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Convergence distribution of M.-H. MCMC

Convergence distribution
● After some time, the distribution of accepted points usually becomes stationary and 

follows the detailed balance criterion 

● The PDF estimated by the MCMC is hence proportional to the PDF in the acceptance 
ratio:

(and equal if the sampled volume is the full volume).

, with

We denote the PDF estimated by the MCMC as         . It has the property



  

Exemplary run of M.-H. MCMC
Example
● Result from Metropolis Hastings scan of bi-modal distribution
● Proposal distribution has roughly the same extend as PDF:

Marginalized posteriors:Chain points:

with

contours of P(x) added



  

Exemplary run of M.-H. MCMC

Notes:
● Finding a reasonable proposal distribution that leads to a high acceptance rate is an 

art-form. It typically should roughly resemble the PDF of interest itself.
● Acceptance rates around 0.3 are high and to some degree optimal.
● The chain always takes some time to stabilize. The length of this “burn-in” period 

depends on the setup, and the corresponding points have to be removed before 
analyzing the chain.

Effect of different proposal distributions on the result (in case of a finite sized chain)



  

Autocorrelation of MCMC chains
Depending on the proposal distribution and the acceptance rate, the Markov 
Chain can have a large degree of auto-correlation. This can be quantified by

where the average is taken over all chain points. The variable x refers either to 
X

1
 or X

2
 in the above example.



  

Example: Cosmological fits



  

Advanced algorithms: Multinest

Problems:
● A traditional MCMC hinges on finding a good proposal distribution. Often, finding a 

good proposal distribution is equivalent of finding the PDF itself, which is kind of 
circular. This can be overcome with some adaptive methods.

● Multimodal distributions are very problematic for traditional MCMCs, since jumping 
between modes is very suppressed for standard proposal distributions (multivariate 
normal).

Advanced algorithms overcome these limitations. One well-known example is the 
Multinest algorithm. The basic idea is to start with a random distribution of points in 
the entire parameter region, and add points where the sampled PDF is large, while 
continuously updating the multimodal proposal distribution.

Example:



  

Generating random numbers

Linear Congruent Generators (LCG)
● Select integers

and “seed” 

● Iterate over

● Now, random numbers in the range [0, 1] are given by

Problem: How to generate random numbers in the range [0, 1]?
(or integers in the range [0, m-1])

Problems with this simple algorithm (overcome with more modern ones):
● The sequence repeats itself with some period that is less or equal m
● For certain choices of parameters, some generators might skip values and give an 

incomplete coverage of the interval [0, 1]
● Subtle correlations



  

Systematic uncertainties

One day before 
publication.



  

Systematic uncertainties
Some definitions:
● Simplistic definition: “All uncertainties that are not a statistical error.”

● Longer version of the same: We can consider all those uncertainties 
statistical for which we have a good model for their distribution in 
repeated experiments. Systematic uncertainties are all uncertainties where 
we lack such a model, for whatever reason.

● Scaling with amount of data: Statistical errors usually decrease like 
1/sqrt(n) [more on that later], whereas systematic errors usually don't 
(actually, that is not always true, as also systematic errors can fluctuate 
and average out). In this sense statistical errors are random whereas 
systematic errors can be seen as a bias.

● Different context: Systematic uncertainties are usually related to 
uncertainties in the measurement apparatus, the modeling of the 
backgrounds, uncertainties in the parameters that enter the signal and 
background modeling.

Since systematic and statistical errors are usually independent, they 
can be often written like this:



  

Examples for systematic uncertainties

● The length of a ruler that you use to calibrate length scales in your instrument 
could depend on humidity, temperature, age. This would affect all subsequent 
measurements.

● Dust absorption could affect the color and magnitude of a star that you are 
observing.

● The theory predictions for g-2 (the muon magnetic moment) are hard, since 
they involve non-perturbative hadronic effects. Theoretical uncertainties can be 
estimated by theorists.

Notes:
● One can distinguish at least two types of uncertainties:

● Offset uncertainties (calibration of zero point etc)

● Scaling errors (contracted ruler etc)

Systematic uncertainties leave often statistical tests like the chi-squared 
goodness-of-fit unaffected. The results can look very good, but might be complete 
rubbish.



  

Correlations

Systematic errors are in general correlated. This means that, when on looks at e.g. a 
flux measurement at different energies, the covariance matrix is not diagonal.

Systematic errors typically 
look like this: small 
variations between data 
points, but still large 
deviations from the truth. 
How to parametrize that?

with

For example, in the case of an overall offset, given by 

the covariance matrix is                                      .

with



  

How to propagate systematic errors

Often (like e.g. in your lab courses), systematic errors are treated on a similar footing 
as statistical errors. Making the strong assumption that they are normal distributed, 
their effect on the final result can be estimated by using Gaussian error propagation.

This gives the total uncertainty on the final result. The systematic part is the 
often obtained by subtracting the statistical error in square.

This is however a very simplistic approach. In many cases, there is no reason to 
believe that systematic errors should be normal distributed.

Consider a function that depends on various variables that can have both 
systematic and statistical errors

The total uncertainty is then given by:

with                                                 etc



  

Bayesian approach
From the Bayesian perspective, systematic uncertainties can be incorporated in a 
simple way: as priors on the respective parameters. These are then marginalized 
over, with all its consequences (see Occam's razor).

The question is here of course: What prior to use?

● Typical assumption is a normal 
distribution, but this has long tails 
(is there really a chance that we are 
6% off?).

● We can take a flat prior within the 
boundaries, but then the variance is 
too smaller than 2%.

● Only prior with correct variance 
and mean, and within the 
constraints, are two delta functions 
at the boundaries.

Example: “The length of the ruler in 
known within 2%.”



  

Frequentist
Frequentists in general have trouble to incorporate systematic uncertainties in their 
estimates. In the end, the ruler is too short, this is not a random process. Still, 
uncertainties can be incorporated by profiling or by marginalization. The latter is 
the same as in the Bayesian case. Profiling means:

Note that we here need a likelihood function for the uncertain parameter. This is 
almost never available. But it can be approximated by pretending a prior is a 
likelihood, and just write 

Note that this introduces some dependence on the parametrization of the uncertain 
parameter: Let us suppose that there are two parameterization for the same 
quantity, which gives rise to two different likelihood functions

Then the likelihood functions are related like, 

which means that in general the MLE is different in both cases



  

Constraint term in Frequentist

Starting with the profile likelihood, one can motivate the use of constraint 
terms in the chi squared fits. Starting point is

This can be rewritten as

In the case of a Gaussian prior on zeta, the prior term becomes a constraint 
term in the chi square function:

This is a approximate, but very common treatment of systematics in the 
Frequentist context.



  

Best advices

● Question every input of your analysis. Do not take anything 
for granted or on trust. 

● Different people tend to use different conventions while talking 
about the same thing. Double check all input parameters and 
equations.

● Think carefully about your instrument, and about every step in 
the analysis. 

● Think of smart sanity checks, and if possible confirm your 
results with published results where they overlap. If they do 
not overlap with anything and you are the first, good luck.

● Do the same thing in different ways.
● Never trust the output of a computer program without 

validating its results.
● Mild paranoia helps.



  



  

Sources of 1/sqrt(n)
When accumulating data, the statistical error on estimated parameters usually scale like 
1/sqrt(n). We will discuss the reason for that in various ways.

Variance of the mean estimator:
Let's suppose we perform n measurements of variable x, which is following some distribution 
p(x). A simple estimator for the mean of the distribution is given by

The variance of x is given by                             .

Question: What is the variance of the estimator?

Hence, performing n measurements, we can estimate the mean of the distribution like



  

Sources of 1/sqrt(n)

Imagine you perform a chi-squared fit to some data. The error bars on fitted model 
parameters theta can be as usual estimated using the Delta chi squared method.

No consider the effect of increasing the amount of available data d by a factor of N. 
This means that you add additional terms to the chi-squared function.  If your new 
data is measured in the same bins as your old data (say, you just measured a second 
time), and for the sake of notational simplicity has similar values, we simply obtain

We see that the errors that enter the chi-squared function effectively decrease by 
a factor of 1/sqrt(N). This will translate into an improvement of the constraints 
on model parameters by a factor of

In the much more realistic case that new and old data are not exactly the same, 
there will be additional terms, which only depend on the difference between the 
different data sets, and do not depend on the model parameters. Hence, they do 
not affect the fitting results.



  

Sources of 1/sqrt(n)
The same argument as on the previous slide holds also in general when looking at 
likelihood functions. Increasing the amount of data by a factor of N means 
approximately (again, to make the point, we assume here that old and new 
measurements are the same):

Usually, statistical inference is based on the log-likelihood function. Hence the quantity 
that is relevant for calculating statistical errors etc scales like N.

If null and alternative differ only in one degree 
of freedom, the Lambda is chi-squared 
distributed with k=1. One, two and three 
sigma confidence regions correspond to values 
where Lambda is smaller than 1, 4 or 9. 
Hence, the size of the confidence regions or 
intervals scales like 1/sqrt(N).



  

Statistical error vs instrument lifetime

This generic scaling with the amount of data (usually the number of measured 
events) is extremely important when considering how much worth it is to 
extend the lifetime of an experiment.

Improving the sensitivity of an instrument by a factor of two requires a four 
times longer runtime.
Why can it still be useful to extend e.g. the mission time of a satellite 
from 10 to 12 years?



  

Example: Projected sensitivity of CTA
Let's look at an example where this is not completely true. Below is shown the 
differential flux sensitivity of different gamma ray experiments, looking for point sources.

In the case of CTA, increasing the measurement time by a factor 10 increases the 
sensitivity at higher energies by a factor of roughly 3. This should not be surprising. 
However, at lower energies, it does not increase at all. At higher energies it actually 
increases faster (hard to see in the plot). Why is this the case?



  

CTA PSC sensitivity
The sensitivity of CTA (and many other experiments) can be estimated by looking at 
the predicted number of signal and background events.  In a given energy interval of 
interest, these can be calculated as

where T is the measurement time, A the effective area, and the signal and 
background fluxes in the region of interest (usually of the size of the point spread 
function of the instrument) are denoted by dF/dE.  Usually, the background is 
steeply falling with energy. Something like



  

CTA PSC sensitivity

 “Background
limited”

“Systematics 
limited”

Often, the requirement for a signal detection in a certain energy range 
is three-fold, giving rise to sensitivity curves with three different regions.

More than 5% of 
background.

More than 5 sigma 
stat. significance.

More than ten 
events.

“Statistics 
limited”

In each of the three regions, the dependence on the measurement time is different.



  

Example Gravitational Waves
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