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Breaking Wilks' theorem
Situation:
Maximum likelihood ratios can be approximated by a chi-squared distribution if the MLEs 
of the model parameters are normal distributed. Normal distribution of the data is often 
helpful, but not necessary.

Ways to break Wilks' theorem 

● Low number of events, Poisson 
noise

● Bounds on the model parameters 
(e.g. fluxes or masses can only be 
positive)

● Parameters that are irrelevant in 
the null hypothesis and have an 
(approximately) infinite variance



  

Example: Line searches

A very common scenario (X-ray and gamma-ray lines, Higgs bosons etc)
● Signal is “line” (narrow normal distribution with fixed width) with unknown strength and position
● Model for the BG depends on parameters

● The correct likelihood function is usually build up from Poisson distributions

with expectation values in energy range



  

Low number of events
If the signal region contains only a very low number of events, the MLE for 
the signal will be Poisson distributed instead of normal distributed, and 
Wilks' theorem breaks down.

Notes:
● If the number of expected signal and 

background events is large enough, this can 
be reasonably well approximated by a normal 
distribution.

● What “reasonable large” means depends on 
the context:
● For 2sigma confidence regions: around 100
● For 5sigma discoveries: around 1000

● If in doubt, double-check your results using 
Poisson statistics!

● The problem is here not the discreteness of 
the events, but the non-gaussian tails.
→ Anscombe transform.

ratio of p-values in 2 and 5 sigma 
tails of the normal distribution



  

Flip-flopping: A problem close to thresholds
Let us suppose that a Physicist X takes the following attitude:
● If the result x is less than 3sigma, I will state an upper limit following standard 

procedures.
● If the result x is greater than 3sigma, I will state a central confidence interval.
● If the measured quantity (e.g. a flux) is below zero, I will pretend it is zero and quote 

the corresponding limit.

This policy is called flip-flopping and leads to wrong confidence intervals.
Proper
90% CL upper limits

Proper
90% CL central interval

Confidence interval 
implicitly used by Mr. X
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Notes:
● Both the upper limit and the standard central interval return an empty confidence interval for a 

sufficiently negative value of x. This is an example for a technically correct, but not useful 
construction of confidence intervals.



  

Feldman Cousins approach
One important application of the above discussion are Poisson processes with known 
background:
● Let us consider a process with known background b, and unknown signal mean μ. The 

number of measured events is here n and follows a Poisson distribution

● Again, if n is much lower than b, the confidence interval will be empty for standard 
upper limits or central intervals.

Feldman-Cousins intervals 
(90% CL)
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Feldman-Cousins construction
● Feldman-Cousins propose to define confidence belt neither 

as upper limits nor as central intervals, but instead as the 
region with the largest maximum likelihood ratio

● For each value of μ, the belt is then constructed by adding 
the n values that correspond to the largest R(n), until the 
band covers at least 90% of the Poisson PDF.

● Example for b=3.0 and μ = 0.0:



  

Numerical minimizers
General statements
● Minimizing (or, equivalently, maximizing) is one or the numerical core challenges of 

Frequentist statistics

● General goals
● Evaluating the likelihood function for a single set of model parameters (“point”) can be 

very time consuming. The number of likelihood evaluations should be reduced to a 
minimum.

● In most cases, we are interested in the global minimum, not the local

● Most straightforward way is to evaluate function on a grid, and take minimum or maximum

This works well in one or two dimensions, but becomes impossible if the number of model 
parameters is large (say, above three), since



  

Simplest method
Gradient decent
● Iterative procedure to find minimum of 

multi-dimensional function
● The direction and size of the is given by 

the gradient of the function
● Step size can be regulated with one free 

parameter, gamma.

Algorithm
● Select starting point close to minimum of 

interest
● Iterate following the rule

● Gamma should be selected small enough 
to not overshoot the minimum

● Stop minimization if gradient close 
enough to zero



  

Newton method
Motivation
● Problem with gradient decent: The gradient only provides information about 

direction towards minimum, not the distance.
● Newton methods try to estimate the distance to the minimum by using 

the first and the second derivative of the function.

Example in one dimensions
● In one dimensions, Taylor expanding the function up to second order yields

● Using this Taylor expansion, we estimate the distance to the minimum by

● This gives an estimate for the step size (regulated by                 )

Newton method
● In multiple dimensions, the iteration step of the Newton method is given by

where H denotes the Hesse matrix                           .



  

Gauss-Newton Method

0

Motivation
● Problem with general Newton method: Calculation of second derivative 

(Hesse matrix) is computationally very expensive.
● The score function has in many applications a specific form, that can be 

exploited when calculating derivative.

Gauss-Newton method
● This method requires the score function to be of quadratic form

● In that case, the Hesse matrix gets contributions from the first and second 
derivate of ri w.r.t. the model parameters. If ri is approximately linear in beta, 
one can approximate the Hesse 

● In some cases, it is useful to reduce the step size by using the Levenberg- 
Marquardt damping factor



  

Quasi-Newton Methods
Motivation
● Problem with general Newton method: Calculation of second derivative 

(Hesse matrix) is computationally very expensive.
● One can use estimates for the Hesse matrix that are updated iteratively

General idea
● The ith step of the iteration is given by                           . The step is 

calculated from an approximated Hesse matrix,

● Taylor expanding the gradient of the function at the old and new point yields

If we truncate that expansion at first order in x, this gives a constraint on the 
i+1th Hesse matrix.

● Using this constraint and the ith Hesse matrix, one can define an updated i+1th 
approximated Hesse matrix       .  This new approximated Hesse matrix is then 
used in the next iteration.

● There are many different update rules available: DFP, BFGS, Broyden, SR1



  

Simulated Annealing
Motivation
● Problem of all above minimizers: They are optimized to find local minima.

● This can be solved by introducing the concept of thermodynamic noise.

Imagine that function F(x) describes 
energy states in a system. At high 
temperature T, most of the states 
can be accessed.

If the temperature drops, only 
lower states in the system are 
occupied.

At minimum temperature, the 
system is in its minimum energy 
state.

Goal: Generate distribution of points                             that follow excited states.



  

Simulated Annealing

Algorithm
1)Generate initial state x

2)Randomly pick new state according to proposal distribution                 .

3)Accept state as new state with acceptance probability                  , given by

4)If the step is accepted, set x = x' and save the new state in a list; else nothing happens.

5)Go back to step 2.

Convergence distribution
● After some time, the distribution of accepted points usually becomes stationary and 

follows the detailed balance criterion 

● The convergence distribution is hence given by

, where



  

Frequentist vs Bayesian

Frequentist
● Model is considered 

as fixed
● Measured values 

jump around true 
value

Model
Data

Model
Data

Confidence region Credible region

● Confidence regions 
are designed such 
that they cover the 
true value in a 
certain number of 
repeated experiments

Bayesian
● Focus on 

consequences of 
single observation

● Focus on distribution 
or plausibility of 
models that could 
lead to that 
observation

● A credible region 
contains a certain 
fraction of the 
models that most 
likely lead to the 
actual observation

Discussion up to now. Discussion from now on.



  

Bayes' Theorem

It is a simple consequence of the rule for conditional probabilities: 

Notes:
● Bayes' theorem provides a rule for how to update the probability or plausibility of 

a certain hypothesis H to be true in light of data D. This always depends on 
additional background information I, which is often not made explicit.

● Frequentists are interested in likelihood functions only

It is in general not equal to the posterior, which is most obvious looking at the 
normalization of the functions (with x and θ being data and model parameters, 
respectively).

Posterior Prior

Global likelihood

Likelihood function



  

Parameter estimation

The posterior distribution:
● The posterior is obtained from Bayes' theorem (here for discrete hypotheses)

● In the case of composite hypotheses, the model likelihood is obtained from 
integrating (or “marginalizing”) over the model parameters

with

Global likelihood
Posterior

Likelihood Prior

(Model) Likelihood (Full) LikelihoodPrior on model 
parameter

Bayesian Estimators
● The “posterior mean”

● The “posterior mode”



  

Credible intervals & marginalization

“Credible intervals” are regions in the parameter 
space that contain the true model parameters with 
certain probability (plausibility/degree of believe). 
Their definition differs completely from the 
definition of confidence intervals.
In one dimensions, a credible interval R with 
probability content C is given by:

This can be readily extended to two or more dimensions.

If several nuisance parameters exist in the model, they can 
be marginalized over to obtain the marginal posterior.

This can again be used to define credible intervals.



  

Treatment of nuisance parameters

Marginalized likelihood
However, often additional information is available that can be used to calculate 
the marginalized likelihood function

Here, one effectively treats a Bayesian prior in a Frequentist interpretation, which 
can be adequate in many cases.

Profiling over unconstrained parameters
Using the above approach, irrelevant parameters (nuisance parameters) are 
profiled over when performing the statistical analysis.  Effectively one only 
considers likelihood functions where the dependence on nuisance parameters is 
removed like



  

Model comparison & Jeffrey's scale

B “Strength of evidence”

< 1 Negative

1 – 3 Barely worth mentioning

3 – 10 Substantial

10 – 30 Strong

30 – 100 Very strong

> 100 Decisive

Jeffrey's scale

H. Jeffreys
1891-1989

In Bayesian statistical inference, we perform Model comparison 
(this replaces hypothesis testing in the Frequentist approach). The 
central quantity is here the odds ratio

which just depends on the model posteriors of a model i and j. 
Using Bayes' theorem, this can be written as

LikelihoodsPriors

Bayes factor
● The Bayes factor describes how much 

additional credibility a model obtains due to 
the available data.

● It is independent of priors on the model (but 
can depend on priors on the model 
parameters!).

● A useful interpretation of the Bayes factor is 
given by the “Jeffrey's scale”
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