
Exercises 2 – Advanced statistics – Thursday, 8th January 2015
Please return the results by next week, Thursday 15th Jan 2015 1pm, with
name and student number on each page. Exercises should be done individu-
ally. The whole sheet is worth 30 points.

1. Decision making with simple hypotheses

(a) Suppose you observe 125 photons in a counting experiment when
your average background estimate is 83.4. What is the (one-sided)
p-value for this result? What p-value would you obtain be if you
approximated the Poisson distribution with a normal distribution?
Is the excess significant? (2pt)
Solution: The one sided p-value is equal to the exceedance probability

p = P(X ≥ 125|H0) =

∫ ∞
125
P(x|µ = 83.4)dx = 8.4× 10−6

The mean and variance of the Poisson distribution are λ = 83.4, therefore the approxi-
mation would be distributed as x ∼ N (x|λ,

√
λ). If we approximate the distribution by a

normal distribution, we find p = 2.6× 10−6. This erroneously raises the significance from
4.3σ to 4.6σ – the distributions’ tails are different!

Under an Anscombe transform, the approximate Gaussian would be N (x|18.3, 1) and we
would find p = 1.9× 10−5 (4.1σ), again erroneously changing the significance.

from scipy.stats import poisson, norm

from math import sqrt

pp = 1. - poisson(83.4).cdf(125)

pn = 1. - norm(83.4, sqrt(83.4)).cdf(125)

print "P-value Poisson distribution: ", pp, " or ", -norm(0,1).ppf(pp), " sigma."

print "P-value Normal distribution: ", pn, " or ", -norm(0,1).ppf(pn), " sigma."

def Anscombe(x):

return 2*sqrt(x+3.0/8.0)

pa = 1. - norm(Anscombe(83.4)-1/(4*sqrt(83.4)),1).cdf(Anscombe(125))

print "P-value Anscombed Poisson: ", pa, " or ", -norm(0,1).ppf(pa), " sigma."

(b) Consider as null hypothesis a χ2
k=1 distribution, and as alternative

a χ2
k=3 distribution. Use the Neyman-Pearson Lemma to define

the optimal rejection region for a test with significance α = 0.05.
(2pt)
Solution: We want to find the largest likelihood ratio, so we evaluate

PA

PH
=
χ2
k(x|k = 3)

χ2
k(x|k = 1)

= · · · = x

Where we have used the exact values of Γ(1/2) =
√
π and Γ(3/2) =

√
π/2. The Neyman-

Pearson Lemma then prescribes a test region

{
x such that

χ2
3(x)

χ2
1(x)

≥ c
}

, where c is implicitly

defined by the equation∫ +∞

−∞
χ2
1(x)ΘH

(
χ2
3(x)

χ2
1(x)

− c
)
dx =

∫ ∞
c

e−x/2
√

2πx
dx = α

which can be solved numerically to obtain c ≈ 3.84:
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from scipy.stats import chi2

from scipy.optimize import fsolve

fsolve(lambda x: 1 - chi2(1).cdf(x) - 0.05, x0 = 4.)

(c) Consider the hypotheses from the last exercise, but in the case
of a large number of samples (independent measurements). The
resulting characteristic function is then a product of the individual
χ2
k characteristic functions. Use the CLT to derive the mean and

variance of the log-likelihood ratio T . To this end, first derive the
mean and variance of the log-likelihood ratio for one observable

T = −2 ln
PH(x)

PA(x)
, (1)

by calculating 〈T 〉 and 〈T 2〉 − 〈T 〉2. This is best done by using
automatic (analytical or numeric) integration. You can then use
the CLT to derive the mean and variance of the normal distribu-
tion that T follows in case of a large number of observations, say
n = 100. What is the appropriate threshold value c for α = 0.05?
(3pt)
Solution: The null hypothesis for x is a χ2

1 distribution. The mean and variance of
T (x) = −2 ln(1/x) under the null are then

〈T (x)〉 =

∫
T (x)χ2

1(x)dx = −2.54 (2)

〈T 2〉 − 〈T 〉2 =

∫
(T (x)− 〈T (x)〉)2χ2

1(x)dx = 19.74 (3)

T (n) is the sum of the individual T ’s: it is asymptotically normally distributed (CLT) so
the threshold c for rejecting the null is implicitly defined by∫ ∞

c
dTN (T | 〈T 〉,

√
〈T 2〉 − 〈T 〉2) = α (4)

which can be computed numerically n = 1 as cn=1 ≈ 4.767. Since for multiple samples
both the mean and variance of T scale linearly with N , we find (e.g. with the code below)
that c100 ≈ −181.

Mathematica

n = 100

T[x_] := -2*Log[1/x]

P[x_] := PDF[ChiSquareDistribution[1],x]

m = NIntegrate[T[x]*P[x],{x,0,Infinity}]

v = NIntegrate[(T[x]-m)^2*P[x],{x,0,Infinity}]

Quantile[NormalDistribution[m*n,Sqrt[v*n]],0.95]

(d) Generate a sample of 1000 events from a normal distribution with
mean zero and variance one. Perform both a Pearson’s chi-squared
and a K-S test to see whether the generated events are indeed
compatible with the initial normal distribution. Are they also
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compatible with a distribution with variance 1.1? What are the
corresponding p-values for both tests? Which test is more power-
ful? (4pt)

Solution: An example code solution for this is given below. We find slightly different p-

values at every run, but we find that N (0, 1) is a better fit than N (0, 1.1) (for both tests),

and we find that the KS test has smaller p-values than the Pearson χ2. Ks is more likely

to reject the null, so it is a stronger test.

from numpy import random

from scipy.stats import histogram, norm, kstest

from scipy.stats import chisquare as chi2test

n=1000

samples = random.normal(0,1,n)

h = histogram(samples,numbins=8,defaultlimits=(-4,4))

# This binning is arbitrary but makes calculating the expected frequencies much easier later.

if h[3] != 0:

print "Warning: with n=1000 we expect a 4 sigma outlier roughly every 15 runs."

freqs1 = [n*(norm(0,1).cdf(i+1)-norm(0,1).cdf(i)) for i in range(-4,4)]

cs1 = chi2test(h[0]/freqs1)

ks1 = kstest(samples,’norm’,args =(0,1))

freqs2 = [n*(norm(0,1.1).cdf(i+1)-norm(0,1.1).cdf(i)) for i in range(-4,4)]

cs2 = chi2test(h[0]/freqs2)

ks2 = kstest(samples,’norm’,args =(0,1.1))

2. Neyman Pearson Lemma

(a) Show that the Neyman Pearson criterium for selecting the rejec-
tion region leads to the most powerful statistical test for a given
significance level. To this end, consider an interval that satisfies
the criterium, and consider the effects of infinitesimal changes of
the region boundaries that either satisfy or violate the Neyman
Person criterium. (3pt)

Solution: Consider a certain statistical significance such that
∫

PH(x)dx = α. The Neyman-

Pearson lemma says that the statistical power is maximised by
∫

PH(x)ΘH

(
c− PA

PH

)
dx = α,

i.e. for all x in this region PA ≥ cPH. Note that our choice of α fixes c and thus our integration
region. Let us say that PA ≥ cPH holds on x ∈ [x1, x2]. Next, let us slightly shift the boundaries,
but keeping the statistical significance the same:∫ x2+δx2

x1+δx1

PH(x)dx = α

We want to see what happens to the statistical power
∫ x2
x1

PA(x)dx = 1 − β in this new region.

We obtain: ∫ x2+δx2

x1+δx1

PA(x)dx = 1− β +

∫ x2+δx2

x2

PA(x)dx−
∫ x1+δx1

x1

PA(x)dx︸ ︷︷ ︸
=δβ
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The NP lemma says that δβ should be smaller than zero. And this is so, since:

PA ≥ cPH∀xε [x1, x1 + δx1]⇒
∫ x1+δx1

x1

PAdx ≥ c
∫ x1+δx1

x1

PHdx

PA < cPH∀xε [x2, x2 + δx1]⇒
∫ x2+δx2

x2

PAdx < c

∫ x2+δx2

x2

PHdx

Since we have that
∫ x2+δx2
x2

PHdx =
∫ x1+δx1
x1

PHdx (we kept α fixed), δβ < 0, so the statistical

power decreases. �

3. Estimators

(a) Show that in case of the gamma distribution with α = 2 and
β = ζ−2,

P (x|ζ) =
x

ζ4
e−x/ζ

2

θH(x) , (5)

the MLE is a biased estimator for ζ. Here, θH(x) denotes the
Heaviside step function. What is the bias and the variance of this
estimator? Define, based on the MLE, a new unbiased estimator.
Does the variance of this estimator fulfill the Cramer Rao bound?
(3pt)
Solution: The mean value of x can be calculated to be 〈x〉 = 2ζ2 (either by doing the
integral by hand, or looking up the mean value of a gamma function). For a given measured

value x, the MLE of ζ is given by ζ̂ =
√
x/2 (obtained by differentiating P (x|ζ) w.r.t. ζ

and setting it to zero). The expectation value of ζ̂ is then given by

〈ζ̂〉 =

∫
dxP (x|ζ)

√
x/2 = 3

4

√
π

2
ζ ' 0.94ζ . (6)

This shows that the MLE is in the present example a biased estimator for ζ. An unbiased

estimator is instead given by ξ(ζ) = ζ2 (we perform here a parameter substitution). Using

this definition, one can immediately see that ξ̂ = ζ̂2 = x/2 (since the position of the mode

does not depend on the parametrization). From this, it follows that 〈ξ̂〉 = 〈x/2〉 = ζ2 = ξ.

(b) Show that in case of multiple draws from the flat distribution given
by P (x|µ) = θH(1

2
− |x− µ|), the mean of the measured values is

not the best estimator for µ. Do this by showing that the variance
of the estimator given by µ̂ = 1

2
(maxi(xi) + mini(xi)) is smaller.

Use analytical calculations (3pt).

Hints: First, think about the distribution function of z+ ≡ maxi xi
and z− ≡ mini xi individually (tip: they are a product of CDFs
and PDFs). Then calculate the variance of µ̂, assuming that the
z+ and z− are uncorrelated, which is true for a large number of
draws. To simplify your life, you can assume that µ = 0 or µ = 1/2
during the main calculations, and generalize the result at the very
end to arbitrary µ.
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Solution: Consider the estimator µ̂ = 1
2

(z+ + z−).

The function maxi(xi) of an arbitrary number of random variables can be defined recur-
sively in terms of the binary function max(x1, x2) as

max
i

(xi) = max(x1,max(x2,max(· · · , xn)) · · · ))).

This suggests that the distribution of z± might be constructed by induction. The fact that
these random variables xi share the same distribution greatly simplifies this construction,
since we can guess the answer: We want to show that z+

(n)
∝ PDF(x|µ)CDFn−1(x|µ).

• n = 2
The random variable z+

(2)
∼ max(x1, x2) has a distribution

α(CDF1 ∗ PDF2) + (1− α)(PDF1 ∗ CDF2)

where α is the probability that x1 > x2. Since these variables are i.i.d, the above
expression reduces to z+

(2)
∝ PDF(x|µ)CDF(x|µ), which has the desired form.

• n→ n+ 1
Constructing the random variable z+

(n+1)
from max(xn+1, z

+
(n)

) just adds another

CDF, because the CDF of z+
(n)

is CDFn(x|µ) and the expression we used for n = 2

still holds and the α’s still cancel because our multiple draws are i.i.d.

• By induction, z+
(n)
∝ PDF(x|µ)CDFn−1(x|µ).

We can find a similar expression for z−. Therefore

µ̂ ∝
PDF(x|µ)

2

(
CDFn−1(x|µ) + (1− CDF)n−1(x|µ)

)
For convenience, we set µ = 1/2 to calculate the variance of this estimator. Then PDF(x|µ)
is uniform from zero to one (with height one) and the corresponding CDF is just CDF(x|µ) =∫ x
0 1dx = x such that these estimators are distributed as

P (z+
(n)

) = nx(n−1) (7)

P (z−
(n)

) = n(1− x)(n−1) (8)

We see that as n increases, the maxima are more likely to be large and the minima are
more likely to be low. The factor of n is required for these to be normalised.

The variance of the estimator µ̂ is constructed from the variance of z±, so we calculate

〈z+
(n)
〉 =

∫ 1

0
zP (z+

(n)
)dz = · · · =

n

n+ 1
(9)

〈z−
(n)
〉 =

∫ 1

0
zP (z−

(n)
)dz = · · · =

1

n+ 1
(10)

V(z+
(n)

) =

∫ 1

0
(z − 〈z+

(n)
〉)2P (z+

(n)
)dz = · · · (11)

V(z−
(n)

) =

∫ 1

0
(z − 〈z−

(n)
〉)2P (z−

(n)
)dz = · · · (12)

The variance of µ̂ for µ = 1/2 and uncorrelated z± is then simply

V(µ̂) = V(
1

2
(z+ + z−)) =

1

4

(
V(z+

(n)
) + V(z−

(n)
)
)

=
n

2(n+ 2)(n+ 1)2

By constrast, the estimator for the sample mean µ̃ = 1
n

∑
xi has a variance

V(µ̃) = V(
1

n

∑
xi) =

1

n2

∑
V(xi) =

V(xi)

n
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where the variance V(xi) is 1/12 (after solving two more integrals with weight P (x|µ) =
Θ(1/2− |x− µ|)). Hence, we need to solve the following inequality over n ∈ N∗:

n

2(n+ 2)(n+ 1)2
≤

1

12n

which happens to be true for all n ∈ N∗. Hence, the estimator µ̂ is a more efficient estimator
than µ̃. In fact, this result is true for µ 6= 1/2, since we find that the variances of µ̂ and µ̃
are both independent of µ.

(c) Confirm the previous result with a simple Monte Carlo (2pt).

from __future__ import division

from numpy import *

import pylab as plt

n = 10 # number of mock data events

N = 100 # number MC loops

est1 = 0

est2 = 0

for i in range(N):

d = random.random(n)-0.5

est1 += mean(d) ** 2

est2 += (0.5*(max(d)+min(d))) ** 2

print "Mean estimator:", est1/N

print "Min/max estimator:", est2/N

4. Cramér-Rao bound and fisher information

(a) Demonstrate analytically (using integration by parts and the fact
that the score has a zero mean) that the Fisher information can
be written as

I(θ) =

〈(
∂

∂θ
lnL(θ|c)

)2
〉

= −
〈
∂2

∂θ2
lnL(θ|c)

〉
(2pt)

Hints: As first step, show that taking the derivative of
∫
L(θ|c)dc =

1 with respect to θ (on both sides of the equation) yields (remem-
ber that d ln f(x)/dx = f−1df(x)/dx)∫

d lnL(θ|c)
dθ

L(θ|c)dc =

〈
d lnL(θ|c)

dθ

〉
= 0 (13)

Taking a second time the derivative with respect to θ on the left
side of the equation gives two terms that can be rewritten in the
form that is requested in this exercise.
Solution: The total probability should be unity, i.e. the integral of the likelihood function
is, ∫

L (θ|c) dc = 1
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Taking the derivative w.r.t. θ on both sides (commutes with the integral) and noting that
xd lnx = dx:

0 =

∫
dL (θ|c)

dθ
dc

=

∫
d lnL (θ|c)

dθ
L (θ|c) dc

=

〈
d lnL (θ|c)

dθ

〉

Next, taking another derivative and using the product rule we find

0 =
d

dθ

∫
d lnL (θ|c)

dθ
L (θ|c) dc

=

∫
d2 lnL (θ|c)

dθ2
L (θ|c) dc+

∫ (
d lnL (θ|c)

dθ

)2

L (θ|c) dc

Recognising that we again have two expectation values here, we find:

〈(
d lnL (θ|c)

dθ

)2
〉

= −
〈

d2 lnL (θ|c)
dθ2

〉
�

(b) Demonstrate in an explicit analytical calculation that any consis-
tent MLE saturates the CRB in the limit of a large number of
events. (3pt)

Hints: Start by showing that the Taylor expansion of the MLE
condition ∂

∂a
lnL(â|x) = 0 around the true value of a, to first order

in â, yields

∂

∂a
lnL(a|x) + (â− a)

∂2

∂a2
lnL(a|x) = 0 .

In the large-number limit the likelihood function can be approx-
imated by a Gaussian. Notice that then, for different random
variables x, the first term (the gradient of the likelihood function
at the true value a) as well as the first factor of the second term
fluctuate. The second factor of the second term is however approx-
imately independent of x. Rearanging the terms and factors and
averaging over c then allows to find an expression for 〈(â − a)2〉,
which can be conntected to I(θ) using the result from the previous
exercise.
Solution: By construction we have that for a MLE

0 =
∂

∂a
lnL (â|x)

(
≡

∂

∂a
lnL (a|x)

∣∣∣∣
a=â

)
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Taylor expanding the derivative evaluated at â about the true value of a, which for clarity
I’ll call a0, yields:

∂

∂a
lnL (a|x)

∣∣∣∣
a=â

≈
∂

∂a
lnL (a0|x) + (a− a0)

∂2

∂a2
lnL (a0|x)

∣∣∣∣
a=â

=
∂

∂a
lnL (a0|x) + (â− a0)

∂2

∂a2
lnL (a0|x)

= 0

Now, in the large number limit we can approximate the likelihood function by a Gaussian,

L (a|x) ∝ e
−(x−a)2

2σ2 , i.e. lnL (a|x) ∼ −(x − a)2/(2σ2). Therefore, ∂
∂a

lnL (a|x) = 2(x −
a)/(2σ2) and ∂2

∂a2
lnL (a|x) = −1/(2σ2). Since â is a function of x, but a0 is not, only

a ∂2

∂a2
lnL (a0|x) does not fluctuate when changing x.

Rearranging the above Taylor expansion we get:

â− a0 = −
∂
∂a

lnL (a0|x)

∂2

∂a2
lnL (a0|x)

Then squaring both sides

(â− a0)2 =

(
∂
∂a

lnL (a0|x)
)2

(
∂2

∂a2
lnL (a0|x)

)2
Taking the expectation value of the LHS yields the mean squared error, which for an
unbiased estimator is the same as the variance of â. Now, a little caution has to be taking
in taking the variance on the RHS, since the denominator is independent of x we can write:

〈 ( ∂
∂a

lnL (a0|x)
)2

(
∂2

∂a2
lnL (a0|x)

)2
〉

=

〈(
∂
∂a

lnL (a0|x)
)2〉

(
∂2

∂a2
lnL (a0|x)

)2

=

〈(
∂
∂a

lnL (a0|x)
)2〉

〈
∂2

∂a2
lnL (a0|x)

〉2
=

1

I (a)

Again note, that our step in the first line is only allowed because the denominator is
independent of x. In the last line we used the result from the previous exercise. Thus we
obtain, for an unbiased MLE:

var(â) =
1

I (a)

5. Confidence belts

(a) Consider a measured flux that is log-normal distributed with a
free µ but known σ = 0.2 (see lecture for definitions). If one
measures x = 10, what are the 90%CL upper and the 90%CL lower
limits on µ? What is the central 90%CL interval (with identical
probabilities above and below the confidence belt). (3pt)
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Solution: The log-normal distribution is given by

P (x|µ, σ) =
1

xσ
√

2π
e
− (ln x−µ)2

2σ2 . (14)

To obtain the 90% upper limit CL on µ, we have to find the µ for which the probability to

measure x = 10 or smaller values is 10%;
∫ 10
0 dxP (x|µ, σ) = 0.1. For the 90% CL lower limit

the condition is
∫∞
10 dxP (x|µ, σ) = 0.1 . In the case of a central interval, the boundaries are

derived by replacing 0.1 by 0.05. We obtain: µ ≤ 2.56 (90% CL), µ ≥ 2.05 (90% CL) and

µ ∈ [1.97, 2.63] (90% CL) for the upper, lower and central interval, respectively.
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