
Hints to selected problems

(c) Chris Ormel; see lecture notes part II for the exercises

Hand in HW-problems by Mar. 8 13:00 to Jacob Arcangeli

Exercise 1.9

(a) It may be helpful to plot ω2 vs k.

(b) HW-BONUS! Note that we consider a thin disk and that the mass associated with scale λ is ∼λΣ.

For the rotational energy, use that the gas moves with the Keplerian frequency (ΩK) and calculate

the relative velocity accross scale λ.

(c) Please consider slightly different numbers: Use 500 m s−1 instead of 1 km s−1 and Σ1 = 2 ×

103 g cm−2 (for your calculation to make a bit more sense).

Exercise 1.10 (HW)

For this exercise full credits will only be given when you provide the physical explanation.

(a)

(b)

(c)

(d) Here, you can assume τp → 0 and focus on the azimuthal velocities. For the interpretation, please

consider the definition of η.

Exercise 1.11 (HW)

Note: This exercise has been divided into several parts! This is an order-of-magnitude (and somewhat

challenging) exercise.You should express your answers in terms of dimensionless parameters:

− The dimensionless disk mass qdisk ≡ Σda2/M⋆. Note that only solids are included towards qdisk.

− The headwind parameter η.

The key to this exercise is to write gradients like dρ/dz by ∆ρ/∆z and substitute appropriate relations for

∆ρ, ∆z and ∆uφ.

(a) Write down expressions for the Richardson number Ri in terms of the particle scaleheight hp, the

orbital radius a, and the dimensionless parameters η, qdisk in the limits where gz is determined by:

1. the vertical component of the solar gravity

2. the (self) gravity of the particles, in which case gz = 4πGΣd. You can get “rid of” Newton’s

constant G by employing GM⋆ = a3
Ω

2.
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(b) For these cases, give the threshold particle scaleheight (hp,min) below which the Kelvin-Helmholtz

instability will be triggered.

(c) Particles therefore are prevented from settling into a layers of width less than hp,min. At the same

time for the Goldreich-Ward mechanism to be possible we require that hp is less than the critical

wavelength λc. Otherwise the 2D assumption that entered in the dispersion relation analysis, no

longer holds. Therefore λc > hp > hp,min, a condition that provides a constraint on the disk mass

parameter qdisk. Give this constraint on qdisk again for both the solar-gravity and the self-gravity

cases

(d) Additional question: what do you conclude of these estimates; is gravitational instability through

the GW-mechanism viable?

Exercise 1.12 (HW)

(a) You should be familiar with these kind of calculations by now. You can assume the dispersion-

dominated regime: ∆v is given by the eccentricities of the planetesimals.

(b) Fill in numbers. The choice of a disk surface density profile (Σ(r)) is up to you.

(c) Ask yourselves what the collisional cross section would be in 2D?

Exercise 2.1

(a) HW-BONUS. Errata: the numerical constant in front of equation (2.3) is 3
2

not 2
3
. Note that

∆a cannot be negative; hence ∆a = |a1 − a2|.

(b) There should be no a in eq. (2.4b). Because e ≪ 1, M ≈ ν (but not quite).

Exercise 2.2

(a) Hint: you should apply the scalar triple product (a vector identity) a · (b×c) = c · (a×b) = b · (c×a).

(b) Note we have in addition assumed mp ≪ m⋆ (which is somewhat sloppy).

(c) The square terms in the answer already “betray” that you must Taylor-expanded the expression to

second order in x = b/a.

Exercise 2.3 (HW)

(a) Note that w = npez has been assumed.

(b)

(c)

(d)

(e) This question is somewhat flawed, as it assumes that the velocity at the Lagrange point is zero

(at least, that is what you are allowed to assume). The answer that you will find in this way will

therefore (slightly) overestimate the size of the horseshoe orbits.
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