
  

Advanced Statistical Methods

Lecture 5

Content:
● Bayesian inference: Model comparison, 

Occam's razor, Priors and the 
Maximum Entropy Principle

● Monte Carlo Methods: MCMC, 
Detailed Balance, Metropolis-Hastings



  

Model comparison & Jeffrey's scale

B “Strength of evidence”

< 1 Negative

1 – 3 Barely worth mentioning

3 – 10 Substantial

10 – 30 Strong

30 – 100 Very strong

> 100 Decisive

Jeffrey's scale

H. Jeffreys
1891-1989

In Bayesian statistical inference, we perform Model comparison 
(this replaces hypothesis testing in the Frequentist approach). The 
central quantity is here the odds ratio

which just depends on the model posteriors of a model i and j. 
Using Bayes' theorem, this can be written as

LikelihoodsPriors

Bayes factor
● The Bayes factor describes how much 

additional credibility a model gains due to the 
available data.

● It is independent of priors on the model, but 
in general depends on priors on the model 
parameters.

● A wildly used interpretation of the Bayes 
factor is given by the “Jeffrey's scale”



  

Model comparison vs Hypothesis testing
Example:
We consider the two (simple) hypotheses 
that a given data set is described by a 
chi-squared distribution with either four or 
five degrees of freedom:

We use here mock data in eleven bins, 
with a standard deviation of σ=0.015.

Model comparison:
The Bayes factor is given by the likelihood 
ratio

which in the present case (we assume normal 
distributed errors) is approximately given by

According to Jeffrey's scale, this is “decisive”.

Hypothesis testing:
We consider some test statistic, here 
the chi-squared goodness-of-fit

for which we obtain

For eleven degrees of freedom, we 
obtain the p-values

(accepted)

(rejected at 4.0σ)



  

Sigmas in different fields of science

Comments:
● In high energy physics, the standard threshold to talk about a discovery is 5.0σ. 

However, the high energy physics folks start getting excited at excesses around 3.0σ 
(which in most cases turn out to be wrong).

● In astroparticle physics, backgrounds are usually much more uncertain than in HEP, 
which is compensated for by higher statistical thresholds.

● In sociology and psychology, 2.0σ is enough to talk about evidence. Since their 
hypotheses are quite frequently true (compared to “This is evidence for new physics”), 
the rather high rate of type I errors does not dominate the field (hopefully!).

● If we want to prove that astrology is true, we probably have to require >20σ or more, 
given the practically infinite number of ways “miracles” can occur.

B “Strength of evidence”

< 1 Negative 

1 – 3 Barely worth mentioning

3 – 10 Substantial

10 – 30 Strong

30 – 100 Very strong

> 100 Decisive

A grumpy colleague might say:

Having said that, the “Jeffery's 
scale” is apparently not 
adjusted for use in HEP. If you 
have to use it, please use it 
with care.

>2.3σ

>1.8σ

>1.3σ
<0.5σ

Corresponding 
one-sided 
p-value:



  

Going too far

Three theorists propose three models (model “red”, “green” and 
“blue”) for some piece of observational data. Their best fits look 
like this:

Who got it wrong the most?



  

Occam's razor

Occam
c. 1287-1347

Adding new entities (e.g. new particles) to your description of some phenomena is only 
justified if they are required. This requirement can be either observational (e.g. a detection at 
a particle collider) or theoretical (e.g. symmetries that reduce the number of free parameters). 
The overall goal is to:

Explain the data well while keeping the number of free parameters low.

Fortunately, this concept is automatically build into Bayesian inference!

“We are to admit no more causes of natural things than such as 
are both true and sufficient to explain their appearances. 
Therefore, to the same natural effects we must, so far as possible, 
assign the same causes.” (Isaac Newton)

"Entities must not be multiplied beyond necessity." 
(attributed to William of Occam)

"Whenever possible, substitute constructions out of known 
entities for inferences to unknown entities." (Bertrand Russell)

“Everything should be made a simple as possible, but not 
simpler.” (Albert Einstein)

“Occam's razor” denotes a principle that was formulated by many, and that became such a 
common-sense requirement for good science that is is rarely explicitly mentioned.



  

Model comparison & Occam's razor

Scenario
● We consider two models: One (M

1
) with a free parameter ϑ, and 

another (M
0
) where this parameter is fixed to some value ϑ

0
.

● The likelihood functions are connected via

● The model likelihood of M
1 
is obtained after marginalization over 

the model parameter ϑ



  

Model comparison & Occam's razor
Marginalization, priors etc
● The two relevant factors in the marginalization

are the likelihood and the prior, both functions of ϑ.

● The prior is normalized to one, and hence depend on 
the allowed parameter range

● The likelihood function usually peaks around some 
value, which means that roughly

and hence the model likelihood for M
1
 is

Bayes factor
● We find that

● The last factor acts as a 
panelization for any additional 
parameter that has a large prior 
uncertainty. This is Occam's razor  
in the Bayesian sense.



  

Example

Hypothesis testing
● We can test the existence of a 

significant line signal by considering the 
usual test statistic

● TS > 25 would correspond to a 5.0σ 
discovery of a signal.

Model comparison
● The marginal likelihood of the signal 

hypothesis (after integrating over signal 
strengths) is given by

● The Bayes factor is then

which is up to the “Occam panelty” the same 
quantity relevant for hypothesis testing.



  

Connection with “fine-tuning”

In theoretical physics, one tries in general to avoid theories or scenarios where the 
correct description of an observed phenomenon requires a ridiculous amount of 
parameter adjustment. One famous example where this goes completely wrong is 
general relativity and the cosmological constant, which is 122 orders of magnitude 
away from its naively expected scale. 

Occam's razor automatically penalizes for that, and prefer any theory that predicts this 
value from other principles.

Ripped apartCollapse

Observationall valid range

For a flat prior, we would obtain as panelization

0



  

The prior matters I

Combined limits on WIMP-nucleon and WIMP mass. Results depend on 
whether logarithmic or linear priors are adopted.

Whether or not the best-fit value (maximum likelihood) is actually included 
in the credible interval can depend on the prior! This is especially the case 
if the data is not strongly constraining the model.



  

The prior matters II

95% CL upper limits

Upper limits on a Poisson variable
● We derive upper limits on the mean of a Poisson process with no background.
● The posterior is given by 

● In the case of a flat prior, this simply becomes

● The credible interval is obtained from a
integration over the posterior

● The confidence interval is obtained from a
sum over the likelihood function



  

Common Priors

Uniform prior (for known scales)
● Appropriate if scale of parameter is roughly know.

Jeffrey's prior (for scale free)
● Appropriate if scale of parameter is unknown.
● Uniform on log scale: the same probability in [1, 10] 

and [10, 100].

Haldane prior (for yes/no)
● Special prior for cases where we expect one of two 

models being true (corresponding to zero and 
one), but we also want to allow for mixed cases.

In the fortunate case of very abundant and precise data, the posterior distribution not strongly 
depend on the prior. However, often this is not the case, and the choice of the prior affects the 
result. A selection of most typical priors is listed below.

1 2 3 4 5

1 10 100 10000.1



  

The maximum entropy principle
Principle:
Out of all the possible probability distributions which agree with the given 
constraint information, select the one that is maximally non-committal with 
regard to missing information.

Question:
How do we accomplish the goal of being maximally non-committal about 
missing information?

Answer:
The greater the missing information, the more uncertain the estimate. 
Therefore, make estimates hat maximize the uncertainty in the probability 
distribution, while still being maximally constrained by the given 
information.

What is uncertainty and how do we measure it?

[Gregory p185]

Example: Which one is the most uncertain?



  

Shannon entropy
A rigorous way of defining priors, which takes ignorance as guiding 
principle, is the definition that is based on information (or Shannon) 
entropy. 

Shannon entropy:
● For a discrete probability mass function                     , 

the Shannon entropy is defined as

● It quantifies the amount of information that we would 
obtain when measuring the state of the system.

● Example: “No choice”

● Example: “Flat prior”

Connection to “information”: With k bits, one can encode
different states. If the state is initially unknown (flat prior), 
the Shannon entropy is proportional to the number of bits.

C. Shannon
1916-2001



  

The “Monkey argument”
Imagine the following situation: A group of monkeys is throwing a very 
large number of balls in a grid of small boxes. The number of balls N is 
much larger than the number of boxes M, and we can infer a PDF via

We are now interested in the frequencies of different non-discarded PDFs. They will 
depend on

where the last step relies on combinatorial arguments that are used when deriving the 
Binomial distribution. Taking the log (and using Sterling's approximation), we find that

,  where                    ,    
   

, and it follows that                 .

The monkeys repeat this process a large number of times, and we discard all proposal 
PDFs that do not fulfill the additional constraint information (e.g. that the mean 
and/or the variance are fixed to a certain value).

Ape



  

PDFs from the MaxEnt principle
Idea
● Search probability mass function that maximizes the Shannen entropy under some 

external constraints.

● Depending on the external constraints, this procedure leads to different well known 
probability mass functions.

● One can extend this approach also to continuous functions (with some additional 
input).

Examples:
● The minimum constraint: probabilities sum up to one

● Another constraint: mean value is fixed

● Another constraint: mean value and variance fixed

(Uniform prior)

(Exponential distribution)

(Normal distribution)



  

Monte Carlo

Stanislaw Ulam
1909 – 1984Example: estimating pi

● Draw large number of random number pairs (x, y) with 

● Count points which fulfill (here red)

● Pi is then approximated by the ratio

Main computational challenges for statistical inference in 
large systems:
● Multi-dimensional integrals over PDFs

● analytically challenging (and in most cases impossible)
● numerically expensive
● evaluation of likelihood function often very time consuming

● Non-trivial boundary conditions
● Complicated estimators (estimators of estimators...)

Solution: We perform a large number of pseudo-experiments, 
drawing randomly from the PDFs, and study the statistical 
properties of the outcome.



  

Monte Carlo Integration

V: Volume in which g(θ) significantly 
contributes to the integral

The prototypical problem in Bayesian analyses is to calculate expectation 
values from posterior distribution functions:

This is here equivalent to evaluate the integral over function g(θ).

This integral can be approximated in terms of the mean and variance of 
g(θ) over a finite volume V (where the integral contributes non-negligibly).

Here, we used the definitions

Large number of parameters randomly 
drawn from V

Note:
● The above error estimate is only an estimate and can be too 

small if most of the variance of g comes from a small region.



  

Importance sampling

In order to sample a point from

we select a random number r in the range

If we find that

we accept the point and add it to the list

Expectation values are then given by

In traditional MC integration, we evaluate f(theta) typically at a large number of points 
where the PDF is very small. We can instead base the estimate on a sample from the 
PDF.

with

(this is the usual “acceptance-rejection method”)



  

Markov Chain Monte Carlo

Andrey Markov
1856 – 1922

Markov chain:
● A Markov chain describes a system that undergoes random transitions from one state 

to another in some state space.
● The random transitions have to fulfill the Markov property:

Each new state depends only on the previous one, not on the entire history (Markov 
chains are “memoryless”).

Example for (irreversible) Marov Chain, 
with states {a, b, c}.



  

The prototypical MCMC algorithm
Metropolis-Hastings Algorithm
1) Generate initial state x (this can be a vector, of course).

2) Randomly pick new state according to proposal distribution

                 .

3) Accept state as new state with acceptance probability

4) If the step is accepted, set x = x' and save the new state in a list.

5) Go back to step 2.

N. Metropolis
1915 – 1999

Notes:
● In many cases, the adopted proposal distributions are symmetric

● The transition probability (or transition matrix) in the Markov chain sense is given by

● Breaking of loop can be based on number of accepted points.
● If the chain converges,        is a sample drawn from         (thanks to detailed balance).



  

Detailed balance

A
1/3

1/2
B 1/22/3

A

A

A B

B

A

A

A B

B

B

B

B

B

BB BA

A

A

Concept of detailed balance: “Each process is balanced by its reverse process.”

System (with 15 elements): Rates:

Example:

Same number of transitions 
in both direction:

A Markov Process satisfies detailed balances if it is reversible, i.e. if the product of 
transition rates over any closed loop is the same in both directions (Kolmogorov's criterion).

A

B

C D

for example:
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