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Homework and Exam

Homework assignments
● 2 x 2 hours TA sessions per week (Tuesday & Thursday 11-13h, same room)
● Homework is handed out at beginning of TA session and should be handed in 

one week later at end of TA session
● Help on the homework is provided during TA sessions
● Exercises require analytic work as well as numerical work on the computer
● Homework can be hand in hand-written, or send via Email (PDF)
● For numerical work, programs should be written as Ipython Notebooks and 

send via Email.  They should “run out of the box” to give full points.

Exam
● There will be a written exam in the last session, on Thursday 29th January
● The total grade depends on both homework assignments (60%) as well as 

the exam (40%)

Contact
● Christoph Weniger (c.weniger@uva.nl)
● Michael Feyereisen (m.r.feyereisen@uva.nl)
● Richard Bartels (richard.t.bartels@gmail.com)

Slides & homework: https://staff.fnwi.uva.nl/c.weniger/
Later: Blackboard

mailto:c.weniger@uva.nl
mailto:m.r.feyereisen@uva.nl
mailto:richard.t.bartels@gmail.com
https://staff.fnwi.uva.nl/c.weniger/


  

Recommended Literature
Glen Cowan, Statistical Data Analysis,
Oxford Science Publications, 1998
● Frequentist analysis, well known in Particle Physics
● Bonus: Monte Carlo methods and Unfolding

R. J. Barlow, Statistics, A guide to the Use of 
Statistical Methods in the Physical Sciences,
The Manchester Physics Series, 1988
● Traditional and very good book on 

Frequentist data analysis

J.V. Wall and C.R. Jenkins, Practical Statistics 
for Astronomers, Cambridge Observing 
Handbooks for Research Astronomers, 2003
● Practical book for data analysis in Astronomy 

(both Frequentist and Bayesian)
● Many examples

P. Gregory, Bayesian Logical Data Analysis for 
the Physical Sciences, Cambridge University 
Press, 2005
● Bayesian “Bible”, Conceptual introduction
● Many examples



  

Connection to Phil's Course

● Since most of you attended the course by Phil Uttley on Statistical 
Methods in Astrophysics and Astronomy (SM), I will assume that 
you know many of the basics, and continue from there.

● SM was based on Simon Vaughan's book Scientific Inference, 
Learning from Data.

● In the first week of the present course, we will briefly repeat some 
of the most relevant material from SM as a reminder and to 
provide context for the rest of the course.



  

Understanding statistical tools matters

● In cases where the experimental result is 
clear, the details of the statistical method 
often do not matter.

● In many cases, it is enough to apply standard 
statistical recipes (normal distribution, error 
propagation), to get reasonable results.

● When describing weak signals, close 
to the experimental threshold, the 
details of the statistical method are 
crucial

● Assumptions underlying the standard 
recipes might be violated

● It is important to understand not 
only who, but why statistical 
inference works. This is what the 
present course aims to do.

This course is about why statistical methods work.



  

Overview

● Introduction: Bayesian and Frequentist statistics
● Probability distribution functions & Central limit theorem
● Frequentist analyses

● Hypothesis testing
● Estimators
● Confidence intervals & Wilk's theorem
● Profile likelihood technique & pitfalls
● Trial factors & Coverage
● Numerical minimizers

● Bayesian analyses
● Basics: Evidence, Model selection, Credible intervals
● Priors: Flat prior, Jeffery's prior, Non-informative priors
● Sampling techniques: Markov Chain Monte Carlo, Multinest

● Applications & Advanced material
● Principal component analysis
● Angular power spectrum
● Bootstrapping and Jackknife
● ...

First 
four 
lectures



  

The two grand schools of statistical analysis

Deductive logic
● Based on “frequencies” of phenomena
● Central quantity: “p-value”

Inductive logic
● Probabilistic extension of logic
● “Posterior distribution”

Frequentist Bayesian

Cause Phenomena
Possible 
causes

Phenomena

“Given a cause, what is the frequency (in 
repeated experiments) of a certain 
phenomenon to occur?”

“How does an observed phenomenon change 
my believe in different possible causes?”

Fisher Bayes



  

Probabilities in a nutshell

The most relevant rules
● Degrees of plausibility are represented by real numbers between 0 (not realized) and 1 (realized)
● Probabilities for mutually exclusive and exhaustive elementary events/propositions sum to one:

● An event/proposition is either true or false (inference in binary logic)

● Structural consistency (the result does not depend on the way of reasoning) is guaranteed by the 
rule for conditional probabilities

● Elementary events/propositions follow the rules of set theory

(for a full discussion and derivation from 
fundamental requirements for consistent 
reasoning see Chapter 2.5 in Gregory)

“Probabilities” mean here
● Frequencies of events (in 1/6 of the cases the dice shows a six)
● Plausibility or believe in a proposition (the believe in “The Higgs boson exists.”)

(I indicates background information)



  

Bayes' Theorem

It is a direct consequence of the rule for conditional probabilities: 

Notes:
● Bayes' theorem provides a rule for how to update the probability or plausibility of 

a certain hypothesis H to be true in light of data D. This always depends on 
additional background information I, which is often not made explicit.

● Frequentists are interested in likelihood functions only

It is in general not equal to the posterior, which is most obvious looking at the 
normalization of the functions (with x and θ being data and model parameters, 
respectively).

Posterior Prior

Model evidence or 
global likelihood

Likelihood function



  

Typical Frequentist questions
There is a new test for the Schnitzler syndrome (c) with the 
characteristics:

● 5% false positive

● 10% false negative

You order the test online, and get a positive result. 
Should you be worried?

The Frequentist says:
“I can exclude the null-hypothesis of not having the Schnitzler syndrome at 95% CL. 
End of story.”

Caveat: There are hidden trials
● There might be 20 other people having done the test, none of them having the disease. 

Still, one of them will get a positive result on average.
● Maybe you also did tests for other diseases.
● Maybe nobody had the Schnitzler syndrom in the last 100 years

→ Chances for you to having the disease could be still very low.

One could account for hidden trials by making abstract statements about the frequency of wrong 
and right statistical statements (instead of observations). This is exactly what Bayesian inference 
forces us to do from the start.

Fisher



  

Typical Bayesian questions

The Bayesian says: 
“What are the priors?”

There is a new test for the Schnitzler syndrome with the 
characteristics:

● 5% false positive

● 10% false negative

You order the test online, and get a positive result. 
Should you be worried?

Bayes' theorem

Prior

Global likelihood

This yields a very low posterior probability:

1:100000 persons have the disease



  

Pros and Cons of the two approaches

Frequentist Bayesian

Pro:
● No prior dependence

(what is the prior for a flat Universe?)
● Objective procedure
● Clear interpretation of results

Con:
● Be aware of hidden trials

● Publication bias, many researches
● Many ways of calculating p-values

● “Frequencies” refer to repeated 
experiments with exactly the same 
conditions

Pro:
● Prior dependence is formalized
● Reasoning about causes, not 

observations
● Hard to use completely wrong

(this is a conjecture to be tested in 
this course)

Con:
● Results are difficult to show in a 

prior-independent way
● Some people think it is “esoteric”
● Difficult for non-parametric studies



  

Basic definitions I

● A characteristic of a system is said to be random when it is not known or cannot 
be predicted with complete certainty.

● The degree of randomness can be quantified with the concept of probability (or 
frequencies; in the Frequentist sense).

● The sample space consists of a certain set of elements that are the values or 
properties that a random variable can acquire.

● The probability distribution function describes the probability (either as frequency or 
subjective probability) that a certain value is realized.

● In general, it depends on prior assumptions and hypothesis, here summarized as H.

Probability mass function (PMF)

Probability density function (PDF)



  

Basic definitions II
● Mean value for discrete or continuous distributions

● Variance                                                  and       standard deviation

● Covariance

● Median x
m

● Mode

● Skewness

● n-th central moment:

and



  

Important discrete distributions

Bernoulli distribution
A single yes/no question, answered yes (1) with probability p

● Example: Throw a biased coin

Binomial distribution
Number of successes in draw of n elements with individual success probability p.

● Example: Draw of colored beans from a large bin



  

The Poisson Distribution

Poisson distribution

● Example: Number of detected photons from an 
radioactive source

● Note: The sum of N Poisson-distributed random 
variables is Poisson distributed, with mean

● Follows from Binomial distribution in the limit



  

Normal and chi-squared distribution
Gaussian / Bell curve / Laplacean / Normal distribution

Notes:
● Its central importance comes from the central limit theorem
● Many random variables are normal distributed in practice, but the reasons for 

that are often complex.
● “Everybody believes in the law of errors, the experiments because they think 

it is a mathematical theorem, the mathematicians because they think it is a 
experimental fact.” (Lippmann; Barlow p36)

Chi-squared distribution
Describes statistical distribution of outliers

● Is defined as the sum of squares of normal distributed 
variables

● Describes the statistical distribution of outliers
● Important because of Wilks' theorem



  

Multivariate normal distribution
“Rotated” normal distributions
● The PDF is similar to the 1-dim case

with mean and variance

● The two-dimensional case with variables x, y

where ρ is the correlation between x and y.

● Note that each x
i
 individually is normal

distributed with variance σ
i 
.



  

Other useful distributions
Exponential distribution Uniform distribution

Log-normal distribution
● ln(x) is normal distributed

Cauchy distribution / Breit-Wigner distribution
● The proper Cauchy distribution is obtained for

● Though this distribution is omnipresent in particle physics, its convergence behavior is 
extremely bad

Student's t-distribution
● Generalization of unit normal distribution when variance is estimated 

from data



  

Many interrelations

From http://www.johndcook.com/blog/distribution_chart/

Dashed: approximation
Solid: relations

Important approximations
● Binomial to Poisson

● Poisson to Normal

● Chi-squared to Normal

● Student t to Standard Normal

Sum rules

          
● Poisson + Poisson = Poisson
● Normal + Normal = Normal
● Chi-squared + chi-squared = chi-squared
● Cauchy + Cauchy = Cauchy



  

The central role of the normal distribution

The Central Limit Theorem (CLT)

The sum of n independent continuous random variables,

with means and variances 

becomes a Gaussian random variable with mean and 
variance

Notes:
● The CTL holds for a very large number of underlying 

distributions, but for some it completely fails.
● In general, the CTL works better at the center of the 

distribution than far away from the center. 

Warning:
● Even if the center of the summed distribution is 

indistinguishable from a Gaussian, there might be very 
large deviations in the “wings” or “tails”! 

Example: chi-squared distribution

Tails are better visible in log-scale

Orders of 
magnitude!



  

Proof of the Central Limit Theorem

We are interested in the following PDF (the sum of variables with distributions f, g, h):

A) The Characteristic Function.

Note: Convolutions simplify to multiplications

B) Cumulants. Define by the Taylor expansion of the log of the characteristic function

A few useful definitions:



  

Proof of the Central Limit Theorem
The first three cumulants are functions of the mean, the variance and the skew

To see what this means, we rescale x such that the variance equals one

mean

variance

Adding N distributions with cumulant                            implies

This implies

Hence, for large enough values of N, only the first two cumulants are important.

For normal 
distribution:

(notational simplifications)

and in the 
large N limit
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