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Hypotheses and parameters

A) Testing of simple hypotheses
● p-values, significance, power

C) Testing of composite (and nested) hypotheses
● confidence regions
● Wicks' theorem

B) General Parameter estimation
● bias, variance, maximum likelihood

OR

OR

Null Alternative

(any of) (any of)

Null Alternative



  

Testing of simple hypothesis

OR

Null Alternative



  

Statistical significance

Acceptance
region

Rejection
region

If the outcome of a measurement under a given null hypothesis H is sufficiently unlikely, that 
hypothesis can be rejected.

The statistical significance of rejection is 
given by the p-value. It gives the probability 
for the given or a more extreme observation 
to occur provided the null hypothesis is true.

One says that the hypothesis is rejected 
when a certain predefined threshold or alpha 
level is reached.

Here, x denotes a test statistic.

Notes:
● p follows by construction a uniform distribution between 0 and 1
● It is often equivalently expressed in units of Gaussian sigma 

● Typical values for α in particle physics: 3.0σ (p = 1.35x10-3) or 5.0σ (p = 2.87x10-7)
“hint” “discovery”



  

Statistical power

Acceptance
region

Rejection
region (R)

A good test minimizes the chance for the following failure modes:
● Type I error: Reject a true null hypothesis (with probability α)
● Type II error: Accept a false null hypothesis (with probability β)

Statistical significance of the 
rejection is given by

Statistical power of the test is given by:

“The observation has a p-value 
smaller than α.”

Note: The rejection region is here 
simply defined by a threshold for x.



  

Maximizing statistical power

Neyman-Pearson Lemma
● The rejection region that maximizes the 

statistical power is given by all x that 
have a large enough likelihood ratio:

● Here, c is fixed such that the test has the 
desired significance

Q: Given a desired significance-level α, what is the 
rejection region that maximizes the statistical power 
of a test?

Notes:
● The likelihood ratio is omnipresent in all of statistics.
● The rejection region is defined by threshold on 

likelihood ratio → it can have complex boundaries.

NP region



  

Generalization to many observables

It is convenient to define the “log-likelihood ratio”:

Notes:
● In the large number of samples limit, the CLT ensures that T follows a normal distribution 
● In complicated cases, P(T|H) is best estimated by a MC simulation

The Neyman Pearson lemma can be easily applied to cases with many observables. One 
example is a large number of samples of the same observable:

The threshold for rejecting the null, c, is obtained from



  

Goodness-of-fit: Pearson's chi-squared test

OR

Null Something 
completely 
different

Pearson's chi-squared test
● Test statistic is defined as

● If data is drawn from the null hypothesis with the indicated errors

the test statistic follows a chi-squared distribution with k=N degrees of freedom.

O
i
: observed value in bin i

E
i
: expected value in bin i

ΔE
i
: Standard deviation bin i



  

Goodness-of-fit: The K-S test

The Kolmogorov-Smirnov Test 
● First, construct empirical distribution function

● Second, calculate maximal distance between 
expected distribution and constructed CDF

●                follows a Kolmogorov distribution 
in the large n limit. If the value is too large, 
the null hypothesis can be rejected.

Notes: 
● This test is sensitive to any deviation from the null hypothesis. Use it with care!
● There is a similar test for comparing two measured distributions instead of a 

distribution and the expectation.
● See also: Cramer-von Mises test, Anderson-Darling test, Shapiro-Wilk test



  

General parameter estimation

This is common to both Frequentist and 
Bayesian approaches!



  

5

Basic quantities
Situation
● We have a model that describes the data, but the precise 

model parameters are unknown
● An estimator is a map from the experimental data onto 

the model parameter space. It is a random variable.

Bias:

Variance:

Mean squared error:

“Unbiased estimator” “Minimum variance estimator”

Good accuracy Good precision

Estimator:
Model 
parameters:

Relevant properties:

For an biased estimator, the 
MSE is larger than the variance!

“Consistent” estimator: unbiased in the 
limit of a large number of data points

“Efficient” estimator: minimum variance in 
the limit of a large number of data points



  

Estimating directly observed quantities

Estimator for the mean of the underlying distribution:

Note: this estimator is per definition unbiased, but it does not automatically have 
minimum variance.

Estimator for variance:

Correction factor (since we use data to estimate 
the mean)

In the case of a large number of measurements, there are obvious estimators for the 
mean and variance of the measured parameter:



  

An example for a sub-optimal estimator

Model: A linear relation with unknown slope.

Mean value:

Variance:

A simple estimator
● Average all points at x>0 and at x<0 

independently.
● Calculate slope from these two resulting average 

points.

Variance of the estimator

For a specific configuration * this yields:

*



  

The better estimator: chi-squared
A more efficient estimator is obtained 
by least square fitting:

● The estimator can be shown to be given by 
the analytic expression

● The variance reads

*

For the previous example* this becomes:

Minimizing requires:



  

Maximum likelihood estimator
The MLE maximizes the likelihood function for a give set of data

mode
mean

Properties of the MLE:
● The MLE is in general biased

● Thanks to the CTL, it is however in most cases consistent
● An unbiased MLE has minimum variance

● A consistent MLE is also efficient

Edgeworth

bias

Chapter 4 Parameter Estimation

http://www.google.nl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CGQQFjAI&url=http%3A%2F%2Fidiom.ucsd.edu%2F%7Erlevy%2Fpmsl_textbook%2Fchapters%2Fpmsl_4.pdf&ei=JeyZVOHpK8f3O5jMgfAM&usg=AFQjCNGeF-fnCybbmUNxh-3diw3fSYSZuA&bvm=bv.82001339,d.ZWU


  

The Optimum: The Cramér-Rao bound

Cramer-Rao bound:
For any estimator, there exists a lower bound on the variance that is 
given by the inverse of the “Fisher information” (for proof see e.g. 
Barlow):

Definitions: An estimator that saturates this bound is called 
minimum variance estimator (MVE). If the CRB is only saturated in 
the limit of a large number of measurements, it is called efficient 
estimator.

Harald Cramér

In case of a biased estimator, the lower limit is

This can be both larger and smaller than the unbiased bound.



  

Quantifying information gain

The score of a likelihood function parametrizes the sensitivity towards parameter change.

● The first moment of the score is zero

● The second moment is the Fisher information that was mentioned above

Fisher information
● Parametrizes the information gain from a measurement 
● In case of multivariate normal distributions, it corresponds to covariance matrix



  

Fisher information and experimental design

Scenario:
● Consider some exponential decay with 

unknown amplitude and lifetime:
● The quantity f is measured at discrete time 

steps with identical errors Δf
● The MLE estimator can be obtained from

Fisher information quantifies how much information 
is gained by a given measurement. It is additive in 
case of multiple measurements, and can guide 
experimental design.

The implied Fisher information for the two free 
parameters is

“Asimov data”



  

Composite hypotheses & confidence regions

OR

(any of) (any of)

Null Alternative



  

Errors of estimators

Statistical errors
● Thanks to the CLT, errors are often normal distributed, such that estimator 

and variance are a full description of the situation.

● Connection to Frequentist statistics: the error range covers the true value in 
68.3% of the cases

● A function of estimators is itself an estimator, with a total variance that is the 
weighted sum of the individual variances

Systematic errors
● Systematic errors enter the measurements as bias, which is often unknown. 

This is sometimes written as

● Systematic errors do not propagate using the above sum rule.

standard deviationestimate

Remark:



  

Exact error bars: Confidence belt
Construction of the confidence belt
● We consider a class of hypothesis with one free parameter. The PDF is given by

● An acceptance interval                       

for a given (true) model parameter θ and
coverage α is given by any interval that
satisfies the condition

● This defines the confidence belt.



  

Exact error bars: Confidence belt

Note:
● By construction, and independently of the true value of θ, the confidence region will 

cover the true value in exactly 1-α of the cases.

Measured
value

Confidence 
interval

Construction of the confidence belt
● We consider a class of hypothesis with one free parameter. The PDF is given by

● An acceptance interval                       

for a given (true) model parameter θ and
coverage α is given by any interval that
satisfies the condition

● This defines the confidence belt.
● For a given observation x

obs
, the confidence

interval is given by the values of theta for which
the acceptance interval contains x

obs
.



  

One sided and two-sided limits
Two-sided confidence region:

One-sided confidence region:

The PDFs for a given model parameter 
λ are identical!



  

Nested composite hypothesis

In general
● Alternative hypothesis: Composite model with n free 

parameters

● Null hypothesis: Composite model with n-k free 
parameters, and k constraints

Here simply: 

Previous scenario is special case of composite nested hypotheses
● Null hypothesis: Model parameter θ is fixed to certain value
● Alternative hypothesis: Model describes data, but θ is unconstrained
● Confidence interval: All values of θ for which the null hypothesis is not rejected

Notes:
● The null hypothesis in two nested composite models typically lives on a submanifold of the 

parameter space of the alternative model. 



  

Likelihood ratio construction of conf. belt

such that:

Remedy:
● If θ

1
, …, θ

k
 are true values, and in the large-sample limit, assuming certain regularity 

conditions, Wilks' theorem states that:

Confidence regions can be readily constructed by applying the above Neyman Pearson 
Lemma to the ratio of the maximum likelihoods of the composite nested hypotheses.

Problem:
● How to determine value of c for different significance level α? This can again be 

done by a MC, but should be repeated for all regions in n-dim parameter space
● In general, the threshold c will depend not only on the k parameters of interest, 

but also on the remaining n-k nuisance parameters.



  

Wilks' theorem

Samuel S. Wilks
1937

If the data x is distributed according to the likelihood function L 
for the true model parameters θ

1
, …, θ

n
, then the maximum ln 

likelihood-ratio defined as

where the       are MLEs for the likelihood function L, follows – in 
the large N limit – a chi-squared distribution with k degrees of 
freedom.

Remember that, e.g.:

Wilks' theorem (if it applies) makes it relatively simple to construct confidence 
intervals in a multi-dimensional model-parameter space.
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