
  

Advanced Statistical Methods – Lecture 3

Confidence intervals
Maximum log likelihood ratio

Wilks' theorem
Breaking Wilks' theorem

 Minimizers



  

Confidence belt construction I

General construction of the confidence belt
● We consider a class of hypothesis with one free parameter. The PDF is given by

● An acceptance interval                       

for a given (true) model parameter θ and
coverage 1-α is given by any interval that
satisfies the condition

● Any choice of boundaries that fulfill the above
requirement define the confidence belt 
with a significance of 1-α

Goal: We seek a way to build, based on an experimental result with some random 
component, an interval in the model parameter space that is in, say, 95% of the cases 
including (or covering) the true model parameter.



  

Confidence belt construction II

Result:
● By construction, and independently of the true value of θ, the confidence interval will cover 

(i.e. contain) the true value in exactly 1-α of the cases.

Measured
value

Confidence 
interval

Definition of Confidence interval
● For a given observation x

obs
, the confidence interval is given by the values of theta for which 

the acceptance interval contains x
obs

.



  

There are many possible confidence belts
Two-sided confidence region:

One-sided confidence region:

Often written as (for 68% CL)



  

The maximum likelihood construction
One extremely common definition of the interval is based on a specific test statistic: the 
maximum likelihood ratio:

The threshold value c(θ) has to be defined 
such that the interval has the right coverage:

The confidence interval is then simply the set 
of all model parameters for which the test 
statistic is small (i.e. good) enough.

Note that Λ is
● non-negative

● zero in the case of the MLE

Different observed values x
obs

 lead to 

different confidence intervals.

Question: How to obtain c(θ)?
Answer: In the vast majority of the cases, Λ 
follows a chi-squared distribution!



  

The maximum likelihood construction

Example:
● The normal distribution with unknown mean:

● We can the calculate the likelihood ratio

● In the simple case of a normal-distributed variable, we find that the maximum 
likelihood ratio Λ follows a chi-squared distribution.

(we consider σ as known, for simplicity)

This follows a chi-squared 
distribution with one degree of 
freedom!



  

Wilks' theorem

Samuel S. Wilks
1937

If the data x is distributed according to the likelihood function L 
for the true model parameters θ

1
, …, θ

n
, then the maximum ln 

likelihood-ratio defined as

where the       are MLEs for the likelihood function L, follows – in 
the large N limit – a chi-squared distribution with k degrees of 
freedom.

Remember that, e.g.:

Wilks' theorem (if it applies) makes it relatively simple to construct confidence 
intervals in a multi-dimensional model-parameter space.



  

“Profiling” over nuisance parameters
Imagine you are interested in only one model parameter, whereas all remaining 
model parameters are irrelevant nuisance parameters (e.g. describing not the 
signal but the background).
You can then consider the one-dimensional maximum log likelihood ratio

which defines the confidence interval as

Practically, the procedure is as follows:
● Minimize

with respect to all model parameters.

● Decrease and increase the model 
parameter of interest (here theta1) 
until -2lnL increased by a value of c,
while refitting the other parameters.

● The values of theta at which -2lnL 
changed by c define the boundaries of 
the confidence interval.



  

1 and 2-dimensional confidence intervals
The procedure can be easily generalized to two and more dimensional confidence 
intervals.

Note:
● The threshold values c for different confidence level 

depend on the dimensionality of the confidence interval!

● One dimensions

● Two dimensions

The resulting regions can have 
complex shapes:



  

Upper limits on model parameters
Upper limits (of course, the same arguments also hold for lower limits)

● Upper limits on a parameter (in contrast to two-sided intervals) can be 
obtained by setting the -2lnL to zero below the best-fit value.

● The corresponding confidence interval 
is again defined via

● However, the threshold c is a bit more 
tricky in this case, since Lambda 
follows a chi-squared distribution only 
“half of the times”. In the other 50% of 
the cases, it is just zero. Hence c is 
somewhat smaller, and one can show 
that



  

Significance

Calculating p-values
● Detecting a signal over a background usually means to show that the signal 

strength is different from zero with high significance. 
● It is useful to take the test statistics based on the maximum log likelihood 

ratio, where we keep the signal flux at zero.

● In absence of a signal, we have

● A large TS indicates the detection of a signal at high significance. The 
5-sigma threshold corresponds to

Notes:
● Often significances are quoted in terms of standard deviations.
● Significances depend strongly on the tail of the distribution, which is very 

sensitive to systematic uncertainties



  

Wilks' theorem: Sketch of the proof

1) Replacing data with maximum likelihood estimators

For a given PDF,                                         , one can define the maximum 
likelihood estimator,                         .  The MLE itself is also a random variable, 

and distributed according to some PDF                                      .

The trick is now to use this new PDF to study the properties of the maximum 

likelihood analysis.

2) Assuming that MLEs are normal distributed

We are interested in the case where the maximum likelihood 
estimator are normal distributed. This does not mean that 
the data has to be normal distributed.

Very loosely speaking, this requirement means that “the data 
should be good enough to constrain the model parameters well”.



  

3) Rotating and rescaling to distribution with variance one
For simplicity, we rotate and rescale the model parameters such that the correlation 
matrix becomes the identity matrix. We introduce new model parameters

such that

4) Evaluate maximum log likelihood ratio
We now consider the maximum likelihood ratio, keeping k of the values fixed. The 
normalization factors cancel, and only k quadratic terms survive.

Per definition, this follows a chi-squared distribution with k degrees of freedom,          !

Wilks' theorem: Sketch of the proof



  

Breaking Wilks' theorem
Situation:
Maximum likelihood ratios can be approximated by a chi-squared distribution if the MLEs 
of the model parameters are normal distributed. Normal distribution of the data is often 
helpful, but not necessary.

Ways to break Wilks' theorem 

● Low number of events, Poisson 
noise

● Bounds on the model parameters 
(e.g. fluxes or masses can only be 
positive)

● Parameters that are irrelevant in 
the null hypothesis and have an 
(approximately) infinite variance



  

Example: Line searches

A very common scenario (X-ray and gamma-ray lines, Higgs bosons etc)
● Signal is “line” (narrow normal distribution with fixed width) with unknown strength and position
● Model for the BG depends on parameters

● The correct likelihood function is usually build up from Poisson distributions

with expectation values in energy range



  

Unbinned analysis
Potential problems with a “binned” analysis (like the above Poisson likelihood)

● Result depends on binning of data
● Information loss due to binning

This can be avoided in an unbinned likelihood analysis. It is obtained from the 
Poisson likelihood in the limit of zero bin size,                     In that limit, we find that

This can be rewritten as a unbinned likelihood 
function

where

(Total number of events) (PDF of one event)

Notes:
● The unbinned likelihood function 

does not depend on binning
● The total number of events enters 

as Poisson distribution
● Individual events are not even 

close to a normal distribution, but 
the maximum log likelihood 
ratio is likely still chi-squared 
distributed.

with and



  

Parameter boundaries
In many cases, we are interested in parameters that are bounded to be 
non-negative (fluxes, masses, etc). The confidence interval is then constructed 
according to

with the maximum log likelihood ratio given by

If the true value is theta=0, we obtain 
that the maximum likelihood ratio is zero 
in half of the cases, and follows a chi 
squared with one degree of freedom in 
the other half. Hence, the correct 
threshold value is

However, far away from the boundary, 
the value is again



  

Irrelevant parameters
Irrelevant parameters
● In case of a line search, the signal model has 

two free parameters
● Normalization of the signal (flux)
● Position of the signal (energy)

● In the case of the null hypothesis of zero 
signal (flux = 0), the position of the signal is 
irrelevant and does not affect the fit.

Consequences
● The variance in E direction is infinite.
● Hence, the rescaling of the parameters into parameters with variance one fails 

(step 3), and Wilks' theorem breaks down.
● The infinite variance of E indicates a large number of trials, which means that 

the TS does not follow a simple chi-squared distribution.

Solution
● Perform a Monte Carlo with mock data that does not contain a signal
● Naive estimate: two degrees of freedom, but several times



  

Trial corrections of an excess significance
“Look elsewhere effect”
● Often, one has to perform many trials in a search for a signal (e.g. because 

one does not know the position of a line, the position of a point source etc).
● Performing multiple trials increases the chance of seeing an upward 

fluctuation in at least one of the measurements.
● This effect must be corrected for when stating the significance of a signal 

that was found in an analysis with multiple trials.

Global vs local p-values
● Local p-value: Describes the probability of observing an upward fluctuation as 

large as the signal in one trial (e.g. for a known source or line position). This 
often follows the usual chi-squared distribution.

● Global p-value: Describes the probability of observing an upward fluctuation as 
large as the signal in at least one of multiple trials.

Examples:

In general:
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