous.

• Pebbles – sub-mm to meter. We simply mean compact objects
larger than grains but smaller than boulders.† Chondrules (∼100 µm)
and Calcium-Aluminium Inclusions (CAIs; ≈cm), both found in
meteorites, are examples.

• Boulders – meter size. In the historically popular "Minimum-Mass
Solar Nebula" model, the meter-size scale is approximately the
dividing line between particles that are strongly influenced by the
gas and particles that travel in Kepler orbits.

• Planetesimals – sub-km to several ∼102 km. These are bodies
that start to bind material by their gravity. They are traditionally
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∗ "Protoplanet" and "Oligarchs" are
frequently-used synonyms for embryo.

† solids is a more general name for the
refractory material (dust), which also in-
cludes larger bodies.

Figure 1.2: Minimum-mass solar nebula
model (MMSN): surface density obtained
from smearing out the mass of the solar
system planets. Note that Mercury, Mars,
and the asteroid belt are notable nega-
tive deviations to the ’fit’. From Weiden-
schilling (1977).

‡ At least on large scales. But locally,
pressure reversals are a possibility, in
which case the "headwind" will become
a "tailwind" (negative η).

considered to be the planetary ‘building blocks’. Nowadays their
remnants are better known as Asteroids, Comets and Kuiper Belt
Objects (KBOs).

• (planetary) Embryos – 103 km to ∼0.1 M⊕. Bodies that emerge out
of a planetesimal population due to a runaway growth coagulation
process. At these masses, bodies start to bind the nebular gas,
creating a first atmosphere.∗ Dwarf planets (Ceres, Pluto) and
even Mars belong to this category.

• Rocky planets (not shown in Figure 1.1) – up to several Earth
masses. They are believed to have formed by collisions among
planetary embryo’s – events known as giant impacts. One such
giant impact could have resulted in the Earth-moon system.

• Gas giants – &100 M⊕. Consist mostly of gas, but (in the core
accretion model) thought to have formed only after the creation of
a ≈10 Earth mass solid core.

The formation of these bodies takes place in a disk that is dominated
by gas. The typical assumption is that the dust-to-gas ratio (or metal-
licity) of the gas is ‘inherited’ from the ISM: Z ≈ 0.01. Understanding
planet formation is therefore impossible without understanding the
gas and in particular the interaction of these solids† with the gas. Gas
entirely determines the (relative) motions of small dust particles, but
it also damps the random motions (eccentricities and inclinations)
of more massive planetesimals and it gravitationally interacts with
planets, resulting in their migration.

In this chapter we will often assume power-laws for the gas sur-
face density (Σ) and temperature (T) profiles; for example:

Σgas = Σ1

( r
AU

)−p
, Tgas = T1

( r
AU

)−q
(1.1)

where Σ1 and T1 are the values at 1 AU. When the disk is isothermal
in the vertical direction and its self-gravity can be neglected com-
pared to the Sun, we have seen that the disk midplane density is
ρgas(z = 0) = Σgas/hgas

√
2π with hgas = cs/Ω the gas scaleheight,

cs =
√

kBT/µ the isothermal sound speed, and Ω the local orbital
frequency.

A particularly well-known example is that of the so-called MMSN:
the minimum-mass solar nebula. The MMSN profile is obtained
from smearing out the masses of the solar system planets – correct-
ing for the (unknown) dust-to-gas ratio where needed – and (coura-
geously) fitting a power-law to these data points. This results in
p = 1.5 and Σ1 = 1, 700 g cm−2, see Figure 1.2 (Weidenschilling 1977;
Hayashi et al. 1985). Although the MMSN is (by convention) a use-
ful beacon, it should be emphasized that its construction assumes a
100% efficiency in converting solids to planets and ignores any radial
transport of solids. As we will see, there is no good reason that any
of these assumptions should hold.

As we have seen in the previous chapters, disks are partially pressure-
supported with the pressure gradient usually pointing inward‡. As
a result the gas will orbit the star at a velocity slightly less than Ke-
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∗ Here νmol is the kinematic molecular
viscosity, which is approximately the
product of the mean thermal speed and
the mean free path of a molecule, νmol ≈
1
2 lmfpvth where lmfp is the (molecular)
mean free path, where:

vth =

√
8kBT
πµ

, lmfp =
µ√

2ρgas
σmol

(1.4)
are the mean thermal speed and the
mean free path of gas molecules, respec-
tively. σmol is the molecular cross section.

Free molecular flow

Stokes flow

Figure 1.3: Gas streamlines in the
free molecular flow, where gas particles
bounce off, and Stokes flow (Rep � 1).

plerian, i.e. vφ,gas = (1 − η)vK with vK =
√

GM?/r the Keplerian
velocity and η � 1 a dimensionless parameter:

η ≡ 1
2Ω2rρgas

dP
dr

, (1.2)

or, in words: half the ratio of the pressure gradient force to the solar
gravity. For the power-law profiles in Equation (1.1) the magnitude
of the lag in velocity (a.k.a. the headwind velocity) is ηvK ' 50 m s−1,
independent of r.

1.2 Particle aerodynamics and velocities

When solids have a relative motion with respect to the gas, they
experience a drag force:

FD = −1
2

CD Aρgasvv, (1.3)

where A is the projected surface area of the particle, ρgas the gas
density, v the relative velocity with respect to the gas, with v the
absolute value, and CD the drag coefficient. The (dimensionless)
value of the drag coefficient depends on the particle Reynolds num-
ber Rep = 2sv/νmol where s is the particle radius.∗ For spheres:

CD =


24Re−1

p (Stokes: Rep < 1)
24Re−0.6

p (Transition: 1 ≤ Rep . 800)
≈ 0.5 (Newton: Rep & 800)

(1.5)

The first, small particle, regime is known as Stokes drag law; the
third regime is referred to as Newton’s drag and the intermediate
Reynolds numbers describe a transition regime. It should be noted
that the above values are valid for spheres; bodies of different shapes
will have different drag coefficients.

An important exception to these laws is when particles are so
small that a fluid description is no longer valid. This occurs when
the mean-free path between the gas molecules lmfp becomes greater
than the particle size. For such particles, the drag force law follows
from a particle description instead. This is referred to as the Epstein
drag regime, where

FD = −4
3

πs2ρgasvthv, (s <
9
4

lmfp) (1.6)

with vth the mean thermal speed of the gas molecules.
In the following, we express the strength of the aerodynamic drag

in terms of a stopping time tstop. This is simply the time after which
any initial momentum of a particle is lost due to friction:

tstop =
mv
FD

. (1.7)

An advantage of this definition is that in the Epstein and Stokes
regimes tstop becomes independent of the relative velocity v, such
that tstop can be regarded as a property of the particle. For example,
tstop = ρ•s/vthρgas in the Epstein regime.†
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Figure 1.4: Dimensionless stopping time
τp as function of particle radius at three
locations in the disk for the MMSN
model.
∗ To see this, consider the force that arises
due to the pressure gradient in the gas:
∼(dP/dz) × 2a × πa2. This corresponds
to an acceleration of ∼(dP/dz)/ρ• – a
factor ρgas/ρ• smaller than experienced
by the gas.

† i.e. dl/dt = Γ = r × F where Γ is the
torque and l the (specific) angular mo-
mentum vector.

∗ Note the signs: g? is negative (pointing
inwards) and vr will also be negative for
inward drift.

Exercise 1.1: Show that the expression for tstop in the Stokes regime

is quadratic with the particle size and independent of the gas density.

The stopping time is often nondimensionalized: τp = tstopΩK

where ΩK is the local orbital frequency for circular (Keplerian) mo-
tion. Hence, particles with τp < 1 decelerate within approximately
1 orbit, whereas particle of τp � 1 are only marginally affected by
gas over 1 orbit. To first order τp � 1 particles move in Kepler or-
bits, with the gas providing a small perturbation. On the other hand,
orbits of τp � 1 particles cannot be described by Keplerian orbital
elements.

As we have seen, the radial pressure support in the disk causes the
gas azimuthal velocity to lag by an amount of ηvK ∼ 50 m s−1. For a
solid, however, this pressure gradient force is negligible.∗ Therefore,
solids move with respect to the gas and the excess gravitational ac-
celeration δgr is balanced by gas drag: vdrift/tstop = δg, resulting in
a drift velocity vdrift. Examples of drift velocities are:

• settling: the gravitational stellar acceleration in the vertical direc-
tion g?z ≈ −z/r × GM�/r2 = −Ω2

Kz. Equating this to the drag
force, gd = vz/tstop we obtain that particles sediment towards the
midplane at a velocity vz = −Ω2

Kztstop. This means that dust par-
ticles settle to the midplane on a timescale of tsettl ≈ Ω−1

K /τp (the
settling time).

Exercise 1.2 particle scaleheight: When disks are turbulent, parti-
cles will diffuse along with the gas. A popular model for the turbulent
viscosity is the Shakura & Sunyaev (1973) alpha-model, which param-
eterizes the turbulent viscosity as νT = αcshgas. When particles are
small (τp < 1) this is also the particles diffusivity Dp . The definition
of Dp is such that particles move a distance

√
Dpt in time t.

(a) Find the equilibrium distance hp: the height where the settling
timescale (from hp to the midplane) equals the time to diffuse the par-
ticles from the miplane to hp. Express the result in terms of α and
τp.

(b) Naively, when τp → 0, one obtains hp > hgas. Why is this result

incorrect?

• Radial drift. As solids are not affected by the gas pressure gradient,
they tend to move towards Keplerian velocities, faster than the
gas. Solids therefore experiences a gas drag force in the opposite
direction of their motion. Consequently, the corresponding torque
removes angular momentum, causing the orbits to decay towards
the star.† Thus, solids have both an azimuthal (vφ) and a radial
velocity (vr) with respect to the gas. Balancing forces in the radial
direction gives:

(ugas(r) + vφ)2

r
− vr

tstop
+ g? = 0, (1.8)

where the first term is the centrifugal force, the second term the
drag force due to the radial drift, and the third term the stellar
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Figure 1.5: Radial and azimuthal drift ve-
locities (in units of ηvK) as function of di-
mensionless stopping time.

† The relative velocity between two parti-
cles of different masses can be obtained
by replacing m in Equation (1.13) by the
reduced mass mµ = m1m2/(m1 + m2).

gravitational force.∗ Equating the torque to the rate of angular
momentum loss gives, per unit mass:

dlz
dt

=
d
dt
((ugas + vφ)r) = −r

vφ

tstop
, (1.9)

where lz is the specific angular momentum of a particle and the
RHS is the gas drag torque.

Exercise 1.3– individual drift velocities: These two equations al-
low us to solve for the two unknowns (vr and vφ). But we can greatly
simplify the procedure by using that vr, vφ, and the disk headwind
ηvK (see Equation (1.2)) are small with respect to the Keplerian ve-
locity vK . Expressions as (ugas + vφ)

2 can then be approximated as
u2

gas + 2ugasvφ. In the same gist, u2
gas = (1− η)2v2

K ≈ (1− 2η)v2
K , and

d/dt(ugas + vφ) ≈ dvK/dt. This linearization allows the expressions to
be put in matrix form:

A
(

vr

vφ

)
= b. (1.10)

where A is a 2x2 matrix and b a 2x1 vector. Inverting this system of
equations, show that the radial drift velocity becomes:

vr = −2ηvK
τp

1 + τ2
p

(1.11)

and the azimuthal velocity:

vφ = ηvK
τ2

p

1 + τ2
p

. (1.12)

(remark again that vr, vφ are with respect to the gas velocity.)

These velocity components are plotted in Figure 1.5. Radial drift
velocities peak at τp = 1 (or tstop = Ω−1

K ) and have a magnitude of
ηvK – several tens of meters per second. This is the velocity at which
these particles spiral towards the star. The timescale of this orbital
decay is ∼r/ηvK: typically several hundreds of orbital periods for
τp = 1 particles. At 1 AU τp ≈ 1 approximately corresponds to
meter-size boulders. These particles therefore disappear in a mere
100 years; but even mm–cm size particles should decay relatively
quick. The orbital decay problem for τp ∼ 1 solids is known as
the meter-size problem, although τp = 1 does not always correspond
to meter-sized bodies. It is one of the hardest problems in planet
formation: how to retain the very solids which the planet formation
process relies on.

Drift motions are systematic motions. To obtain the relative ve-
locity between two particles, we simply take the difference: ∆v =

|vr(tstop,1) − vr(tstop,2)|. Hence, particles of exactly the same stop-
ping time do not collide. Other velocities are random. For example,
the molecules in a gas move in random directions at a mean velocity
vth. For a hydrogen molecule in a ∼300 K gas, the mean thermal
motion amounts to vth ≈ 1 km s. Because of energy equipartition
heavier molecules (like H2O) move slower. Likewise, dust particles
also share in the equipartition, in which case the corresponding ran-
dom motions are referred to as Brownian motion:†
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∗ see e.g. §33 of Landau & Lifshitz (1959)

† This argument goes back to Weiden-
schilling (1984). Note that in a Kol-
mogorov cascade, the smallest eddies
have the largest accelerations.
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Figure 1.6: Sketch of turbulent excitation
of inertial particles. Particles of differ-
ent stopping times (indicated by dots and
vertical dashed lines) couple differently
to the turbulent eddy spectrum (gray
line). Only eddies of turnover time t` less
than the particle stopping time tstop pro-
vide a random component to the parti-
cle motion (top). Eddies with turn-over
timescales t` longer than tstop are large
and result in a systematic drift of the par-
ticle with respect to the eddy (middle).
The bottom panel shows the drift with re-
spect to the inertial frame.

vBM =

√
8kBT
πm

∼ 1 ρ−1/2
•

(
T

300 K

)1/2 ( s
µm

)−3/2
mm s−1 (1.13)

Because of the mass dependence, the significance of Brownian mo-
tion quickly diminishes for particles larger than micron. Neverthe-
less, Brownian motion is important to initiate the dust coagulation
process, as relative velocities of drift and turbulence motions are even
smaller for (sub)micron sized particles because of their strong cou-
pling.

Finally, turbulence also provides particles with a relative motion.
However, the collision velocity between particles is generally much
smaller than the motions of the turbulent gas, as the approaching
particles are entrained in the same eddy and therefore tend to move
in the same direction. In other words, turbulence-induced relative
motions can be highly correlated.

To proceed, consider fully developed turbulence∗ where the en-
ergy dissipation rate ε = v2

`/t` is constant across all scales l in
the inertial range. Here ve and t` are respectively the eddy veloc-
ity and the turnover time of scale `. The cascade commences at
the largest scales (L, vL) and proceeds downwards until the local
Reynolds number v`l/νmol becomes unity. This corresponds to a
scale of `Kol = (ν3

mol/ε)1/4: the Kolmogorov scale. Defining the flow
Reynolds number as Re = LvL/νmol we then find `Kol = Re−3/4L.
Correspondingly, the eddy velocity and turnover time become:

v` ∝ `1/3 (vKol ≤ v` ≤ vL); vKol = Re−1/4vL (1.14a)

t` ∝ `2/3 (tKol ≤ t` ≤ tL); tKol = Re−1/2tL (1.14b)

For a particle of stopping time tstop the eddy spectrum can be split
in two classes: those that exist long enough to align the motion of
the particle (large eddies) and those with a turn-over time less than
the stopping time (small eddies). Hence, if tstop < tKol all eddies
are big and if tstop > tL all eddies are small. Otherwise, eddies of
tKol ≤ t` ≤ tstop are small and tstop ≤ t` ≤ tL are large.

For eddies, we may write the particle forcing in terms of an accel-
eration of magnitude g` ∼ v`/t`.† Therefore, particles entrained in
big eddies develop a "systematic" (drift) velocity of vsys ∼ v`tstop/t`
(this velocity is thus relative to the eddy). Small eddies, on the other
hand, deliver random kicks to the particle’s motion. The velocity
change associated with a single kick is of magnitude ∼v`t`/tstop. Be-
cause of the random nature of the kicks the velocity will increase by√

N where N is the number of kicks. As the velocity will saturate
after a stopping time, there are N = tstop/t` of these kicks, resulting
in a random velocity of vran ∼ v`

√
t`/tstop.

The situation is sketched in Figure 1.6 for a small particle (mid-
dle and bottom panel: all eddies are big), a particle of intermediate
stopping time (all panels) and a large particle (top panel: all ed-
dies small). The top panel shows the random component of the
particle’s motion, while the other two show the systematic contri-
bution, with respect to the eddy and space, respectively. For ex-
ample, eddies of t` ∼ tstop dominate the particle’s random motion
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∗ An exception is the so-called Saffman-
Turner effect (Saffman & Turner 1956),
where velocities arise due to shear in the
turbulent flow. This mechanism is how-
ever of minor importance in astrophysi-
cal environments, as the physical size of
particles are small with respect to the ed-
dies.

when tKol ≤ tstop ≤ tL. This toy model can be used to calculate
relative velocities (∆v) between two particles by adding the (uncorre-
lated) random components and subtracting the (correlated) system-
atic component should be subtracted. In particular, when the two
stopping times are identical only the random component will con-
tribute towards ∆v. This model recovers most of the features of more
detailed studies∗ (Völk et al. 1980; Markiewicz et al. 1991; Ormel &
Cuzzi 2007; Pan & Padoan 2010), but is precise only at the order-of-
magnitude level.

Exercise 1.4 turbulent velocities: Consider driving scales of tL =

1 yr, cs = 1 km s−1 and a turbulence Mach number of ≈0.1, so that
vL = 0.1cs. Take a Reynolds number of Re = 108.

(a) What are the values at the inertial scale, `Kol, tKol, and vKol?

(b) Given the toy model for the velocity excitation of particles above,
as summarized in Figure 1.6, we can derive expressions for the relative
velocities of particles. For example, for two particles of stopping times
ts1 ≤ ts2 ≤ tKol (where ts1 = tstop of particle #1 and ts2 of #2) all
eddies are large (top panel). In that case, argue that the relative velocity
becomes ∆v ∼ |ts2 − ts1|vKol/tKol. (The minus sign is important: the
velocity will vanish for ts1 = ts2. Why?).

(c) In the case where the largest particle (2) has a stopping time in the
inertial range, tKol ≤ ts2 ≤ tL, argue that the relative velocity becomes
∆v ∼ vL

√
ts2/tL. Why does this expression not depend on ts1?

(d) If both particles are large, tL < ts1 < ts2, argue that it is the particle
of the shortest stopping time that determines the relative motions and
give ∆v.

(e) Between a very small particle (ts1 < tKol) and a very big one (ts2 >

tL) the relative collision velocity is ∆v ∼ vL. Why?

−5 −4 −3 −2 −1 0 1 2 3 4
log10 radius s1 [cm]

−5

−4

−3

−2

−1

0

1

2

3

4

lo
g 1

0
ra

di
us

s 2
[c

m
]

α = 0

−5 −4 −3 −2 −1 0 1 2 3 4
log10 radius s1 [cm]

α = 10−3

−1 0 1 2 3
∆v [cm/s]

Figure 1.7: Contour plot of the total
relative velocity between two particles,
including Brownian motion (Eq. [1.13]),
radial and azimuthal drift velocities
(Eqs. [1.11, 1.12]), and turbulence veloc-
ities. For turbulence we adopted the ex-
pressions of Ormel & Cuzzi (2007). The
relative velocity of each mechanism has
been added in quadrature. Left: no tur-
bulence; right: moderate turbulence. Ve-
locities are calculated for MMSN nebular
conditions corresponding to 1 AU. Other
parameters are: ρ• = 3 g cm−3, Re = 108,
and vhw = 5× 103 cm s−1.

Figure 1.7 presents the relative velocities between two particles for a
laminar (no turbulence, α = 0) and a turbulent disk of α = 10−3. In
the laminar case, velocities almost vanish along the diagonal s1 = s2

as drift velocities for identical particles vanish. If one of the particles
is very small, ∆v is determined by Brownian motion. Otherwise
drift motions determine the relative velocities. Between a small and
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s1

s2s1 +
s2

Figure 1.8: Assuming spheres, the col-
lisional cross section (dashed circle) is
σcol = π(s1 + s2)

2.

∗ after M. von Smoluchowski. Equa-
tion (1.17) is not to be confused with the
(more familiar) equation governing the
evolution of the probability density dis-
tribution of particles as used in statistical
mechanics studies, which also carries his
name (Smoluchowski 1916). The discrete
form of the coagulation equation reads:
∂ fk
∂t = 1

2 ∑i+j=k Kij fi f j − fk ∑i fiKik

a large particle, the velocity is determined by the disk headwind ηvK.
Adding turbulence especially boosts ∆v when the stopping times of
both particles are the inertial regime (i.e. tη < tstop < Ω−1

K ), or
when both particles are massive. Turbulence becomes even more
significant for higher α, when the turbulent gas velocities (∼α1/2cs)
start to exceed the disk headwind.

1.3 Pre-planetesimal growth: modelling dust coagulation

The densities in the protoplanetary disk are high enough that ISM-
size dust particles will collide on a collision time:

tcoll = (ndustσcol∆v)−1 =
sρ•

3Zρgas∆v

' 1 yr
0.01ρ•

Z

(
ρgas

10−10 g cm−3

)−1 a
µm

(
∆v

cm s−1

)−1
(1.15)

where the collisional cross section σcol = 4πs2 (for equal-sized par-
ticles; Figure 1.8), ndust = Zρgas/mdust, Z the dust-to-gas ratio by
mass and mdust =

4
3 πρ•s3. Equation (1.15) shows that, unless ∆v is

extremely small, micron-sized particles will collide within the life-
time of the protoplanetary disk, initiating dust coagulation.

The particle distribution function f (m) is defined such that f (m)dm
gives the number density of particles in mass interval [m, m + dm].
Integration over all the masses gives the total number density of par-
ticles and

ρ =
∫

f (m)m dm (1.16)

gives the total (mass) density. Due to sticky collisions, f (m) changes
with time at a rate given by the Smoluchowski coagulation equation: ∗

∂

∂t
f (m, t) =

1
2

∫ m
f (m′) f (m−m′)K(m′, m−m′)dm′

− f (m)
∫

K(m′, m) f (m′)dm′ (1.17)

where t is time and K(m′, m) the collision kernel – the rate at which
two particles of mass m and m′ collide. The collision kernel is of
course simply the product of the collisional cross section and the
relative velocity among two bodies, K = σcol∆v.

The Smoluchowski equation is an example of book-keeping: the
term on the LHS gives the change in particles of mass m, the first
term on the RHS corresponds to new particles of mass m created
from the collision of two lower-mass particles and the second term on
the RHS to the removal of particles of mass m by collisions with any
other particle. Equation (1.17) only accounts for coagulation (perfect
sticking). For a more complete picture, other collisional outcomes
like (catastrophic) fragmentation, erosion, and bouncing should be
added to Equation (1.17). Also remark that Equation (1.17) does not
contain a position dependence; it must be combined with a transport
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Figure 1.9: Evolution of the size distribu-
tion of the constant, additive, and prod-
uct kernel. Distributions are plotted at
times 1, 10, 102, 104, and 105 for the con-
stant kernel; 1, 2.5, 5, 7.5, and 10 for the
additive kernel; and 0.1, 0.5, 0.9, 0.99 and
1.0 for the product kernel, where in each
case at time t = 0 only m = 1 particles
are present. The distribution function is
multiplied by m2 to display the mass of
the distribution on a log-log scale.

equation to additionally obtain the distribution function as function
of position.

But even in its "coagulation-only" form, Equation (1.17), an integro-
differential equation, is very hard to solve analytically. There are
analytical solutions for only three classes of kernels:

• constant kernels, e.g. K = 1;
• additive kernels, e.g. K = 1

2 (m1 + m2);
• multiplicative kernels, e.g. K = m1m2.

Solutions to these kernels are given in Figure 1.9, starting, at t = 0,
from a population of particles at unity mass. These curves are plot-
ted at different times for the three kernels. As can be seen both the
constant and additive kernel reach a self-similar distribution where
the shape of the distribution stays the same. Note that by plotting
m2 f (m) on a logarithmic scale reveals the mass density of the dis-
tribution. The situation is different for the product kernel, which
evolves to a f (m) ∝ m−5/2 power-law as t → 1. Thereafter the ana-
lytical solution no longer conserves mass and becomes invalid. The
physical interpretation is the formation of a runaway body (Wetherill
1990).

Instead of solving (analytically or numerically) for the mass distri-
bution, key information of the solution can alternatively be obtained
from the moments of the distribution:

Mp(t) =
∫

f (m′, t)m′pdm′. (1.18)

Expressions are listed in Table 1.1. From these moments we can de-
fine the mean mass of the distribution as 〈m〉 = M1/M0 and the
"mass-weighted" mean mass (or peak mass) as mp = M2/M1. The
latter quantity corresponds to the peak of the distributions in Fig-
ure 1.9, except for the product kernel. From the moment expressions
of the multiplicative kernel it is also clear that "something happens"
at t = 1, as M2 becomes infinite. Mathematically, this is known as
gelation. The physical interpretation, in this context, is the formation
of a runaway body.

Case Kernel M0 M1 M2

constant K = 1 1/(1 + 1
2 t) 1 1 + t

additive K = 1
2 (m1 + m2) exp(− 1

2 t) 1 exp[t]
multiplicative K = m1m2 1− 1

2 t 1 1/(1− t)

Table 1.1: Zeroth, first, and second mo-
ments of the mass size distribution for
the three kernel cases that have analyti-
cal solutions.

Exercise 1.5– moments:
(a) Show that Equation (1.17) and Equation (1.18) combine into

dMp

dt
=

1
2

∫
f (m′) f (m′′)K(m′, m′′)[(m′ + m′′)p −m′p −m′′p] dm′dm′′.

(1.19)
Hint: rewrite the first term on the RHS of Equation (1.17) as

1
2

∫
f (m′) f (m′′)K(m′, m′′)δ(m−m′ −m′′)dm′dm′′ (1.20)
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∗ In many nonlinear kernels, the run-
away time trun approaches zero if the sys-
tem size is infinitely large (Malyshkin &
Goodman 2001; Ormel & Spaans 2008).

where δ(x) is the Dirac-δ function.

(b) Clearly, dM1/dt = 0. What is expressed by this?

(c) Write down equations for the zeroth, first and second moments of
the constant, additive, and multiplicative kernels. For example, for the
constant kernel (K = 1), you will find:

dM0
dt

= −1
2

M2
0 ;

dM2
dt

= M2
1 . (1.21)

Continue to derive the expressions listed in Table 1.1. Assume that
initially (at t = 0) M0 = M1 = M2 = 1.

(d) For the constant kernel the peak mass mp and the average mass 〈m
are the same within a factor of 2. Explain that this is consistent with
Figure 1.9. (Hint: measure the power-law slope of the low-m tail of the
distribution.)

(e) For the additive kernel, explain that most particles are small (even

for t� 1).

Are these three analytical kernels of any use for dust coagulation
in disks? In reality, K, the product of the collisional cross section and
the relative velocity, will never attain the precise forms discussed
above. Nevertheless, situations do resemble the three cases. Brow-
nian motion-induced velocity have a ∼m−1/2 dependence, which
gives rise to an m−1/6 – nearly constant – dependence on the ker-
nel. Brownian motion-driven growth will therefore result in very
narrow size distributions (Figure 1.9). For drift-induced relative mo-
tions, on the other hand, relative velocity typically increases with the
particle size, which gives (approximately) a linear dependence, as in
the additive kernel. In that case, growth is exponential but most of
the particles at any time remain small. This means that the difficult
to observe large particles are ’buried’ in a sea of small dust grains.
Nevertheless, if coagulation is the only process, even the small grains
deplete uncomfortably quickly. It is therefore believed that either
growth stalls, because sticking fails or because collisions become so
energetic that they will replenish the small dust population.

The multiplicative kernel is an example of a non-linear kernel,
where K ∝ (mass)κ with κ > 1. In these kernels a runaway body will
separate from the (continuous) distribution after a finite time∗. In
nature, nonlinear kernels occur when the collisional cross section is
enhanced by gravitational focusing (see §1.6). In that case runaway
bodies, which separate from the distribution, appear.

1.4 Pre-planetesimal growth and planetesimal formation

Before gravity becomes effective to bind material, the outcome of
growth depends on (attractive) surface forces – Van der Waals’ and
hydrogen bonds. These forces are necessary to overcome the repul-
sive force due to the elasticity of the material. This elasticity is quan-
tified by Young’s modulus: the relation between stress (pressure or
force) and strain (contraction). Hertz (1882) showed that two par-
ticles brought together under an (attractive) force F form a contact
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∗ Defined E∗−1 = (1 − ν2
1 )/E1 + (1 −

ν2
2 )/E2 where Ei and νi are, respectively,

the Young moduli and Poisson rations of
the two spheres.

δsc

sc
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F

Figure 1.10: Geometry of the contact
area. (The contact size has been exagger-
ated for illustration purposes).

† Johnson, Kendall, & Roberts (Johnson
et al. 1971).
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Figure 1.11: The JKR potential. δeq and
Ueq are the offset and energy correspond-
ing to the equilibrium contact size seq
(Eq. [1.27]). The equilibrium point is de-
noted by the dotted lines.

with a surface of radius a given by

a =

(
3sF
4E∗

)1/3
(1.22)

where E∗ is the combined elastic modulus ∗ of the material(s) and
a the local radius of curvature, which is related to the grain radii as
s−1 = s−1

1 + s−1
2 .

Exercise 1.6: While the derivation of Equation (1.22) is not trivial, an
order-of-magnitude estimate can be obtained as follows. Consider two
spheres of radius s in contact that have been indented by a distance δ

over a surface area πa2 due to the applied force (F).

(a) Show that a2 = δs. Let r � s be the distance from the contact into
the sphere. Then argue that the resulting stress σr within the grain can
be reasoned (e.g. by dimensional arguments) to be σr ' F/r2. Along
the symmetry axis (z) the stress-strain relation reads:

dδ

dz
=

σr

E∗ =
F/2
E∗z2 (1.23)

(Hint: Hooke’s law for a uniform rod reads σr = E∗∆L/L with ∆L the
indentation and L the length of the rod.)

(b) Choosing a suitable lower cut-off for z, show that integration of
Equation (1.23) gives Equation (1.22) barring the numerical factor.

(c) For general (s, δ, a), it can be shown that the potential energy asso-
ciated with the formation of the contact is (Muller et al. 1980):

Uc = E∗s3
(

aδ2

s3 −
2a3δ

3s4 −
a5

5s5

)
(1.24)

Show that F as defined by Equation (1.22) follows from Equation (1.24)
when a2 = δs.

(d) Why is Uc positive?

This Hertzian contact model only includes elastic forces. Grains
therefore will not stick, unless there is an externally applied force.

The situation changes, however, if we account for the surface en-
ergy stored in the contact area:

UJKR = Uc + Us; Us = −πa2γ, (1.25)

where γ, the energy surface density, is a material constant. The
name "JKR" refers to the authors who first constructed this theory†.
Minimizing the total energy for a gives a relation between δ and a:
δ = a2/s−

√
2πγa/E∗. The force thus experienced becomes:

FJKR =
4E∗a3

3s
−
√

8πγE∗a3. (1.26)

Importantly, the equilibrium contact area, where FJKR vanishes is:

seq =

(
9πγs2

2E∗

)1/3

. (1.27)

The situation is illustrated in Figure 1.11. The potential UJKR has
a minimum at a = seq where the force vanishes. The contact is
therefore stable. Note that the potential is still negative for δ < 0:
grains are bound by virtue of the attractive surface forces.
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∗ For example: vibrations (Chokshi et al.
1993) and visco-elasticity (Krijt et al.
2013).

† The impact or collisional energy is
1
2 mµ(∆v)2.

Material Elasticity E Surface
[1010 erg cm−3] energy γ

Quartz 54 25

Water ice 7 370

Table 1.2: Material constants.

Figure 1.12: Simulations of aggregates
formation by hit-and-stick processes.
Top: a porous (but homogeneous: D f =
3) aggregate. Bottom: an aggregate of
low fractal dimension. From Seizinger
et al. (2013).

‡ For fractals there are many definition of
’radius’. Rg is often taken to be the gyra-
tion radius.

Exercise 1.7: Show that an energy of Ebreak ' 10γ5/3s4/3/(E∗)2/3 is

needed to break a contact.

The above calculations do not include energy dissipation: an incom-
ing grain should rebound elastically. In practice, however, dissipa-
tion mechanisms∗ are present, which ensures particles stick as long
as their impact energy† is less than ∼Ebreak. This can be cast in a
critical (upper) threshold for sticking:

vstick '
4.5γ5/6s2/3

m1/2
µ (E∗)1/3

≈ 3 cm s−1 ρ−1/2
•

(
E∗

1012

)−1/2 ( γ

10

)5/6
(

s
µm

)−5/6
, (1.28)

where mµ is the reduced mass, E∗ and γ are in cgs-units and the
values roughly correspond to silicates (see Table 1.2). Clearly, vstick

decreases with grain radius s. As seen above, particle relative veloci-
ties typically increase with size. Sticking therefore becomes harder as
particles grow. Intuitively, this is clear: meter-size rocks do not just
‘stick’. Through E∗ and γ the sticking threshold does depend on ma-
terial properties. Ice (or ice-coated grains) are stickier than silicates,
because they have a higher surface tension and are softer (lower E∗,
Table 1.2).

In the early stages when relative velocities are still low, dust co-
agulation is believed to lead to the formation of open structures –
aggregates – where the individual grains are connected through their
contacts. Examples are shown in Figure 1.12. Initially, when colli-
sional energies are low, aggregates can stick with the creation of one
(or two, three) new contacts, largely preserving their internal struc-
ture. This mode is referred to as hit-and-stick growth. Hit-and-stick
growth obeys a fractal law:

mass ∝ R
D f
g (1.29)

where Rg is a characteristic radius‡ of the aggregate and D f the frac-
tal dimension. When the internal density (ρ•) stays constant, D f = 3.
A linear chain is represented by D f ≈ 1 and a pancake geometry by
D f ≈ 2. Hit-and-stick growth results in fractal dimensions of D f ≈ 2.

Exercise 1.8: Fractal growth can have dramatic consequences when
the fractal dimension is low. Similar to the radius of the aggregate, we
can define a fractal dimension for the evolution of the surface area A:
mass ∝ AdA . For homogeneous spheres, dA = 3/2.

(a) Argue that the lowest possible value of dA is 1.

(b) In that case, show that the stopping time is independent of particle

size (or mass) as long as particles are in the Epstein regime. Conse-

quently, drift-induced relative velocity does not increase with particle

size.

Of course, the collisional energy does increase with particle growth
and will at some point exceed the so-called rolling energy Eroll. Simi-
lar to the breaking energy, this is a critical energy but now associated
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∗ A key exception are collisions among
particles of different size, as the sticking
threshold is determined by the properties
of the smallest particle.

† See e.g. Binney & Tremaine (2008).
The derivations is straightforward, but
lengthy. A further approximation is
that the resulting spiral-wave pattern
is tightly wound – the so-called WKB-
approximation.

with rolling of the contact area. Due to the rolling, aggregates will
restructure (Dominik & Tielens 1997) – meaning compaction – in-
creasing their stopping times, which results in ever more violent col-
lisions. Ultimately, aggregates may compact to filling factors ≈ 0.1–
1. How effective compaction operates is, however, still debated. The
two main viewpoints are:

1. Compaction is effective enough for growth to stall at mm/cm
sizes, at which stage sticking ceases.∗ Beyond this size, and with
increasing relative velocities, particles are prone to fragmentation,
replenishing the micron-sized grains, or particles simply bounce
upon collision. As a result, a steady-state grain distribution will
emerge, in which the largest particles contain most of the mass,
but where the small grains are abundant enough to render the
disk optically thick (at optical and near-IR wavelengths). In this
scenario, kilometer-sized bodies (planetesimals) can form from a
gravitational instability of a dense concentration of mm/cm-size
particles (§1.5).

2. Collisional compaction is ineffective; although collisions surely
cause restructuring, they will preserve a fractal relation between
their mass and surface area. Consequently, the porosity of aggre-
gates increases, facilitating growth. Kilometer-sized aggregates
(still fluffy) form, until the point where they are ultimately com-
pacted by gas drag (Kataoka et al. 2013). In this scenario, plan-
etesimals form quickly through a continuous growth process (in-
cremental growth).

1.5 Collective effects and gravitational instabilities

When growth by sticking fails, gravitational instabilities may yet re-
sult in the formation of planetesimals and larger bodies. A key re-
quirement is that the governing equations of motions are unstable
against (gravitational) perturbations. Suppose that the steady state
solutions are given by ρ0, v0, etc.. To analyze stability, one considers
perturbations to these quantities of the form:

δρ ∝ exp [i(k · r−ωt)] , (1.30)

where k, the wave-number, is chosen real, whereas ω is a complex
number. We then solve the original equations of motions by inserting
ρ = ρ0 + δρ etc., employing that the perturbations are small: δρ� ρ0.
The goal is to find a relation between ω and k – the dispersion relation.
In particular, when ω(k) = a + ib and b is positive, the perturbation
associated with spatial frequency k will amplify with time. The disk
is then unstable against perturbation on scale 1/k.

For thin disks (Σ instead of ρ) and axisymmetric perturbations
(k = kr = k), the dispersion relation reads:†

ω2 = κ2 − 2πGΣk + k2c2
s , (1.31)

where κ2 = r(dΩ2/dr) + 4Ω2 is the epicyclic frequency and cs the
sound speed. In Keplerian disks, κ = ΩK. Clearly, large κ and large
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Figure 1.13: Four giant planets in the
HR8799 system, observed by direct imag-
ing (Marois et al. 2010).

cs promote stability as ω becomes positive. Physically, pressure sta-
bilizes small-scale (high k) perturbations, whereas rotation stabilizes
large scales (small k). On the other hand, Σ causes ω2 to become
negative, especially at intermediate scales.

Exercise 1.9:
(a) From Equation (1.31), show that the scale most ‘vulnerable’ to insta-
bility is λc = 2c2

s /GΣ (where we switched to a spatial scale λ = 2π/k)
and that instability is triggered when

QT ≡
csΩ

πGΣ
< 1, (1.32)

where QT is the Toomre-Q parameter.

(b) A physically-intuitive way to obtain QT approximately is to com-
pare the total internal, rotational, and gravitational energies. When∣∣∣∣Etherm

Egrav

∣∣∣∣× ∣∣∣∣ Erot

Egrav

∣∣∣∣ < 1 (1.33)

the gravitational energy dominates over the combined rotational and
thermal energies, leading to instability. Show that the above estimate
results in QT , barring a factor of unity.

(c) Take a disk with a solar-mass star and, sound speed cs = 1 km s−1×
r−1/4

AU and Σ = 103 g cm−2 × r−1
AU. Where does the disk become unsta-

ble and what is the corresponding disk mass?

(d) What is the mass associated with the scale λc?

Disk instability – the gravitational instability of the gas disk is one
of the two main models to form gas giant planets. It is invoked
especially for explaining those planets seen far away from the star,
for example HR8799 (Figure 1.13), because it is believed that to form
a planet by core accretion (see Figure 1.18) takes too long. It should
be noted, however, that QT < 1 is a necessary but not a sufficient
condition for collapse. To proceed towards a planet, the fragment
should be able to cool effectively to ensure that QT stays <1 during
the collapse.

Gaseous disk thus need to be massive and be able to cool quickly
in order to spawn (giant) planets. However, it is also possible for the
dust to collapse gravitationally, when it has sedimented into a thin
sub-disk. Because dust forms a pressureless fluid, the thermal mo-
tions in Equation (1.31) can be taken 0: cs = 0. This means that all
scales less than λc = 4π2GΣs/Ω2 are unstable, where Σs is the sur-
face density in solids. Clearly, the critical wavelength λc in the case
where the dust collapses is much lower than the λc derived above for
the gaseous case. The corresponding mass, λ2

c Σs already corresponds
to planetesimals of radius ∼10 km (it can be lower due to fragmen-
tation during the collapse). This (rather simple) idea of forming the
first generation of planetesimals is known as the Goldreich & Ward
(1973) mechanism, after its discovers.

A key requirement of the GW-model is, however, that particles
settle into a thin layer of scaleheight hp < λc, as otherwise the 2D
assumption would not be justified. At 1 AU λc corresponds to ap-
proximately 0.1% of the gas scaleheight, implying that the dust sub-
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∗ In these equations, we assume that the
particles are of the same size and have
a single stopping time tstop. The expres-
sions by Nakagawa et al. (1986) can be
generalized towards a size distribution of
particles (Tanaka et al. 2005).

† this is an assumption. We wish to solve
for steady state, meaning ∂/∂t = 0 (ve-
locities are time-independent). We there-
fore have also assumed that the gradient
in the velocity disappears, which strictly
is only valid when τp and ηvK are con-
stant. Nevertheless the neglected terms
are second order in velocity and therefore
small.
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Figure 1.14: Azimuthal velocities of the
gas (uφ) with respect to Keplerian as
function of the dust-to-gas ratio.

disk will be dominated by solids (ρp > ρg). Because it now is the
most dominant component by mass, it is the dust that start to dictate
the (gas) dynamics. This is simply a consequence of Newton’s third
law as momentum conservation dictates that Fdragρp = −Fbackρg the
"back-reaction" force Fback – which we hitherto ignored – becomes
important when the total dust density becomes large. Therefore, the
motion of a single dust particle – and indeed that of the gas – can no
longer be studied in isolation; it has become an collective effect.

Here, we follow Nakagawa et al. (1986), who solved for the steady
solution of the dust and gas. Consider a frame rotating with the
local Keplerian freqency ΩK(r), such that the (outward) centrifugal
force cancels the (inward) gravitational force. In such a frame the
equations of motion for the gas (u) and the dust (v) read:∗

Dv
Dt

= − v− u
tstop

− 2ΩK × v + FEuler−dust (1.34a)

Du
Dt

=
ρp

ρg

v− u
tstop

− 2ΩK × u + FEuler−gas + Fpres (1.34b)

where the terms on the RHS are the gas drag, Coriolis, and Euler
term, respectively. The latter is, like the Coriolis force, a fiducial
force that enters the equation of motion because the angular velocity
of the rotating frame depends on r: FEuler = −(dΩK/dt) × r. The
gas also experiences a pressure force of Fpres = 2ηvKΩK in the radial
direction. Setting the LHS 0 (D/Dt = 0),† we can solve for v and u.
In the radial and azimuthal directions these read:

vr = −
2τp

τ2
p + (1 + Z)2 ηvK (1.35a)

vφ = − 1 + Z
τ2

p + (1 + Z)2 ηvK (1.35b)

for the solids and

ur =
2Zτp

τ2
p + (1 + Z)2 ηvK (1.35c)

uφ = −
1 + Z + τ2

p

τ2
p + (1 + Z)2 ηvK (1.35d)

for the gas, where τp = tstopΩK is the dimensionless stopping time
and Z = ρp/ρg the "metallicity" of the gas.

Exercise 1.10: It is interesting to consider the limiting expressions of
Equation (1.35). Verify that:

(a) τp � 1 (big rocks): vr = ur = vφ = 0 and uφ = −ηvK .

(b) Z = 0 (negligible dust): solutions are the same as the individual
solutions of Equations (1.11) and (1.12)

(c) Z � 1 (dust-dominated): vr = vφ = ur = uφ = 0

(d) τp � 1 and Z � 1 (tracer dust): vr = ur = 0 and a reduced gas

headwind velocity with an "effective" η → η/(1 + Z).
Explain these limits physically.

Hence, when Z � 1 and τp � 1 the dust forces the gas to move at
Keplerian orbits. In Figure 1.14 this is illustrated for the azimuthal
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∗ N ≡
√
−(gz/ρ)(∂ρ/∂z) is known as the

Brunt-Väisälä frequency.

† See homepage A. Johansen

drift velocity of the gas (uφ) as function of the dust-to-gas ratio. If
the dust has sedimented to the midplane, a steep gradient of uφ

with height z will develop; the azimuthal velocity then ranges from
uφ ≈ 0 (Keplerian) to uφ = −ηvK ∼ 10 m s−1 over a small range in
heigh z. Such shear flows are not necessarily stable. Specifically, the
Kelvin-Helmholtz instability will develop when the Richardson number

Ri =
−(gz/ρ)(∂ρ/∂z)

(∂uφ/∂z)2 < Ricrit (1.36)

at some point z, where ρ can be taken as the dust+gas density. Typ-
ically, the critical Richardson number Ricrit ≈ 1

4 (Chandrasekhar
1961). In Equation (1.36) the nominator is a measure of the (sta-
bilizing) buoyancy, which causes lighter parts of the fluid to lie on
top of denser parts (Archimedes principle). Buoyancy therefore pro-
motes the density stratification.∗ Nevertheless, when the vertical
shear (∂uφ/∂z) is strong, instability will ensue.

Exercise 1.11: Give an order-of-magnitude expression for Ri, by eval-

uating Equation (1.36) at z = hp, the particle scaleheight. Assume that

the dust has settled such that dust dominates ρ up to ∼hp. For gz con-

sider both the self-gravity limit (i.e. gz is determined by the dust) and

the stellar gravity limit (gz = g?,z). Taking a critical Richardson number

of Ricrit =
1
4 , what is the smallest scaleheight into which the dust can

settle? How does this height compare to the critical wavelength λc of

the GW-model? (Note that hp < λc is required for the GW-instability.)

For these reasons, it will be difficult for small particles (τp � 1)
to undergo gravitational instability, unless their concentration is ex-
tremely high.

However, carrying out a linear stability analysis of Equation (1.34)
it can be shown that the steady solutions (Eq. [1.35]) of the dust-
gas mixture are unstable (Youdin & Goodman 2005; Jacquet et al.
2011). Generally, the amount of clumping is quite weak, but it re-
sults in spatial fluctuation of the drift velocities and pressure. The
clumping accelerates greatly, however, when the particles approach
τp ∼ 0.1 and when the dust-to-gas ratio in the gas is large (Johansen
et al. 2009). In that case the streaming instability will turn nonlin-
ear and amplify greatly. As clumps grow larger their drift stalls and
they collect the inward-moving material. This phase of the instability
can best be compared to how cyclists and migrating geese travel to-
gether to protect themselves from the headwind of the atmosphere†.
The streaming instability is thus a robust mechanism capable of pro-
ducing the first generation of planetesimals, provided that particles
grow to aerodynamical sizes τp & 10−2 and settle into a relatively
thin layer. Exactly under which conditions the gas-dust mixture be-
comes prone to the (nonlinear) streaming instability and what the
outcome of the instability is in terms of planetesimal sizes, are areas
of active research.

http://www.astro.lu.se/Research/OTA/TAgroup/planetesimals.shtml
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∗ In Figure 1.9 the constant kernel is an
example of ordinary growth, the linear
of neutral growth (constant tgrowth) and
the multiplicative of runaway growth (de-
creasing tgrowth).

† The derivation in this exercise is for
a hyperbolic (unbound) encounter. But,
the equations of motions are identical to
those of a bound Kepler orbit. The influ-
ence of the stellar force is also ignored.
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Figure 1.15: Scattering geometry

1.6 Runaway and Oligarchic Growth

In the next phase of planet formation, we assume that planetesimal
formation has been completed and that the bulk of the solid material
of the disk resides in bodies of ∼1− 102 km in size. This situation is
referrred to as the planetesimal hypothesis. To first order, such bodies
move in Keplerian orbits (τp � 1). How quick can these bodies
merge to form a planet?

Exercise 1.12: Consider a test body of mass M immersed in a sea
of smaller bodies of mass m. Assume that the M-body is on a circular
orbit at semi-major axis a and orbital frequency ΩK , while the m-bodies
are in Kepler orbits with eccentricity e and inclinations i ' e.

(a) Ignoring (for the moment) gravitational focusing, show that the
growth timescale of the M-body is:

tgrowth ≡
M

dM/dt
' Rρ•

ΣmΩK
(no focusing) (1.37)

where R is the radius corresponding to M, ρ• the internal density of
the material and Σm the surface density in m-bodies.

(b) How long would it take to form an Earth-mass planet at: 0.1, 1,
and 10 AU?

(c) How much shorter are growth times in the 2D case (i = 0)?

For growth that relies on geometrical sweepup – with the collisional
cross section σcol ∼ πR2 ∝ M2/3 and relative velocities constant – the
mass e-folding time increases with mass M. This is referred to as or-
dinary growth: growth slows down with time.∗ Gravitational focusing,
however, changes the picture.

Exercise 1.13 gravitational focusing: Consider a stationary mas-
sive body of mass M and radius R and a test particle. The test particle
approaches the body at an impact parameter b at velocity v∞. Show
by invoking conservation of energy and angular momentum, that the
largest impact parameter leading to collision is

bcol = R

√
1 +

(
vesc

v∞

)2
≡ R
√

1 + 2Θ, (1.38)

where Θ = v2
esc/2v2

∞ is the gravitational focusing factor and vesc =

2GM/R the (surface) escape velocity. Θ is also known as the Safronov
number after Victor Safronov, who pioneered many of the concepts dis-

cussed in this chapter (Safronov 1969).

Therefore, the collisional cross section scales superlinearly with the
mass: σcol ∝ M4/3. When the relative velocities is constant the M-
body experiences runaway growth, in which the growth timescale de-
creases. The timescale for runaway growth is therefore at most the
initial collision timescale among the planetesimal bodies.

This make planet formation look easy. But there is one important
catch: collisionless encounters. †
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Figure 1.16: Collisional and scattering
cross section
∗ See Exercise 2.1 and e.g. Binney &
Tremaine (2008) for a derivation valid for
general radial potentials, Φ(r).

† Hence, t̃ = 0 corresponds to periapses.
We could have written explicitly t̃ = t−
t0 with t0 the time of periapsis passage

Exercise 1.14 gravitational scattering: Calculate the trajectory of a
gravitational scattering. Consider polar coordinates (r, θ) with θ = 0
the direction of the unperturbed velocity and r(θ = −π) = ∞ initially
(see Figure 1.15). Let primes denote derivatives towards θ;

(a) show that energy conservation implies vrv′r + vθv′θ + GMr′/r2 = 0
and that conservation of angular momentum gives vθ = bv∞/r with b
the impact parameter and v∞ the initial velocity.

(b) Show that vr = bv∞r′/r2 and retrieve the following ODE for r(θ):

rr′′ − 2(r′)2 − r2 + r3 b90

b2 = 0 (1.39)

where b90 ≡ GM/v2
∞(= ΘR). This equation can be simplified by sub-

stituting u = 1/r:

u′′ + u =
b90

b2 . (1.40)

which has the solution u = A cos θ + B sin θ + b90/b2 where A and B
are integration constants.

(c) Determine these to find:

r(θ) =
b

b90(1 + cos θ)/b− sin(θ)
. (1.41)

(d) Find the angle θ corresponding to the collisional focusing impact
parameter of Equation (1.38), i.e. the location where the particle im-
pacts the big body.

(e) Finally, derive the scattering angle – the direction the test particle
is heading to after the scattering:

θscat = arcsin

(
2bb90

b2 + b2
90

)
(1.42)

and explain the meaning of "b90".

The impact parameter b90 is therefore a measure for the range of
close (collisionless) encounters. Since b90 = ΘR it increases faster
with Θ than the collisional cross section (Eq. [1.38]), see Figure 1.16.
Hence, for higher focusing factors (larger Θ) collisionless scatterings
become more important relative to collisional encounters.

This is important because scatterings lead to an increase of the
eccentricity of the population. To see this, consider the guiding center
approximation∗ for a Keplerian potential:

r ' a− ea cos(Ωa t̃) +O(e2) (1.43a)

φ− φ0 ' Ωa t̃ + 2e sin(Ωa t̃) +O(e2) (1.43b)

where e is the eccentricity, assumed �1, a the semi-major axis, Ωa

the orbital frequency corresponding to a, t the time since periapsis
passage†, and φ0 a constant. Since e � 1 the terms of order e repre-
sents a small correction to the circular, uniform motion of the guiding
center. Differentiating Equation (1.43) with respect to time gives the
velocities in the guiding center approximation:

vr ' evK sin Ωa t̃ (1.44a)

vφ ' vK + evK cos Ωa t̃ (1.44b)
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∗ This follows from expanding the solu-
tion for the Kepler orbit (Eq. [2.1]) to-
wards e:

r
a
=

(1− e2)

1 + e cos ν
' 1− e cos M +O(e2)

(1.45)
where M = t̃Ωa is the mean anomaly and
ν is the true anomaly.

QQ

A

P
δvr

δvφ
Initial

A/P→Q

Q→A/P

Figure 1.17: Viscous stirring. A close en-
counter will randomize the phase angle
of a Kepler orbit, while preserving its
magnitude (the eccentricity). Scattering
at periapsis (P) or apoapsis (A) therefore
tend to halve the eccentricity, whereas
scatterings at quadrature (Q) increase the
random velocity by a factor two. The net
effect is positive and known as viscous
stirring.

again valid up to second order in eccentricity. The difference with re-
spect to the circular motion, evK, is also known as the random velocity
vran. The motions are "random" because for a swarm of planetesimals
the time of periapsis passage (t0) all differ. Most naturally, these are
uniformly distributed. Therefore, the total velocity is well approxi-
mated by a superposition of the constant guiding center motion vK

pointing in the azimuthal direction and vran pointing in an arbitrary
direction.

In Equation (1.46) vK is the Keplerian velocity corresponding to
semi-major axis a: vK =

√
Gm?/a. We can also express the motion

with respect to the local Keplerian velocity at the instantaneous ra-
dius r i.e. vc =

√
Gm?/r. Since vK ≈ vc − 1

2 evc cos Ωa t̃∗ the velocity
difference with respect to the local Keplerian motion reads:

δvr ' evc sin Ωa t̃ (1.46a)

δvφ = vφ − vc '
1
2

evc cos Ωa t̃ (1.46b)

Expressed with respect to the local Keplerian motion, the amplitude
of the radial velocity is therefore a factor of two larger than the az-
imuthal, see Figure 1.17.

How can the eccentricity of a population increase if the gravita-
tional scattering does not change the magnitude of the relative ve-
locity vector? The reason is the asymmetry of the random velocity
vector, as explained in Figure 1.17, which plots δv (Eq. [1.46]). For ex-
ample, at periapsis ’P’ (M = 0) the planetesimal is closest to the star
and moving faster than the local Keplerian motion by δvφ = 1

2 eaΩa,
whereas at apoapsis ’A’ (M = π) it is moving slower (negative δvφ).
Mid-way, at quadrature ’Q’ the azimuthal excess motions are zero,
but there is now a radial velocity as the body is moving towards
either periapsis or apoapsis. As remarked, the radial velocity ampli-
tude is twice that of the azimuthal velocities (Eq. [1.46]).

Now consider an interaction between the eccentric planetesimal
and a (more massive) perturber on a circular orbit in the dispersion-
dominated regime. In a scattering event, energy conservation does
not alter the magnitude of the relative velocity magnitude, but it
will change the orientation. See Figure 1.17 (middle and bottom
panel), where the black dot indicates the point where the scattering
occurs and the dashed circle the point in velocity space where it ends
up after, say, a 90 degree scattering. The distances of the points to
the center, corresponding to |δv| are the same. Therefore, a body
experiencing a scattering at quadrature can find itself at apoapsis
(or periapsis) and vice versa. Consider first the A/P→Q case. The
particle ends up with the same |δv| it had before the scattering, but
has its eccentricity decreased by a factor two as it is now at periapsis.
Conversely, in the Q→A/P the eccentricity will double.

The two cases do not cancel. Scattering from/to quadrature are
approximately equally likely; the average change in eccentricity is
positive:

〈∆e〉 = 1
2

(
−1

2
e + e

)
= +

1
4

e. (1.47)
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Figure 1.18: Emergence of oligarchy. Col-
ors are a measure of the dynamical ex-
citation (eccentricity). Arrows denote
growth speed.

The Hill radius is defined:

RHill = a
(

M
3m?

)1/3

' aq1/3
p (1.48)

(Eq. [2.14])where qp = M/M?.

The net increase in eccentricity due to re-orientation of the phase
angle is known as viscous stirring. Viscous stirring therefore increases
the eccentricity of the population of planetesimals, which in turn
decreases Θ. This negative feedback (the more massive the body, the
lower Θ) lies at the heart of the transition from the runaway growth
to oligarchic growth stage.

Interactions also equipartition the random energy (eccentricity) of
the population. This means that the eccentricity of large bodies is
kept much smaller than the low-mass planetesimals. This exchange
of random energy between bodies of small and high mass is referred
to as dynamical friction, and differs from viscous stirring as it does not
change the total random energy. By the same reasoning, dynamical
friction equilibrates the planer (eccentric) and vertical (inclination)
motion. As there is one degree of freedom more in the plane, we can
expect a 1:2 ratio between inclinations and eccentricity: i/e ' 0.5.

The negative feedback from viscous stirring causes runaway growth
(one body dominates) to give way to oligarchic growth: growth ruled
by multiple bodies of similar mass. How the transitions proceeds is
illustrated in Figure 1.18. We consider a population of low-mass
planetesimals and a couple of runaway bodies. During runaway
growth, the most massive body is growing fastest as illustrated by
the length of the arrows (top panel). Viscous stirring, however, ex-
cites the eccentricities of the planetesimals in its feeding zone (middle
panel). Consequently, the growth of this embryo slows down. Neigh-
bouring embryos are also affected when their feeding zone (par-
tially) overlaps with a more massive body, suppressing their growth.
But embryos that accrete from dynamically cold feeding zones still
grow fast. Therefore, they catch up with neighboring embryos (lower
panel). Hence, in oligarchy:

• d(M1/M2)/dt > 0 between embryos that share their feeding zone,
where M1 is the mass of the largest body and M2 a runner-up.

• d(M1/M2)/dt < 0 between embryos of independent feeding zones.

As a result oligarchy will proceed towards a two component system
with spatially separated and dynamically cold big bodies (embryos
of mass M) and low mass planetesimals of mass m, that still domi-
nate the total surface density Σ.

The emergence of a two-component system facilitates the develop-
ment of analytical toy models that address how fast planet formation
proceeds:

Exercise 1.15 oligarchy: Assume that the separation between em-
bryos is a couple of mutual Hill radii, ∆a ∼ b̃RHill. Then, it may be
argued that the (effective) number density of embryos seen by a plan-
etesimal is nM ' [(2πa)× (b̃RHill)× (2ia)]−1.

(a) Argue that viscous stirring increases the eccentricity of the plan-
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etesimals at a rate:

de
dt

)
vs
∼ (nMσ90∆v)∆e ∼

q5/3
p ΩK

e3b̃
(1.49)

where qp = M/m?. Gas friction, on the other hand, damps the ec-
centricity of the planetesimals. For planetesimals, the gas drag law
depends quadratically on velocity/eccentricity. Let us therefore define:

de
dt

)
gas
≡ −e2ΩKFaero (1.50)

where the dimensionless Faero depends on the aerodynamical proper-
ties of gas and planetesimals.

(b) Give the expression for Faero. Balancing viscous stirring and gas
damping gives therefore an equilibrium eccentricity of e ∼ q1/3

p /(b̃Faero)1/5.

(c) Show that for these eccentricities, the Safronov numbers are con-

stant. How far out in the disk can 10 Earth-size planets form within 10

Myr?

Oligarchy relies on the assumption that planetary embryos tra-
verse on circular orbits so that they remain separated from each
other. This assumption will break down when the embryos are no
longer sufficiently damped, which happens when the gas in the disk
disperses and when the total mass in embryos dominates that of the
planetesimals. In that case the growth of embryos also stalls. The cel-
ebrated isolation mass is reached when the embryos have swallowed
all the solids; i.e. when Miso = (2πa)× (b̃RHill[Miso])× Σ or:

Miso =
(2πb̃Σr2)3/2

(3M⊕)1/2 ' 0.25 M⊕

(
b̃

10

)3/2 ( Σ
10

)−3/2 ( a
AU

)3
(1.51)

For most disk models Σr2 increases with r: the isolation mass is
larger in the outer disk.
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Figure 1.19: Embryo growth timescales
(in years) during oligarchy for two disk
surface density profiles: the MMSN (left)
and a shallow ∝r−1.5 profile. For the
gravitational focusing factor, which en-
ters the growth timescale, the equilib-
rium eccentricity as calculated in Exer-
cise 1.15 has been used. Growth can-
not proceed past the isolation mass (thick
solid line). Note the presence of the ice-
line at ≈3 AU, which raises the density in
solids due to condensation of H2O. Other
fixed parameters are: a planetesimal ra-
dius of 10 km and a oligarchic spacing
(b̃) of 10 Hill radius.

Figure 1.19 summarizes the outcome of the oligarchic model. Here,
we show contours of the embryos growth timescales, tgrowth = tgr,geom/(1+
2Θ) where Θ is calculated according to Exercise 1.15. Albeit it is fast,
embryo growth in the inner solar system stalls at low masses. In
the outer disk, growth timescales are much longer because of the re-
duced densities and the fact that gas damping is less effective. There,
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∗ Consider the equilibrium eccentricity,
calculated in Exercise 1.15. Correspond-
ing impact velocities among planetesi-
males ∼eeqvK can reach ∼100 m s−1 –
(for km-size planetesimals) much larger
than their escape velocity.

† In this context "pebble" is a loose term
for any particle larger than a dust grain
and much smaller than a planetesimal
(see Figure 1.1).

M

m

v∞

vsettl

b

2b

Figure 1.20: Collision geometry during
pebble accretion. Here v∞ is the ap-
proach velocity, b the impact parameter,
and vsettl = gMtstop the terminal set-
tling velocity, which causes the particle
to deviate from the unperturbed motion
(dashed line).

embryos may not reach their isolation mass before the gas disk dis-
perses. The region where oligarchic growth reaches the largest mass
within the lifetime of the gas-rich disk (≈107 yr), is thus at ∼5–10
AU. An advantage of the oligarchic model is therefore that it ex-
plains the presence of giant planets in the "middle" regions, as we
see in the solar system.

There are (at least) two criticisms of the oligarchic growth model
as sketched above:

1. It assumes material doesn’t move: planetesimals and embryos stay
where they are. For planetesimals this may seem a plausible as-
sumption, as their drift times are small but pebbles of course drift
in from the outer disk regions

2. Fragmentation of planetesimals. The problem is that planetesimal
bodies are relatively weak. With increasing embryo masses, ec-
centricities increase and collisions among planetesimals proceed
at increasingly higher energies.∗ Especially small bodies are quite
fragile. Therefore, planetesimals may grind themselves down to
∼1–10 m sizes – a size range which makes them very vulnerable
to radial drift

In addition, while the oligarchic growth model broadly explains the
architecture of the solar system, it may be less relevant to exoplan-
etary systems where the distinction between rocky planets and gas
giants is (as of now) less clear.

1.7 Pebble accretion

Figure 1.19 and the arguments above cast some doubt on the viability
of the planetesimal-driven planet formation scenario – particularly in
the outer disk. Perhaps much smaller particles are more effectively
accreted. In particular, protoplanetary disks are often bright at radio
(∼mm) wavelengths, suggesting that a sizeable fraction of the solid
mass resides in pebble-sized† particles.

Can these particles be accreted efficiently by a protoplanet? The
key difference with the planetesimal encounters discussed in Exer-
cise 1.14 is that for pebbles gas drag plays a decisive role during the
encounter. This means that assumptions used above to calculate the
scattering trajectory (conservation of energy and angular momen-
tum) are no longer applicable. Rather, aerodynamical concepts now
regulate the encounters. In particular, particles will settle towards
the planet at a drift velocity vsettl = gMtstop.

Three timescales determin the fate of the interaction (see Fig-
ure 1.20):

• The stopping time tstop, which contains the aerodynamical prop-
erties of the pebble;

• The settling timescale: the time needed for a pebble to sediment
to the embryo: tsettl ∼ b/vsettl = b/gMtstop ∼ b3/GMtstop;

• The encounter timescale: the duration of the (unperturbed) en-
counter: tenc ∼ 2b/v∞.
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∗ See Exercise 2.3. When particles travel
on circular orbits, they approach each
other with a relative velocity governed by
the (Keplerian) shear in the disk. This is
known as the shear-dominated limit.

Clearly, tenc > tstop for gas drag to be effective during the encounter.
Assuming this holds, we equate tsettl and tenc to get the largest im-
pact parameter b where encounters will result in accretion. We can
distinguish two cases:

1. Small impact parameters. Relative motions are determined by the
disk headwind (v∞ = ηvK), resulting in bPA ∼

√
2GMtstop/ηvK.

2. Large impact parameters. Relative motions are determined by the
Keplerian shear, ∗ v∞ = 3

2 ΩKb, resulting in bPA '
(
GMtstop/ΩK

)1/3.

Exercise 1.16 pebble accretion:
(a) In contrast to gravitational scatterings, collision rates in pebble ac-
cretion are independent of the physical radius of the embryo (they only
depend on the mass). Why?

(b) Considering the 2nd regime, show that bPA expressed in terms of
the embryo’s Hill radius reads bPA ' τ1/3

p RHill. This expression is valid
for pebbles of dimensionless stopping time η3/qp < τp < 1. Why?

(c) Correspondingly, the gravitational focusing factor for pebble accre-
tion is: ΘPA = τ2/3

p (RHill/R)2. Give an expression for RHill/R in terms
of the disk orbital radius r.

(d) It is instructive to compare ΘPA to the corresponding expression

of Safronov focusing, ΘSaf = v2
esc/2v2

∞ (see Exercise 1.13). If we con-

sider the zero eccentricity case (which maximizes ΘSaf) planetesimals

enter the Hill sphere at a typical velocity of v∞ ≈ RhΩK (the Hill ve-

locity). In that case, what is ΘSaf? How much faster is PA compared to

planetesimal accretion?

Apart from the very large accretion cross sections (up to the Hill ra-
dius!), pebble accretion does not suffer from the negative feedback
effect of the planetesimal accretion model. It therefore virtually erad-
icates the timescale problem that characterizes the oligarchic model
(see Figure 1.18), especially in the outer disk. Nevertheless, caveats
remain:

• Pebble accretion is optimal for a relatively narrow particle size
range, 10−2 . τp . 1 and also requires a sufficiently massive
embryo.

• In a turbulent disk, pebbles will be distributed over a thick height
(as calculated in Exercise 1.2), reducing the local pebble density in
the vicinity of the embryo.

• Pebbles drift and (when they are not accreted) will move out of
the embryo’s feeding zone.

Exercise 1.17: When pebbles have sedimented to the midplane, the
pebble accretion rate is Ṁ ' 2bPAΣηvK . Assume that these pebbles
drift to the star at a velocity given by Equation (1.11). Show that the
fraction of pebbles that are accreted by the embryo is:

P ' 1
2π

(
qp

τ2
p

)1/3

for η3/qp . τp . 1 (1.52)
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Figure 1.21: Atmosphere-mass-to core ra-
tio as function of RBondi/Rc for a density
ratio of ρneb/ρc = 10−10.

where qp = M/M� (Hint: use GMp = qpa3
0Ω2

K).

1.8 Gas accretion onto planets and giant planet formation

The next phase of planet formation starts when embryos become
massive enough to bind the gas of the disk. This occurs when the sur-
face escape velocity vesc equals the thermal speed of the gas molecules.
Ignoring numerical factors of unity, atmosphere formation starts when
the protoplanet’s Bondi radius:

RBondi =
GM
c2

s
(1.53)

becomes larger than the physical radius (R). In Equation (1.53) M is
the combined mass of the "rocky" core (Mc) and gaseous atmosphere
(Matm), but initially M ≈ Mc. From Equation (1.53) atmosphere
formation thus commences at R ≈ 103 km slightly depending on the
temperature of the gas.

From Equation (1.53) it is clear that with further growth of the
propoplanet, RBondi quickly becomes much larger than R. Conse-
quently, the planet can acquire a – by volume – huge atmosphere.
But how massive is it?

Exercise 1.18 isothermal atmosphere: consider an isothermal at-
mosphere where the temperature is the same as that of the protoplan-
etary nebula.

(a) Invoking hydrostatic balance and neglecting for the moment the
contribution of the atmosphere mass towards the gravitational poten-
tial show that the density of the gas is given by:

ρ(r) = ρneb exp
[

RBondi
r

]
, (1.54)

where ρneb is the gas density in the nebula and r the distance from
the planet’s center. The pressure scaleheight corresponding to Equa-
tion (1.54) is Hr = r2/RBondi.

(b) Argue that for r/RBondi � 1 most of the mass of the atmosphere
resides near the core radius Rc and that the atmosphere mass can be
approximated as

Matm ≈ 4πρnebR3
Bondi

(
Rc

RBondi

)4
exp

[
RBondi

Rc

]
(1.55)

(c) Also, give an expression of the atmosphere-to-core mass ratio, in

terms of the density of the nebula-to-core ρneb/ρc. As function of disk

orbital radius, how massive should planets become before their isother-

mal atmospheres reach parity (Matm = Mc)?

Figure 1.21 plots the atmosphere-to-core mass ratio obtained from
the exact atmosphere mass and from Equation (1.55). Clearly, the
atmosphere mass under the isothermal assumption increases steeply
with RBondi/Rc (appreciate again that the Bondi radius is propor-
tional to core mass!). What stops the growth of the atmosphere?
Perhaps:
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∗ symbols denote: M<r total mass inside
radius r; ∇ ≡ d log T/d log P actual tem-
perature gradient; S entropy; ε energy
production rate.

† If they make it to the core, they will pro-
vide an accretion luminosity of Lacc ≈
GMc
2Rc

per unit mass.

‡ The simplest is the ideal EOS, P =
kBρT/µ, where kB is Boltzmann’s con-
stant and µ the mean molecular mass.
This can be expanded by including phase
transitions (dissociation, ionization) of,
e.g., hydrogen. At very high densities,
non-ideal effects will result in a non-ideal
equation of state (e.g. the metallic interi-
ors of the giant planets).

• The atmosphere does not extend all the way to RBondi. Certainly
at r = RHill (stellar) tidal forces become important and it is in-
conceivable that planets can bind material beyond RHill. This will
limit the atmosphere size for large planets, once RBondi has ex-
ceeded RHill. Nevertheless, as RHill/R � 1 protoplanetary atmo-
spheres that fill the Hill sphere are still enormous.

• Centrifugal forces (rotation) can becomes important. When the
atmosphere is supported by rotation, it no longer requires such
steep density gradient.

• The atmosphere is not isothermal. Nebular gas falling (adiabati-
cally) into the potential heats up. The high temperature gas can
more effectively provide the pressure gradients necessary to bal-
ance the gravitational force.

Exercise 1.19 adiabatic atmosphere: assume an adiabatic equation
of state

P = Kργ (1.56)

with K constant and γ > 1. (Note that γ = 1 corresponds to the
isothermal case above. Why?). Repeating the above exercise, derive:

ρ = ρneb

[
1 +

(γ− 1)RBondi
r

]1/(γ−1)
(1.57)

and demonstrate that Matm never exceeds ∼ρnebR3
Bondi as long as γ >

4
3 .

The exercises above illustrate that the fate of the planet’s primordial
atmospheres is primarily determined by its thermal evolution. Of
course an isothermal or adiabatic EOS are merely approximations.
In essence, the problem is identical to solving the well-known stellar
structure equations: ∗

∂M<r

∂r
= 4πGr2ρ (1.58a)

∂P
∂r

= − ρ
GM<r

r2 (1.58b)

∂T
∂r

=
∂P
∂r

T
P
∇ (1.58c)

∂L
∂r

= 4πr2ρ

(
ε + T

dS
dt

)
. (1.58d)

In stars ε is given by nuclear fusion, but in planets a similar role is
played by the accretion of solid material (planetesimals), if present.†

An equation of state between P, S, ρ and T completes the above equa-
tions‡ Finally, the actual gradient∇ is often taken to be the minimum
of the radiative and adiabatic temperature gradients:

∇ = min(∇ad,∇rad) (1.59)

(Schwarzschild criterion) where ∇rad = 3κLP/64πσsbGM<rT4 is the
gradient in the radiative case, with σsb Stefan-Boltzmann constant.
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Figure 1.22: Relation between the core
mass and total mass for several values
of W (labelled). See Exercise 1.20 for the
definition of W.
∗ When there no planetesimals left to ac-
crete, a luminosity is nonetheless gener-
ated by Kelvin-Helmholtz contraction, in a
similar way as stars evolve before the on-
set of nuclear fusion.

† How much gas can be accreted and the
mechanisms that halt gas accretion are
still active research fields.

Exercise 1.20 Radiative zero solution: Assume the following:

• κ and L are constant and define W ≡ 3κL/64πσsb (also constant);
• The gravitational mass interior to r, GM<r can be approximated by

the total mass of the planet+atmosphere, GMtot, which is a constant;
• The atmosphere is radiatively supported: ∇ = ∇rad = WP/GMrT4;
• An ideal EOS, P = kBρT/µ.

(a) Under these assumptions, show that Equation (1.58c) gives:

P =
GMtotT4

4W
; ρ =

GMtotµT3

4kBW
(1.60)

where we neglected the boundary condition (the solutions are valid
only in the "deep" atmosphere).

(b) Continue, by invoking Equations (1.58b) and (1.58c), to derive the
atmosphere temperature and density profiles:

T(r) ' GMµ

4kB

1
r

; ρ(r) ' 1
W

(
GMµ

4kB

)4 1
r3 . (1.61)

Integrating these gives the mass of the atmosphere:

Matm =
4π

W

(
GMtotµ

4kB

)4
Λ, (1.62)

where Λ = log(rout/rc) is a function of the outer radius of the at-
mosphere. Note that due to the logarithmic dependence, Λ can be
considered a constant.

(c) Equation (1.62) can be recast in a relation between the core mass
Mc = Mtot − Matm and the total mass Mtot, see Figure 1.22. Clearly,
for small mass Mc ≈ Mtot. However, at some point Mc(Mtot) is seen
to peak. Give an expression for the core mass Mcrit, corresponding to
the peak. What is atmosphere mass fraction at this point?

(d) Give a physical explanation for the behaviour.

Although this exercise is still very crude, it contains the key features
of the general problem. Specifically:

1. The atmosphere mass Matm is a strong function of the (grain)
opacity of the gas and of the planetesimal accretion rate. Paradox-
ically, a high accretion rate – a high L – decreases the atmosphere
mass.∗

2. When Matm ≈ Mc (crossover) a hydrostatic solution is no longer
possible. The corresponding core mass is referred to as the critical
core mass.

For pre-planetary atmospheres that have breached the critical core
mass, pressure gradients are insufficient against gravitational forces.
Such planets can accrete unlimited quantities of gas from the cir-
cumstellar disk; more precisely, the amount of gas they accrete is
fully determined by the supply of gas the disk can deliver. High-
mass planets will open gaps in the disk (§2.3), thereby halting (to
some extent) the accretion of nebular gas.†

After the primordial atmosphere has collapsed, gas moves in at
free-fall velocities or is funnelled through a circumplanetary disk.
Either way, the material that (eventually) falls onto the planet ra-
diates away a large amount of energy, decreasing the entropy of
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∗ A secular process means that the pro-
cess takes place on a timescale (much)
longer than the dynamical time.

† An exception is the Pluto-Neptune sys-
tem, where orbits do cross (Pluto moves
interior to Neptune). Here, orbit crossing
does not result in close encounter, how-
ever, as the planets are in a 3:2 resonance.

‡ defined as:

RHill =
a1 + a2

2

(
M1 + M2

3M�

)1/3

. (1.64)

the gas. This contrast with the giant planet formation in the disk-
instability scenario, where a self-gravitating clump adiabatically col-
lapses, largely preserving the entropy. In due time, these clumps do
also cool, but without the shocks that accompany gas accretion of
the core accretion model it takes them much longer. These different
entropy states are referred to as the cold start and hot start and are
loosely connected to the core accretion and disk instability scenarios.

1.9 Giant impacts

In Figure 1.18 we saw that planetary embryos in the inner disk stayed
small because of the low isolation masses – typically around the mass
of Mars. These bodies are tightly packed with mutual spacings of
∼0.01 AU. The embryos gravitationally perturb each other, exciting
their eccentricity. But in a gas-rich environment this effect is sup-
pressed because of efficient eccentricity damping due to disk-planet
interactions (see §2.3). Embryos therefore remain on circular orbit,
isolated from each other.

The situation changes once the gas has disappeared. Secular∗ per-
turbations gradually increase the eccentricity. At some point orbits
start to cross, meaning that the apoapsis of the interior body ex-
ceeds the periapsis of the exterior body. Once orbit crossing has been
achieved embryos have a chance to collide with each other – a period
known as the giant impact phase of (terrestrial) planet formation. This
reduces the number of bodies in a system. The process continues
until the orbit crossing timescale has become longer than the system
timescale.†

The situation can best be investigated numerically, through N-
body simulations. Many studies have found that the crossing time
depends exponentially on the mutual spacing among the embryos:

log10
tcross

tK
= b∆ + c (1.63)

where ∆ is the distance among the embryos expressed in mutual Hill
radii‡, tK the orbital period and b and c are constants. N-body sim-
ulations find b ≈ 0.76–0.8 and c ≈ −(0.2–0.5) (Chambers et al. 1996;
Iwasaki et al. 2001; Zhou et al. 2007). For example, when ∆ ≈ 10, the
initial configuration of planetary embryos will become unstable after
∼107 orbits.

Exercise 1.21: How fast do embryos collide, once they are on crossing
orbits?

(a) Verify that:

• in the planar case (zero inclination), where the embryo’s orbits in-
tersect at two points, the probability of a collision during the orbit
is ≈R12/πr, where R12 = R1 + R2 is the linear cross section.

• in the inclined case (inclination i) the corresponding 3D collision
probability amounts to P ∼ σgeo/ia2.

(b) For spacings of ∆ ≈ 10 mutual Hill radii and 0.1M⊕ embryos at r ≈
1 AU, give the expression for the collision timescale in the geometrical
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∗ Orbit crossing is accelerated by the (un-
seen) presence of a Jupiter at 5.5, which
also perturbs the bodies, especially at res-
onances.

limit.

(c) Same, but allowing for gravitational focusing.

Figure 1.23: Outcome of an N-body sim-
ulation on how planet formation com-
pletes in the inner disk. Initially ≈1900
embryos are present of mass ≈10−3–10−2

M⊕. Colors indicate the water fraction.
A Jupiter-mass giant planet resides at 5.5
AU. From Raymond et al. (2006).

Figure 1.23 presents an example of a computer simulation on how
the giant impact phase may proceed. These studies are usually con-
ducted using N-body techniques, in which the equations of motion
of each of the N particles are integrated. The advantage of this ap-
proach is that the compositions of the material can be followed di-
rectly; in Figure 1.23 this is done for the water contents. Here, the ini-
tial dynamically quiescent system (e ≈ 0) becomes unstable, quickly
reaching high eccentricities of ≈0.1.∗ Due to the high density of the
system – the initial mutual distance is far less than ∆ = 10 in this
particular simulation – material efficiently scatters from the outer to
the inner regions and vice versa.

On long timescales (>100 Myr) a configuration similar to that in
the solar system emerges. Note the size of the Mars analogue at 2

AU, which is too large compared to Mars. This is a very common
feature of these types of simulations: starting from a broad initial dis-
tribution of embryos (as predicted by the oligarchic growth model),
the Mars-size body is too large. Simulations in which the initial pop-
ulations of embryos are clustered together in a band centered at ≈1

AU seem to give a better result concerning the small Mars problem.



∗ From which Kepler’s law follows: r2 θ̇ is
constant where θ is the angle in the or-
bital plane.

† The equation of motion is the same as in
Exc. 1.14. The integration constants dif-
fer.

2
Planet dynamics

2.1 Review of the 2-body problem

Ωnodeex

ω

P

ν

m

a
A

i
?

reference plane

Figure 2.1: Orientation of a Kepler or-
bit in space (orange). Lines above the
z = 0 reference plane are solid; below
are dashed, while lines in the reference
plane are bold. The five angles are: lon-
gitude of the ascending node Ωnode; ar-
gument of periapsis ω; true anomaly ν;
inclination i. Points on the major axis of
the ellipse show the periapsis (P), apoap-
sis (A), the focus (?), and center (•) of the
ellipse.

In the 2-body problem the relative motion can be solved exactly.
There are two conserved integrals of motion: the angular momen-
tum vector∗ l = r × ṙ and the total energy E = 1

2 ṙ2 − G(m? + m)/r
where m? is the mass of the central body and m the mass of the
satellite. Solving the equation of motion in the orbital plane gives
the solution:†

r =
a(1− e2)

1 + e cos ν
; r2ν̇ = l = |l| =

√
G(m? + m)a(1− e2) (2.1)

with integration constants:

• The semi-major axis, a, which defines the energy of the system,
E = −G(m? + m)/2a;

• The eccentricity e;
• The true anomaly ν (not constant); the angle in the orbital plane

between periapsis and the position of the body (Figure 2.1). The
true anomaly is not a linear function of time as the particle moves
faster at periapsis than at apoapsis.

In 3D, the orbital plane is in general tilted with respect to a (fixed)
reference plane – say the XY-plane – defining a reference direction –
say the unit vector ex. The motion in space is supplemented by the
following constants:
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Figure 2.2: True (ν), eccentric (E), and
mean anomaly (M) as function of time
for an eccentricity of e = 0.5.

∗ In particular for circular (planar) motion
where ω (Ωnode) is undefined.

† The mean motion is the same as the or-
bital frequency Ω in Chapter 1. (We use
the notation n for convention).

‡ In a barycentric system, the total angu-
lar momentum is L = m1l1 + m2l2 and
the total energy is E = −Gm1m2/2a.

§ the relation proceeds through an inter-
mediate quantity known as the eccentric
anomaly E, defined as r = a(1− e cos E).
Kepler’s equation then relates E and M:

M = E− e sin E (2.2)

Given M (i.e. time), this transcendental
equation must be solved numerically for
E, which gives r and hence ν via Equa-
tion (2.1).

ν

M

? a

Figure 2.3: Epicycle approximation.

• The inclination i, which gives the tilt of the orbital planet with
respect to a plane of reference;

• The longitude of the ascending node, Ωnode, which denotes the
angle in the reference plane between a reference direction (ex) and
the point where the orbit ascends through the reference plane;

• The argument of periapsis ω, indicating the angle between the
periapsis and the line of nodes.

Together {a, e, i, ω, Ωnode, ν} constitute the orbital elements. Together
with the time of periapsis passage (t0), they fully specify the Kepler
orbit.

Other auxiliary angles can be construed from the orbtial elements.
The longitude of periapsis, v = ω + Ωnode is often used instead of
ω.∗ Also, instead of ν, which is a nonlinear function of time (ν pro-
ceeds faster at periapsis than at apoapsis) the position is expressed
in terms of a mean anomaly M, which proceeds linear with time:
M = n(t− t0) where n =

√
G(m1 + m2)/a3 is the mean motion†. See

Figure 2.2. Note that M has no geometrical interpretation; it is in-
troduced merely as a mathematical convenience. Similarly, the mean
longitude λ = M + v measures the advance of the particle in a fash-
ion linear with time with respect to the reference frame.

Several concluding remarks on the 2-body problem:

• the Kepler solution has been expressed in a non-inertial coordinate
frame (a consequence of using relative coordinates).‡

• except for ν, the orbital elements are constant in time, which is
specific to the 2-body problem. For more than two bodies the mu-
tual gravitational perturbations will cause the orbital elements to
vary in time. They are then referred to as osculating orbital elements.

• there is no closed-form solution between time (or mean anomaly
M) and the position in the orbit (the true anomaly ν). The relation
can be found numerically, through Kepler’s equation.§

Exercise 2.1 Guiding center:
(a) Consider two bodies in Kepler orbits separated by ∆a in semimajor
axis where ∆a � a and a is the semimajor axis of one of the bodies.
Show that the synodical period, which is the time between successive
conjunctions (close encounters), is

Psyn =
2P
3

( a
∆a

)
(2.3)

where P is the orbital period corresponding to a.

(b) Show that for e � 1 the equations of motions (Eq. [2.1]) can be
approximated:

r− a ' − ae cos(M) (2.4a)

ν−M ' 2ae sin(M) (2.4b)

which is the guiding center approximation. The Keplerian motion is ap-

proximated by a superposition of a circle and an ellipse.
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∗ To see this, multiply Equation (2.5) by
ṙ and write all terms as time-differentials
(d/dt): d

dt (ṙ
2/2) = r̈ · ṙ, dΦ

dt = ṙ · ∇Φ,
and d

dt (ω× r)2/2 = [ω×ω× r] · ṙ. Also,
ṙ · (2ω× ṙ) = 0

r1
r

a x

y

TP

m2m1

Figure 2.4: Definitions of x and y in Hill’s
approximation of the CR3BP.

† In celestial mechanics text books it is
customary to define Φeff with the oppo-
site sign.

‡ this becomes r−1
1 ≈ 1/a2 − x/a2

2 +

x2/a3
2 −

1
2 y2/a3

2 −
1
2 z2/a3

2. The leading
(constant) term of the expansion can be
discarded from Φeff as it is a potential
function. In addition, in Equation (2.11)
we assumed that m1 � m2 such that
Gm1 ≈ n2

2a3
2.

2.2 The 3-body problem

In the 3-body problem analytical (closed-form) solutions are no longer
possible. A simplification of the 3-body problem is that of a mass-
less particle being perturbed by a secondary (e.g. planet) that moves
on a circular orbit around the primary (star). This is known as the
circular, restricted 3-body problem CR3BP. We will focus exclusively
on this problem.

The equation of motion in a frame of reference rotating with an-
gular frequency ω is:

r̈ = −∇Φ− 2ω× ṙ−ω× (ω× r) (2.5)

In the CR3BP we will of course choose ω = npez such that Φ – the
gravitational potential – is time-independent in the rotating frame.
Equation (2.5) can be integrated to give an integration constant J:∗

J =
1
2

ṙ2 + Φ− 1
2
(ω× r)2 (2.6)

which is the Jacobi energy. In the 3-body problem it is the only integral
of motion.

Exercise 2.2 Jacobi integral:
(a) Converting Equation (2.6) back to the inertial frame, show that:

J = E−ω · l = E− nplz (2.7)

where E and l are the energy and angular momentum measured in the
inertial frame. Hence, in the CR3BP interactions will exchange E and
l, while J stays constant.

(b) Express J in orbital elements:

J = −Gm?

2a
− np

√
Gm?(1− e2)a cos i (2.8)

where np is the mean motion of the secondary and the other symbols
refer to the test particle. Written in the form of Equation (2.8) (or anal-
ogous) the Jacobi integral is called the Tisserand relation.

(c) Let a = ap + b with ap the semimajor axis corresponding to np and
consider the limits where b/a0 � 1, i � 1 and e � 1. Show that in
that case:

J ≈ Gm?

ap

(
−3

8
b2

a2
p
+

e2 + i2

2

)
(2.9)

where we have discarded a constant term from J.

It is instructive to redefine the potential in Equation (2.5), incor-
porating the centrifugal term:†

Φeff ≡ Φ1 + Φ2 −
1
2

n2
pr2 = −

[
Gm?

r1
+

1
2

n2
pr2

1

]
+ Φ2 (2.10)

where we used the identity 1
2∇r2 = r. Consider the motion of the

test particle in the vicinity of m2, see Figure 2.4, and express the
potential in local coordinates (x, y) centered on m2. This amounts to
expanding the inverse distance 1/r1 in terms of (the small) x and y.‡
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Figure 2.5: Zero velocity curves (contours
of Φeff) in the z = 0 plane. Contours
of larger Φeff are darker. The Lagrange
equilibrium points L1 and L2 are indi-
cated by circles. Distances are in units
of Hill sphere. Curves are not orbits.
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Figure 2.6: Examples of particle trajec-
tories (initially on circulating orbits) in
the CR3BP, obtained by integrating Equa-
tion (2.13). Particles that enter the Hill
sphere (dashed circle) are highlighted.
Red streams hit the planet (R < Rp =
5× 10−3RHill).

The result is (Hill’s approximation):

Φeff = −
3
2

n2
2x2 +

1
2

n2
2z2 − Gm2

r
(2.11)

with which the Jacobi energy is written:

J =
1
2

ṙ2 + Φeff (2.12)

Contours of Φeff(x, y) are known as zero velocity curves; they de-
fine the region where a particle of a certain J can move, since Φeff =

J − 1
2 ṙ2 ≤ J. Therefore, although the 3-body problem is not inte-

grable, given J, we can constrain the regions where particles can
be found. Figure 2.5 shows contours of constant Φeff with lighter
contours having larger Φeff. The regions bounded by high Φeff (the
darker contours) are therefore not accessible for low-energy particles
(low J). In particular, the high Φeff zero velocity curves have a horse-
shoe shape and the corresponding orbits are referred to as horseshoe
orbits as they make a U-turn. It must be emphasized however that
in general particles do not follow the zero velocity contours as ṙ is
a function of time. Figure 2.6 gives examples of particle trajectories
obtained from integrating Hill’s equation of motion. Three types of
orbits can be seen:

• Horseshoe orbits, which make a U-turn (impact parameter b .
1.7RHill;

• Hill-penetrating orbits. They are strongly excited after they leave
the Hill sphere (1.7RHill . b . 2.5RHill);

• Circulating orbits, which are only modestly excited. (b & 2.5RHill).

Exercise 2.3 Hill’s equations:
(a) Show that the equations of motion in Hill’s approximation are:

ẍ = −
Gmp

r3 x + 2npvy + 3n2
px (2.13a)

ÿ = −
Gmp

r3 y− 2npvx (2.13b)

where r2 = x2 + y2 if we restrict the motion to the orbital plane.

(b) Show that zero eccentricity particles at distances far from the sec-
ondary obey vy = − 3

2 npx and vx = 0. This (local) approximation of
the Keplerian flow is known as the shearing sheet.

(c) Equilibrium points are points where r̈ = ṙ = 0. Show that these
Lagrange points are located at (x, y) = (±RHill, 0) where RHill is the Hill
radius:

RHill = ap

(
mp

3m?

)1/3
(2.14)

(d) Are these stable or unstable equilibrium points?

(e) What is the Jacobi constant at the Lagrange point (JL)? And what is

the Jacobi constant far from the perturber (J∞), assuming e = 0. What

is the half-width xhs of the corresponding horseshoe orbit?

From this section it is clear that particles that enter the Hill sphere do
so at a velocity ∼RHillnp – the Hill velocity. This is therefore the min-
imum (relative) velocity at which the gravitational scattering takes
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∗ This is a rather crude estimate as we
have not accounted for the solar grav-
ity during the encounter, which is espe-
cially pertinent in the e → 0 limit. More
precisely, the prefactor in Equation (2.15)
will be '2.24, approximately a factor of
two larger.

† Here we used Equation (2.9) and the re-
lation δb2 = 2bδb, which is valid for dis-
tant encounters.

place. Of course, the relative velocity will be larger as soon as the
particle moves on an eccentric orbit. We can therefore distinguish
the:

1. shear-dominated limit: evK . RHillnp. Encounter rates are given by
the Keplerian shear.

2. dispersion-dominated limit: evK & RHillnp. Encounter rates are de-
termined by the random motions (eccentricities) of the bodies.

2.3 Gap opening and planet migration

We can use the Jacobi constant to obtain the migration rate of a planet
for distant interactions. Distant interactions are interactions where
the scattering angle θscat � 1 (see Eq. [1.42]) or, equivalently b �
b90. We assume that the initial motion of the TP is Keplerian, v∞ =

| − 3
2 npb| in the −y direction. After the scattering the particle will

end up having a velocity in the x direction of vx = −θscatv∞. The
corresponding eccentricity is:∗

e ∼ |vx|
an
≈ 4

3
qp

( a
b

)2
(2.15)

where we used that np ≈ n and ap ≈ a. Now that we have a change
in eccentricity Equation (2.8) can be used to find the corresponding
change in semimajor axis or, equivalently, impact parameter b. Cal-
culating the Jabobi energy and equating J before (where e = 0) and
after (where e is as in Eq. [2.15]) the encounter, while assuming that
the changes δa/a and δe2 are small, one obtains:†

δb
ap

=
4
3

( ap

b

)
δe2. (2.16)

Since δe2 > 0, the attractive (gravitational) interaction has – perhaps
counter-intuitively – pushed the particles further apart in semima-
jor axis. Distant encounters are therefore repulsive. These changes
due to small-angle scattering are referred to as the impulse approx-
imation. In a particulate disk, subsequent (inelastic) collisions can
damp the eccentricity of the test particle, such that by the time of the
next encounter the TP will again be on a circular orbit, at an impact
parameter b incremented by δa. Since the interaction period is the
synodical period of Equation (2.3), the TP moves away at a speed:

db
dt
∼
( ap

b

)4
q2

pnpap. (2.17)

Instead of particles, these expressions also apply to gaseous disks
(Lin & Papaloizou 1979). Therefore, (massive) planets tend to open
a gap in the disk, as they repel the gas. On the other hand, vis-
cous diffusion tends to close the gap. When the timescale for parti-
cles to move over a distance b is equated with the viscous diffusion
timescale over this length, b2/Dgas,we obtain the width of the gap,
in steady state: (

b
hgas

)3
∼

q2
p

α

(
a

hgas

)5
, (2.18)
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∗ The fallacy is that Equation (2.18) as-
sumes steady-state; such a large gap may
be reached only after an infinite amount
of time.

† In the literature an alternative cal-
culation for the gap opening criterion
amounts to equating the viscous torque
with the torque from the impulse ap-
proximation at a critical distance b∗ – es-
sentially the distance below which the
impulse approximation becomes invalid.
When b∗ = hgas we obtain a similar an-
swer.

‡ sometimes referred to as the coorbital
region, as the material rotates with the
planet

§ This is a subtle effect roughly related to
the conservation of vortensity – a fluid
dynamical concept. In the vicinity of the
protoplanet the analogy with (pressure-
less) particles becomes inaccurate and we
often need to solve the fluid dynamic
equations of the gas (numerically).

where we used the α-model for the viscosity. This model is very
crude; for example, when α → 0 it predicts an infinitely large gap∗.
More importantly, for our essentially 2D arguments to be valid and
for gap opening to commence, we must have that b & hgas. This
implies that gap opening commences at qp ' α1/2(hgas/a)5/2.†

Exercise 2.4 Planet migration:
(a) Relaxing the condition that the TP is massless, replace it by a nar-
row ring of particles of surface density Σ and width db. Argue that the
planet migration rate is

dap

dt
∼ −

2πa2
pΣ

m?
qp

( a
b

)4
npdb. (2.19)

where b = a− ap � 1 such that a ≈ ap.

(b) Consider b positive and add the contributions of many subsequent
rings, assuming constant surface density Σ. Clearly the rings that are
closest to the planet contribute the most. It can be argued that the min-
imum impact parameter for which the impulse approximation remains
valid in the case of a gaseous disk is b = bmin ' hgas (This phenomenon
is known as ‘torque-cutoff’). In that case, show that the total migration
rate becomes:

dap

dt
∼ −qp

a2
pΣp

m?

(
ap

hgas

)3
apnp (2.20)

(c) Equation (2.20) is still incomplete, since it only considers the disk
exterior to the planet. The disk interior to the planet will also exert a
torque on the planet, giving rise to similar expression as Equation (2.20)
but with one key difference. Which?

(d) The total torque (net migration rate) is therefore determined by the
difference in the disk conditions (e.g. Σ and T) on both sides of the
planet. Argue that the net migration rate in smooth disks (i.e. no gap
opening) becomes:

dap

dt
∼ γaqp

a2
pΣgas

m?

(
ap

hgas

)2
npap (2.21)

where |γa| is of order unity. Hint: realize that the largest contributions
arise from ±hgas. Consider a Taylor-expansion of Σgas around a = ap.

(e) Give an expression for the migration timescale ap/(dap/dt). Eval-

uate this expression for an Earth-mass planet at 1 AU? Is Type-I migra-

tion important?

A more detailed analysis will reveal that the net "distant encounter"
torque – more commonly known as the Lindblad torque – is usually
negative, resulting in inward migration. It is important to realize
that the torque resulting in planet migration is the net effect of the
near-cancellation of two opposing torques: one from the interior disk
and one from the exterior disk.

The Lindblad torque is not the only disk-planet interaction that
results in planet migration. For example, the material moving on
horseshoe orbits‡ can give rise to a horseshoe torque as (under certain
conditions) the density before and after the U-turn is slightly differ-
ent (Ward 1991).§ While the magnitude of the additional torque is
always similar to that of the Lindblad torque calculated above, addi-
tional torques can alter the sign of the total torque and, hence, the
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∗ There are many attractive features in the
Nice model. It provides a natural expla-
nation for the so-called Late Heavy Bom-
bardment of the inner solar system. It
also provides a mechanism for the cap-
ture of Jupiter’s Trojan’s (Morbidelli et al.
2005) and explains many of the character-
istics in the Kuiper belt.

† Confusingly, planet-disk interactions
are also referred to as ‘tidal’.

‡ Our analysis follows Chapters 6 and 8

of Murray & Dermott (1999). However,
their key application concerns an exterior
perturber (e.g. Jupiter’s interaction with
asteroidal bodies), while we consider an
interior perturber.

direction of the migration.
In Equation (2.21) the migration rate scales linearly with planet

mass, which is valid for relatively low-mass planets. Torques linear
with qp are collectively referred to as Type-I migration. Indeed, for
higher mass planets, gap opening suppresses the migration. In that
case the migration is regulated by the viscosity (diffusion) of the disk.
The subsequent migration is known as Type-II migration.

Apart from reducing the angular momentum of planets, disk torques
will also damp the eccentricity. Eccentricity damping is often even
more effective, because the energy associated with the eccentric mo-
tion (∼(eanp)2) is much smaller than the orbital energy. It can there-
fore be expected that planets embedded in gaseous disk move on
near-circular orbits.

Planets can migrate in gas-free disk. Planetesimals can drive mi-
gration, especially when the planetesimals are dynamically cold (low
eccentricity). In particular, the Nice model hypothesises that planetesimal-
driven migration caused Jupiter and Saturn to cross the 2:1 mean-
motion resonance, which strongly excited the eccentricities of these
planets, causing a major "shakeup" of the nascent solar system.∗

Other example of planetesimal-driven migration are the motion of
moonlets in Saturn’s rings and the presumably outward migration
of Neptune (into the nascent Kuiper belt).

Tides raised on planetary bodies can also result in migration. A
classical example is the Earth-Moon system, where the moon moves
outwards as the Earth spins down. In these systems tides lead to a
net loss of the total energy, while preserving the total angular mo-
mentum. If the orbit is still eccentric, the condition hz = 0 results in
an eccentricity decay of

ė = − Ė
E
(1− e2)

e
. (2.22)

where Ė < 0 is the rate of energy loss due to tides. Equation (2.22)
illustrates once more that eccentricity damping operates fast (unless
e ≈ 1). Planets on very eccentric orbits, such that their periapsis
distance lies close enough to raise tides on the star can therefore
undergo circularization, decreasing the eccentricity will preserving
(approximately) their periapsis. Tidal damping† has been invoked to
explain the presence of hot-Jupiters.

2.4 Resonant perturbations and resonant trapping

In this section we consider a slightly more involved model for the
evolution of the orbital elements of the test particle, which allows for
resonant interactions. We nevertheless consider the simplest applica-
tion of the circularly restricted 3-body problem, with the secondary
moving on a circular orbit and perturbing a body exterior to it.‡

The disturbing function Ri is defined r̈i = ∇i(Ui +Ri) where Ui =

G(m? + mi)/ri is the potential due to the star, Ri due to the other
bodies in the system, and ∇i highlights that the gradient is with
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respect to the i-body. For a perturber at rk of mass mk the disturbing
function reads:

Ri =
Gmk
|rk − ri|

− Gmk(ri · rk)

r3
k

. (2.23)

Here, |rk − ri| in the first term – the direct term – is simply the dis-
tance to the k-body and the second, indirect, term arises because the
origin of the coordinate system lies at m? and not at the barycentre.

Clearly, Ri is a rapidly varying function with time, because the
position ri continuously changes. On the other hand, provided the
bodies are far enough apart, the orbital elements will change only
slowly. It is of course more meaningful to consider changes in the
(slowly varying) orbital elements than in the positions. To proceed,
the disturbing function Ri must be expanded in terms of the orbital
elements. We will then use Lagrange planetary equations (without
derivation) to find the time-evolution of the orbital elements (e.g. ȧ,
ė).

We will not detail how the expansion of Ri proceeds, as this is a
very technical derivation. Using appropriate mathematical tools, the
disturbing function can be written as a summation of cosine argu-
ments (φn) and associated prefactors (Sn):

Ri = Gmk ∑
n

Sn cos(φn); φn = j1λi + j2λk + j3vi + j4vk + j5Ωnode,i + j6Ωnode,k

(2.24)
where Sn is a function of a, e, and inclination of both bodies and the
{ji} are integers. The total number of these terms depends on the
order of the expansion (e.g. 2nd order in eccentricity and inclination)
but is already high for even low order. Fortunately, many of these
terms are rapidly varying (because they contain the mean longitudes
λ) and can hence be discarded when the long-term average is con-
sidered (we are interested here in times much longer than the orbital
periods). Hence, we categorize:

• Highly variable terms. These are terms that contain the mean
longitude in the cosine arguments, e.g. 〈cos λi〉, and average-out
over long periods.

• Slowly variable terms. These are terms in the expansion that do
not contain λi and λk in the cosine arguments. Hence, they do not
average out. They are said to give a secular contribution.

• Resonant terms. These are terms where j1λi + j2λk are close to
zero, such that they also do not average out on orbital periods.

To illustrate the theory, we consider a special case, which is essen-
tially the circular, restricted 3-body problem with the interior body
moving on a circular orbit and planar motion (no inclination). Fur-
thermore, we include only j:j+1 resonances. In that case, the long-
term average of the disturbing function reads (Murray & Dermott
1999):

〈R〉 =
Gmp

ap

[
e2Fsec(α) + eF (α) cos φ

]
(2.25a)

φ = (j + 1)λ− jλp −v (2.25b)
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∗

Fsec. =
α2

8

(
2

∂

∂α
+ α

∂2

∂α2

)
b(0)1/2 (2.26)

(Murray & Dermott 1999), where b(n)1/2(α)
are the Laplace coefficients:

b(n)1/2(α) ≡
1
π

∫ 2π

0

cos nx dx
(1− 2α cos x + α2)s .

(2.27)

†

F (α) ≡ α

2

(
2j + 1 + α

∂

∂α

)
b(j)

1/2(α)−
δj1

2α
(2.28)

(Murray & Dermott 1999), where δj1 rep-
resents the indirect contribution to the
perturbing function for j = 1.

‡ Formally, we should also have ac-
counted for the drift in the ascending
node (or, rather, the epoch as...) but this
can be shown to have a O(q0e0) depen-
dence and is therefore negligible.

where (fixed) quantities of the inner body are denoted by subscript
p and the other quantities refer to the outer (perturbed) body and
α = ap/a < 1. In Equation (2.25a) the first term on the RHS (Fsec)
contains the secular terms of the disturbing function (those that do
not contain mean longitudes in the cosine arguments).∗ When the
system is far from resonance, these secular terms determine the evo-
lution. But because the secular part is second order in eccentricity,
they do not feature in the following. The second term in Equa-
tion (2.25a) describes the resonant interaction with φ the resonant
angle and λ = M + v the mean longitude. †

Invoking the Lagrange planetary equations to the resonant part of
the 〈R〉, we obtain a system of equations involving a, e and φ:

ṅ ≡ − 3
a2

∂〈R〉
∂λ

=
Gmp

a3
p

3(j + 1)α2F (α)e sin φ (2.29a)

ė ≡ −1
na2e

∂〈R〉
∂v

= −
Gmp

a3
p

α2F (α) sin φ

n
(2.29b)

v̇ ≡ 1
na2e

∂〈R〉
∂e

=
Gmp

a3
p

α2F (α) cos φ

ne
(2.29c)

Let us rewrite the last equation in terms of the resonant angle, φ̇ =

(j + 1)n − jnp − v̇ = ((j + 1)α3/2 − j)np − v̇.‡ We then obtain a
closed system of equations for e, a, and φ, that can be succinctly
written as:

ȧ/a = −α̇/α = − 2(j + 1)npCq(α)e sin φ (2.30a)

ė = − npCq(α) sin φ (2.30b)

φ̇ = − δjαnp − Cq(α)np
cos φ

e
(2.30c)

where we approximated Gmp = qpn2
pa3

p, defined δjα = j− (j+ 1)α3/2

as a "distance" from exact resonance and Cq(α) = α1/2F (α)qp as a
dimensionless parameter. Note that while we used e� 1 the expres-
sions evidently break down when e→ 0. We will hence assume that
qp/e ∼ Cq(α)/e remains small.

esin(φ)

ecos(φ)
eforced

e fre
e φ

Figure 2.7: A resonant configuration. The
eccentricity is composed of a "free" and
"forced" (due to the resonant interaction)
component. There is no damping.

Exercise 2.5 Resonances:
(a) Verify that Equation (2.30) does not have a steady solution.

(b) Assume the system is in resonance and that α is approximately
constant, i.e. we ignore Equation (2.30a). Define h = e cos φ and k =
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e sin φ, which linearizes the above equations:

ḣ = ω0k (2.31a)

k̇ = −ω0h− Cq(α)n0 (2.31b)

where ω0 = δjαn0. Verify that the solution to this system of equations
are circles with offset −eforced ≡ −Cq,αn0/ω0 = −Cq,α/δjα and a radius
that is a constant of integration, say, efree. An example is plotted in
Figure 2.7 (for positive δjα). Explain the meaning of "free" and "forced".

(c) Explain that when efree � eforced (as in the figure) φ librates (oscil-
lates) around φ = π, i.e. that the solution does not attain all values of
φ. Explain that the system is then in resonance.

(d) Since φ librates around π resonances take place at apoapsis. Ex-

plain that this configuration promotes stability.

In the presence of a dissipative medium, eccentricities are damped
(i.e. gas drag for planetesimals or tidal torques on planets). In that
case a term −e/te must be added to Equation (2.30b) where te is
the damping timescale for eccentricity. The presence of a dissipative
term allows equilibrium solutions. Assuming once more that α is
constant, we obtain for the equilibrium values of the eccentricity and
resonant angle:

e =
α1/2qpF(α)npte√

1 + (npteδjα)2
; sin φ =

−1√
1 + (npteδjα)2

(2.32)

In Figure 2.8 the eccentricity is plotted as function of α−1 = a/a0.
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Figure 2.8: Top: equilibrium values for
eccentricity, given by Equation (2.32),
for qp = 10−4, tenp = 103. Bottom:
resonance-induced migration rate (out-
wards), corresponding to the solution. In
evaluating Equation (2.32) the value of j
that was closest to exact resonance was
taken, i.e. δjα can be both positive (exte-
rior to the resonance) as well as negative
(interior).

Using these equilibrium values for e and φ the migration rate ȧ
(Eq. [2.30a]) can be calculated, which is shown in the bottom panel
of Figure 2.8. The perturbation in semi-major axis is positive. This
forced (outward) migration rate can be contrasted with the (usually
inward) migration rate (ta) from e.g. Type-I migration or planetesi-
mal orbital decay. Assuming inward migration, the resonant forcing
can stop the migration when (ȧ/a)res > 1/ta. This phenomenon is
known as resonant trapping. Figure 2.8 shows that the higher j-values
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have stronger forcing. Therefore, when a body does not stop at –say–
the 2:1, it can yet end up near a 3:2 or higher-j resonance.

Exercise 2.6:
(a) From Equation (2.30a) it may appear that inward migration will
stop eventually, since, as j → ∞, ȧ can become arbitrarily large. What
is the fallacy with this statement?

(b) Another reason why resonant trapping may fail is when the syn-

odical timescale at resonance j becomes larger than the time to migrate

to ap. Why? Give the expression corresponding to this condition.

2.5 Kozai-Lidov cycles

Resonant configuration are not limited to j : j + 1 mean motion res-
onances, discussed above. Higher order resonances, like j : j + 2
may also play a role (but are much weaker). Resonances do not have
to be of the commensurate type, however. These are referred to as
secular resonances. In the planet formation context, the Kozai-Lidov
resonances are particularly important. These can occur in stellar bi-
nary systems, provided that the planet is sufficiently inclined with
respect to the plane in which the two stars move. If it indeed exceeds

a critical angle of arccos
√

3
5 ≈ 39◦ a "runaway" growth of eccentric-

ity takes place. At its peak the eccentricity will be near unity, such
that the periapsis of the erstwhile far out planet will be very close
to the star. Thereafter the eccentricity decreases, near-cicular motion
returns, and the process repeats itself. The timescale associated with
these Kozai-Lidov cycles is

tKL ∼
m?

m2

P2
2

P2 P, (2.33)

where P2 is the period of the binary star and P that of the planet.
As tKL is usually much less than the lifetime of the system (∼Gyr),

there will be many cycles. However, the cycles do not necessarily
conserve energy, because of tidal interactions with the star during
periapsis. This removes energy from the system, causing the orbit to
shrink (a decreases). This mechanism has been invoked as an expla-
nation for the hot-Jupiters. In contrast to disk-migration mechanism
outlined in §2.3, no gaseous disk is needed.
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List of symbols

∆v relative velocity
Φ gravitational potential
Σ surface density (solids)
Σgas surface density (gas)
Θ gravitational focusing factor
Ω orbital frequency
FD drag force
A (surface) area
CD drag constant
D f fractal index
E energy
E∗ combined elastic modulus
G Newton’s gravitational constant
J Jacobi energy
K rate constant/collision kernel
M mass (large bodies); mean anomaly (Ch. 2)
M⊕, M� mass of the Earth, Sun
P orbital period; also: pressure
QT Toomre stability parameter
R radius (large bodies)
RBondi, RHill Bondi/Hill radius
Rep Reynolds number
T temperature
Z dust-to-gas ratio (local or global)

α turbulence strength parameter; ratio a2/a1
(Ch. 2)

γ surface energy density
ηvK headwind velocity gas disk
κ epicycle frequency
µ mean molecular weight
ν viscosity; true anomaly (Ch. 2)
ρ• internal density
ρgas gas density
a semi-major axis/disk orbital radius
ac contact area radius
b impact parameter
cs isothermal sound speed
e eccentricity
hgas/hp disk scaleheight (gas/particles)
i inclination
k wave number
kB Boltzmann’s constant
lz, l angular momentum (vector)
lmfp mean free path
` eddy size
m mass (small particles)
n number density; mean motion (Ch. 2)
qp mass ratio planet:star
r radial distance (from origin)
s radius (small particles, grains)
t time
tstop stopping time
tsettl settling time
u velocity (gas)
v velocity (particles)
vK Keplerian velocity
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Aggregates, 18

Alpha-model, 10

Bondi Radius, 29

Brownian Motion, 11

Circulating Orbits, 38

Coagulation Equation, 14

Cold Start, 32

Collision Kernel, 14

Collision Time, 14

Collisionless Encounters, 23

Core Accretion, 32

CR3BP, 37

Critical Core Mass, 32

Crossing Time, 33

Disk Instability, 20

Disk Instability, 32

Dispersion Relation, 19

Dispersion-dominated Limit, 39

Disturbing Function, 41

Drag Force, 9

Dynamical Friction, 25

Epicyclic Frequency, 19

Epstein Drag, 9

Equation Of State, 31

Equilibrium Eccentricity, 26

Escape Velocity, 23

Gap Opening, 40

Giant Impact, 33

Gravitational Focusing, 23

Guiding Center Approximation, 24,
36

Headwind, 9

Hill Radius, 38

Hill Velocity, 38

Hill-penetrating Orbits, 38

Hit-and-stick, 18

Horseshoe Orbits, 38

Horseshoe Orbits, 38

Horseshoe Torque, 40

Hot Start, 32

Impulse Approximation, 39

Isolation Mass, 27

Jacobi Energy, 37

Kelvin-Helmholtz Contraction, 32

Kelvin-Helmholtz Instability, 22

Kepler’s Equation, 36

Kolmogorov Scale, 12

Kozai-Lidov Resonance, 45

Lagrange Points, 38

Laminar, 13

Laplace Coefficients, 43

Lindblad Torque, 40

Mean Motion, 36

Meter-size Problem, 11

Midplane, 8

MMSN, 8

Neutral Growth, 23

Nice Model, 41

Oligarchic Growth, 26

Orbit Crossing, 32

Orbital Elements, 36

Ordinary Growth, 23

Osculating Orbital Elements, 36

Pebble Accretion, 28

Planetesimal Hypothesis, 23

Radial Drift, 10

Random Velocity, 25

Reduced Mass, 11

Relative Velocity, 11

Resonant Angle, 43

Resonant Trapping, 44

Richardson Number, 22

Runaway Growth, 23

Safronov Number, 23

Schwarzschild Criterion, 31

Secular, 42

Self-similar, 15

Settling, 10

Settling Time, 10

Shear-dominated Limit, 39

Shearing Sheet, 38

Small Mars Problem, 34

Solids, 8

Stopping Time, 9

Streaming Instability, 22

Synodical Period, 36

Tidal Damping, 41

Tisserand Relation, 37

Toomre-Q Parameter, 20

Type-I Migration, 41

Type-II Migration, 41

Viscous Stirring, 25

Zero Velocity Curves, 38
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