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Abstract

Although many image processing applications are ide-
ally suited for parallel implementation, most researchers in
imaging do not benefit from high performance computing
on a daily basis. Essentially, this is due to the fact that no
parallelization tools exist that truly match the image pro-
cessing researcher’s frame of reference. As it is unrealistic
to expect imaging researchers to become experts in parallel
computing, tools must be provided to allow them to develop
high performance applications in a highly familiar manner.

In an attempt to provide such a tool, we have designed a
software architecture that allows transparent (i.e., sequen-
tial) implementation of data parallel imaging applications
for execution on homogeneous distributed memory MIMD-
style multicomputers. This paper gives an assessment of the
architecture’s effectiveness in providing significant perfor-
mance gains. In particular, we describe the implementation
and automatic parallelization of three well-known example
applications that contain many fundamental imaging op-
erations: (1) template matching, (2) multi-baseline stereo
vision, and (3) line detection. Based on experimental re-
sults we conclude that our architecture constitutes a power-
ful and user-friendly tool for obtaining high performance in
many important image processing research areas.

1. Introduction

While available for decades, high performance comput-
ing architectures have not gained widespread acceptance in
the general scientific community. Even in low level image
processing — an area that is particularly suitable for the ap-
plication of parallelism — high performance computing is
not applied on a regular basis. Essentially, this is due to
the fact that, in comparison with traditional sequential sys-
tems, parallel and distributed machines are much harder to
program. Although several attempts have been made to al-
leviate the problem of software design for such systems, no

tools have been made available that are truly satisfactory.
The ideal solution is to provide a compiler that can detect

all parallelism automatically. Unfortunately, many user-
defined imaging algorithms contain data dependencies that
prevent efficient parallelization. Also, techniques for au-
tomatic dependency analysis and algorithm transformation
are still in their infancy. Another solution is to provide a
parallel programming language, either general purpose [14]
or aimed at image processing specifically [3, 15]. However,
such languages still require the programmer to identify the
available parallelism, often at a level of detail that is beyond
the expertise of most researchers in imaging.

A more practical approach is to design a software library
containing parallel versions of operations commonly used
in imaging, e.g. as in [6, 13]. Our research is closely re-
lated to these projects, as the core of our software architec-
ture is library-based as well. The fundamental difference,
however, is that in implementing our architecture we have
taken a minimalistic approach to enhance code maintain-
ability. Essentially, we strive to maximize sequential op-
eration reusability and avoid code redundancy as much as
possible [12]. An additional distinctive aspect of our work
is that we make use of domain specific performance models,
e.g. for application optimization across library calls [11].

This paper gives an assessment of the effectiveness of
our architecture in providing significant performance gains.
To that end, the implementation and automatic paralleliza-
tion of three example imaging applications is described:
(1) template matching, (2) multi-baseline stereo vision, and
(3) line detection. Where available, results from the litera-
ture are compared with those obtained with our architecture.

This paper is organized as follows. Section 2 shortly in-
troduces our software architecture. In Section 3 a short de-
scription is given of the parallel machine used for all eval-
uation purposes. Next, in each of the three Sections 4, 5,
and 6, a different example application is described. Each
presents parallelization and optimization details, in combi-
nation with obtained performance and speedup characteris-
tics. Concluding remarks are given in Section 7.
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2. Software Architecture

The software architecture consists of eight logical com-
ponents (see Figure 1), each of which is described in short.

C1. Sequential Image Processing Operations. The
first component contains a large set of sequential operations
typically used in image processing research. As recognized
in, for example, Image Algebra [10], a small set of oper-
ation classes can be identified that covers the bulk of all
commonly applied image operations. Each such operation
class gives a generic description of a large set of opera-
tions with comparable behavior, and is implemented as a
generic algorithm using the C++ function template mecha-
nism. Currently, the following set of generic algorithms is
available: (1) unary pixel operation, e.g. negation, absolute
value, (2) binary pixel operation, e.g. addition, threshold,
(3) global reduction, e.g. sum, maximum, (4) neighborhood
operation, e.g. percentile, median, (5) generalized convolu-
tion, e.g. erosion, gauss, and (6) geometric (domain) oper-
ation, e.g. rotation, scaling. In the future additional generic
algorithms will be added, e.g. iterative and recursive neigh-
borhood operations, and queue based algorithms.

C2. Parallel Extensions. Three classes of routines are
implemented (using MPI) that introduce the parallelism into
the library: (1) data partitioning routines, to map data struc-
tures onto a logical grid of processing units of up to 3 di-
mensions, (2) data distribution and redistribution routines,
and (3) routines for overlap communication, to exchange
image borders in neighborhood operations.

C3. Parallel Image Processing Operations. To en-
hance library maintainability, the code for the sequential
generic algorithms is reused in the implementation of their
respective parallel counterparts. To that end, and as de-
scribed extensively in [12], for each generic algorithm a so-
called parallelizable pattern is defined. Each such pattern
constitutes the maximum amount of work that can be per-
formed both sequentially and in parallel - in the latter case
without having to communicate to obtain non-local data.

C4. Single Uniform API. The image processing library
is provided with an application programming interface iden-
tical to that of an existing sequential library (Horus [7]). As
a result, all parallelism is fully transparent to the user.

C5. Annotated Performance Models. For each generic
algorithm only one parallel counterpart is implemented. To
ensure efficiency on all target platforms, the parallel algo-
rithms are implemented such that they are capable of adapt-
ing to the performance characteristics of a specific machine.
To identify these characteristics, each operation is annotated
with a performance model, as described extensively in [11].

C6. Benchmarking Tool. For a specific machine, per-
formance values for the model parameters are obtained by
running a set of benchmarking operations. Based on the
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Figure 1. Architecture overview.

benchmarking results intra-operation optimization is per-
formed automatically, fully transparent to the user.

C7. Algorithm Specification. Besides intra-operation
optimization, optimization across library calls can be per-
formed if information is available on the order in which
library operations are applied in a given application. This
information is obtainable from the original program code,
but currently we assume that a specification is provided in
addition to the program itself. Such specification closely
resembles a concatenation of library calls, and does not re-
quire any parallelism to be introduced by the programmer.

C8. Scheduling Tool. For optimization of a given ap-
plication a scheduling component is present. It is the task
of the scheduler to remove redundant communication steps,
and to make optimization decisions regarding: (1) the logi-
cal processor grid to map data structures onto, (2) the num-
ber of processing units, and (3) the routing pattern for the
distribution of data. In the implementation of each parallel
generic algorithm, requests for scheduling results are per-
formed to correctly execute the optimizations decided upon.
Whether scheduling results are static only (as they are now),
or should be generated and updated dynamically is still an
important ongoing research issue.

3. Hardware Environment

All three applications described in the remainder of this
paper were implemented and tested on the 120-node homo-
geneous DAS-cluster [1] located at the Vrije Universiteit
in Amsterdam. The 200 Mhz Pentium Pro nodes (with
128 MByte of EDO-RAM) are connected by a 1.2 Gbit/sec
full-duplex Myrinet network, and run RedHat Linux 6.2.
The software architecture was compiled using gcc 3.0 (at
highest level of optimization) and linked with MPI-LFC [2],
an implementation of MPI which is partially optimized for
the DAS. The required set of benchmarking operations was
run on a total of three DAS nodes, under identical circum-
stances as the complete software architecture.
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4. Template Matching

Template matching is one of the most fundamental tasks
in many imaging applications. It is a simple method for lo-
cating specific objects within an image, where the template
(which is, in fact, an image itself) contains the object one is
searching for. For each possible position in the image the
template is compared with the actual image data in order to
find subimages that match the template. To reduce the im-
pact of possible noise and distortion in the image, a similar-
ity or error measure is used to determine how well the tem-
plate compares with the image data. A match occurs when
the error measure is below a certain predefined threshold.

In the example application described here, a large set of
electrical engineering drawings is matched against a set of
templates representing electrical components, such as tran-
sistors, diodes, etc. Although more post-processing tasks
may be required for a truly realistic application (such as ob-
taining the actual positions where a match has occured), we
focus on the template matching task, as it is by far the most
time-consuming. This is especially so because, in this ex-
ample, for each input image

�
error image � is obtained by

using an additional weight template � to put more emphasis
on the characteristic details of each ’symbol’ template � :

�����	��
��������������� � ����������
���� ��!"�����#��� ����$&%��'���#��� �(�*)
(1)

When ignoring constant term � $ � , this can be rewritten as:

�+� � $-, �.!0/1%2� � , �.%3�4�*� (2)

with , the convolution operation. The error image is nor-
malized such that an error of zero indicates a perfect match
and an error of one a complete mismatch. Although the
same result can be obtained using the Fast Fourier Trans-
form (theoretically having a better run-time complexity),
this brute force method is fastest for our particular data set.

4.1. Sequential Implementation

Listing 1 is a sequential pseudo code representation
of Equation (2). The library calls are as described in Sec-
tion 2. Essentially, each input image is read from file,
squared (to obtain

� $ ), and matched against all symbol and
weight templates, which are also obtained from file. In the
inner loop the two convolution operations are performed,
and the error image is calculated and written out to file.

4.2. Parallel Execution

As all parallelization issues are shielded from the user,
the pseudo code of Listing 1 directly constitutes a program
that can be executed in parallel as well. Efficiency of par-
allel execution depends on the optimizations performed by

FOR i=0:NrImages-1 DO
InputIm = ReadFile(...);
SqrdInputIm = BinPixOp(InputIm, ”mul”, InputIm);
FOR j=0:NrSymbols-1 DO

IF (i==0) THEN
weights[j] = ReadFile(...);
symbols[j] = ReadFile(...);
symbols[j] = BinPixOp(symbols[j], ”mul”, weights[j]);

FI
FiltIm1 = GenConvOp(SqrdInputIm, ”mult”, ”add”, weights[j]);
FiltIm2 = GenConvOp(InPutIm, ”mult”, ”add”, symbols[j]);
FiltIm2 = BinPixOp(FiltIm2, ”mult”, 2);
ErrorIm = UnPixOp(FiltIm1, ”sub”, FiltIm2);
WriteFile(ErrorIm);

OD
OD

Listing 1: Pseudo code for template matching.

the scheduling component. For this particular sequential
implementation the generated schedule enforces only four
different communication steps. First, each input image read
from file is scattered throughout the parallel system (note:
our architecture does not support parallel I/O). Next, in the
inner loop all templates are broadcast to all processing units.
Also, in order for the convolution operations to perform cor-
rectly, image borders (or shadow regions) are exchanged
among neighboring nodes in the logical CPU grid. In all
cases, the extent of the border in each dimension is half the
size of the template minus one pixel. Finally, before each
error image is written out to file it is gathered to a single
processing unit. Apart from these communication opera-
tions all processing units can run independently, in a data
parallel manner. As such, the program executes in the same
way as would have been the case for a hand-coded version.

4.3. Performance Evaluation

Because template matching is such an important task in
image processing, it is essential for our software architec-
ture to perform well for this application. The results pre-
sented in Figure 2 show that this is indeed the case (note:
in this figure the column title 5/10 (for example) represents
results for 5 input images matched against 10 different tem-
plates). The graph shows that even for a large number of
processing units, speedup is close to linear. Also, it is in-
teresting to see that the speedup characteristics are identical
when the same number of templates is used in the matching
process, irrespective of the number of input images.

It should be noted that the ’1 template’ case represents
a lower bound on the obtainable speedup. Additional mea-
surements have indicated that the ’10 template’ case is a
representative upper bound. Even when up to 50 templates
were used in the matching process, the speedup characteris-
tics were found to be almost identical to this upper bound.
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Figure 2. Performance (left) and speedup characteristics (right) for template matching using input
images of 1093 � 649 (4-byte) pixels and templates of size 41 � 35. All times in seconds.

5. Multi-Baseline Stereo Vision

As indicated in [9], multi-baseline stereo vision is a more
accurate approach for depth estimation than conventional
stereo. Whereas in ordinary stereo depth is estimated by
calculating the error between two images, multi-baseline
stereo requires more than two equally spaced cameras along
a single baseline to obtain redundant information. This ap-
proach significantly reduces the number of false matches,
thus making depth estimation much more robust.

In the algorithm discussed here, input consists of images
acquired from three cameras. One image is the reference
image, the other two are match images. For each of 16 dis-
parities,

� ���4� % % %������ , the first match image is shifted by
�

pixels, the second image is shifted by / � pixels. First, a dif-
ference image is formed by computing the sum of squared
differences between the corresponding pixels of the refer-
ence image and the shifted match images. Next, an error
image is formed by replacing each pixel with the sum of the
pixels in a surrounding ���	�
��� window. The resulting dis-
parity image is then formed by finding, for each pixel, the
disparity that minimizes the error. The depth of each pixel
then can be displayed as a simple function of its disparity.

ErrorIm = UnPixOp(ErrorIm, ”set”, MAXVAL);
FOR all displacements � DO

DisparityIm1 = BinPixOp(MatchIm1, ”horshift”, � );
DisparityIm2 = BinPixOp(MatchIm2, ”horshift”, ���� );
DisparityIm1 = BinPixOp(DisparityIm1, ”sub”, ReferenceIm);
DisparityIm2 = BinPixOp(DisparityIm2, ”sub”, ReferenceIm);
DisparityIm1 = BinPixOp(DisparityIm1, ”pow”, 2);
DisparityIm2 = BinPixOp(DisparityIm2, ”pow”, 2);
DifferenceIm = BinPixOp(DisparityIm1, ”add”, DisparityIm2);
DifferenceIm = GenConvOp(DifferenceIm, ”mult”, ”add”, unitKer);
ErrorIm = BinPixOp(ErrorIm, ”min”, DifferenceIm);

OD

Listing 2: Pseudo code for multi-baseline stereo vision.

5.1. Sequential Implementations

Our sequential implementation is based on a previous
implementation written in a specialized parallel image pro-
cessing language, called Adapt [16]. As shown in Listing 2,
for each displacement two disparity images are obtained
by first shifting the two match images, and calculating the
squared difference with the reference image. Next, the two
disparity images are added to form the difference image. Fi-
nally, in the example code, the result image is obtained by
performing a convolution with a �����	��� uniform filter and
minimizing over results obtained previously.

With our architecture we have implemented two versions
of the algorithm that differ only in the manner in which the
pixels in the ��������� window are summed. The pseudo
code of Listing 2 shows the version that performs a full
2-dimensional convolution, which we refer to as VisSlow.
As explained in detail in [4], a faster implementation is
obtained when partial sums in the image’s � -direction are
buffered while sliding the window over the image. We refer
to this version of the algorithm as VisFast.

5.2. Parallel Execution

The generated optimal schedule for either version of the
program of Section 5.1 requires not more than five com-
munication steps. In the first loop iteration — and only
then — the three input images MatchIm1, MatchIm2,
and ReferenceIm are scattered to all processing units.
The decompositions of these images are all identical (and
possible in a row-wise fashion only) to avoid a domain mis-
match and unnecessary communication. Also, in each loop
iteration border communication is performed in either ver-
sion of the program. Again, the extent of the border in each
dimension is about half the size of the kernel (i.e., six pix-
els in total). Finally, at the end of the last loop iteration the
result image (ErrorIm) is gathered to one processing unit.
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Figure 3. Performance (left) and speedup characteristics (right) for multibaseline stereo vision using
input images of 240 � 256 (4-byte) pixels. All times in seconds.
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Figure 4. Results for input images of 512 � 528 (4-byte) pixels.

5.3. Performance Evaluation

Results obtained for the two implementations, given in-
put images of size /�� �
�1/ ��� pixels (as used most often in
the literature) are shown in Figure 3. Given the fact that we
only allow border exchange among neighboring nodes in a
logical CPU grid, the maximum number of nodes that can
be used for such image size is � � . As expected, performance
of the VisFast version of the algorithm is significantly bet-
ter than that of VisSlow. As the schedule generated for this
program is identical to what an expert would have imple-
mented by hand, we feel there is no straightforward way of
improving these results even further. Figure 4 shows similar
results for input images of size � � / � �2/�� pixels.

In Figure 3 we have also made a comparison with re-
sults obtained for the same application — implemented in
a task parallel manner — written in a specialized parallel
programming language (SPAR [14]), and executed on the
same parallel machine. In this implementation each loop
iteration is designated as an independent task, thus reduc-
ing the number of processing units that can be used effec-
tively to ��� . For this comparison we have made sure that
the code generated by the SPAR front-end was compiled

identically to our software architecture. Although the com-
munication characteristics of the SPAR implementation are
significantly different, the timing results obtained on a sin-
gle DAS node indicate that the overhead resulting from our
software architecture is much smaller than that of the SPAR
runtime system. We still feel, however, that SPAR does a
pretty good job for this particular application as well.

Based on these results we conclude that our architecture
behaves well for this application. For a medium number of
nodes (up to �2/ ) speedup is close to linear. When more than
�2/ nodes are used, the speedup graphs flatten out due to
the relatively short execution times. It should be noted that
these results are comparable to those reported by Webb [16].
However, a true comparison is difficult, as these results were
obtained on a significantly different machine (i.e., ��� iWarp
processors), and for an implementation that was optimized
for /�� nodes. Much more interestingly, our results are far
better than those reported recently in [8], which were ob-
tained on exactly the same parallel machine, and with a soft-
ware environment similar to ours. This is all the more re-
markable when taking into account the fact that, in contrast
with this particular environment, our software architecture
shields all parallelism from the application programmer.
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6. Detection of Linear Structures

As discussed in [5], the important problem of detecting
lines and linear structures in images is solved by consider-
ing the second order directional derivative in the gradient
direction, for each possible line direction. This is achieved
by applying anisotropic Gaussian filters, parameterized by
orientation � , smoothing scale ��� in the line direction, and
differentiation scale ��� perpendicular to the line, given by

��� � �
	 � � ����� �������2� �����������
������� ����� ���� ��

�� ����� ����� � � (3)

with
�

the line brightness. When the filter is correctly
aligned with a line in the image, and � � ��� � are optimally
tuned to capture the line, filter response is maximal. Hence,
the per pixel maximum line contrast over the filter parame-
ters yields line detection:

� �
	 � �4�-���! �"$#%�'&� � � � � � � � � � �
	 � � ���� �����(� �*) (4)

Figure 5(a) gives a typical example of an image used as
input to this algorithm. Results obtained for a reasonably
large subspace of �)� � ��� � �(� � are shown in Figure 5(b).

(a) (b)

Figure 5. Detection of C. Elegans worms (cour-
tesy of Janssen Pharmaceuticals, Belgium).

6.1. Sequential Implementations

The anisotropic Gaussian filtering problem can be im-
plemented sequentially in many different ways. In the re-
mainder of this section we will consider three possible ap-
proaches. First, for each orientation � it is possible to create
a new filter based on ��� and ��� . In effect, this yields a ro-
tation of the filters, while the orientation of the input image
remains fixed. Hence, a sequential implementation based
on this approach (which we refer to as Conv2D) implies
full 2-dimensional convolution for each filter.

The second approach (referred to as ConvUV) is to de-
compose the anisotropic Gaussian filter along the perpen-
dicular axes * ��+ , and use bilinear interpolation to approxi-
mate the image intensity at the filter coordinates. Although

FOR all orientations , DO
RotatedIm = GeometricOp(OriginalIm, ”rotate”, , );
ContrastIm = UnPixOp(ContrastIm, ”set”, 0);
FOR all smoothing scales -'. DO

FOR all differentiation scales -'/ DO
FiltIm1 = GenConvOp(RotatedIm, ”gaussXY”, - . , - / , 2, 0);
FiltIm2 = GenConvOp(RotatedIm, ”gaussXY”, - . , - / , 0, 0);
DetectedIm = BinPixOp(FiltIm1, ”absdiv”, FiltIm2);
DetectedIm = BinPixOp(DetectedIm, ”mul”, -'. �-�/ );
ContrastIm = BinPixOp(ContrastIm, ”max”, DetectedIm);

OD
OD
BackRotatedIm = GeometricOp(ContrastIm, ”rotate”, 01, );
ResultIm = BinPixOp(ResultIm, ”max”, BackRotatedIm);

OD

Listing 3: Pseudo code for the ConvRot algorithm.

comparable to the Conv2D approach, ConvUV is expected
to be less costly due to a reduced number of accesses to
the image pixels. A third possibility (called ConvRot) is to
keep the orientation of the filters fixed, and to rotate the in-
put image instead. The filtering now proceeds in a two-stage
separable Gaussian, applied along the 	 - and � -direction.

Pseudo code for the ConvRot algorithm is given in List-
ing 3. The program starts by rotating the original input im-
age for a given orientation � . In addition, for all ( ��� ���� )
combinations the filtering is performed by 	 � -separable
Gaussian filters. For each orientation step the maximum re-
sponse is combined in a single contrast image structure. Fi-
nally, the temporary contrast image is rotated back to match
the orientation of the input image, and the maximum re-
sponse image is obtained.

For the Conv2D and ConvUV algorithms, the pseudo
code is identical and given in Listing 4. Filtering is per-
formed in the inner loop by either a full two-dimensional
convolution (Conv2D) or by a separable filter in the princi-
ple axes directions (ConvUV). On a state-of-the-art sequen-
tial machine either program may take from a few minutes
up to several hours to complete, depending on the size of
the input image and the extent of the chosen parameter sub-
space. Consequently, for the directional filtering problem
parallel execution is highly desired.

FOR all orientations , DO
FOR all smoothing scales - . DO

FOR all differentiation scales - / DO
FiltIm1 = GenConvOp(OriginalIm, ”func”, -!. , -�/ , 2, 0);
FiltIm2 = GenConvOp(OriginalIm, ”func”, -!. , -�/ , 0, 0);
ContrastIm = BinPixOp(FiltIm1, ”absdiv”, FiltIm2);
ContrastIm = BinPixOp(ContrastIm, ”mul”, - . 2- / );
ResultIm = BinPixOp(ResultIm, ”max”, ContrastIm);

Listing 4: Pseudo code for the Conv2D and ConvUV algo-
rithms, with "func" either "gauss2D" or "gaussUV".
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6.2. Parallel Execution

Automatic optimization of the ConvRot program has re-
sulted in a schedule that is optimal for this application, as
described in detail in [11]. In this schedule, the full Orig-
inalIm structure is broadcast to all nodes before each cal-
culates its respective partial RotatedIm structure. This
broadcast needs to be performed only once, as Origi-
nalIm is not updated in any operation. Subsequently, all
operations in the innermost loop are executed locally on par-
tial image data structures. The only need for communica-
tion is in the exchange of image borders (shadow regions)
in the two Gaussian convolution operations.

The two final operations in the outermost loop are ex-
cuted in a data parallel manner as well. As this requires
the distributed image ContrastIm to be available in full
at each node [11], a gather-to-all operation is performed.
Finally, a partial maximum response image ResultIm is
calculated on each node, which requires a final gather oper-
ation to be executed just before termination of the program.

The schedule generated for either the Conv2D program
or the ConvUV program is straightforward, and similar to
that of the template matching application of Section 4. First,
the OriginalIm structure is scattered such that each node
obtains an equal-sized non-overlapping slice of the image’s
domain. Next, all operations are performed in parallel, with
border exchange communication required in the convolu-
tion operations only. Finally, before termination of the pro-
gram ResultIm is gathered to a single node.

6.3. Performance Evaluation

From the description above it is clear that the ConvRot
algorithm is most difficult to parallelize efficiently. Note
that this is due to the data dependencies present in the algo-
rithm (i.e., the repeated image rotations), and not in any way
related to the capabilities of our software architecture. In
other words, even when implemented by hand the ConvRot
algorithm is expected to have speedup characteristics that
are not as good as those of the other two algorithms. Fur-
thermore, Conv2D is expected to be the slowest sequential
implementation, due to the excessive accessing of image
pixels in the 2-dimensional convolution operations. In gen-
eral, ConvUV and ConvRot will be competing for the best
sequential performance, depending on the amount of filter-
ing performed for each orientation.

Figure 6 shows that these expectations are indeed cor-
rect. On one processor ConvUV is about ��) � times faster
than ConvRot, and about � ) � times faster than Conv2D. For
120 nodes these factors have become ��) � and � ) � respec-
tively. Because of the relatively poor speedup character-
istics, ConvRot even becomes slower than Conv2D when
the number of nodes becomes large. Although Conv2D has

better speedup characteristics, the ConvUV implementation
always is fastest, either sequentially or in parallel. Figure 7
presents similar results for a minimal parameter subspace,
thus indicating a lower bound on the obtainable speedup.

The generated schedules for both the Conv2D program
and the ConvUV program are identical to what an expert
would have implemented by hand. Speedup values obtained
on 120 nodes for a typical parameter subspace (Figure 6)
are ����� ) / and � � ) � for Conv2D and ConvUV respectively.
As a result we can conclude that our software architecture
behaves well for these implementations. In contrast, the us-
age of generic algorithms (see Section 2 and also [12]) has
caused the sequential implementation of image rotation to
be non-optimal for certain special cases. As an example, ro-
tation over � ��� can be implemented much more efficiently
than rotation over any arbitrary angle. In our architecture
we have decided not to do so, mainly for reasons of soft-
ware maintainability [11]. As a result, we expect a hand-
coded and hand-optimized version of the same algorithm to
be faster, but only marginally so.

7. Conclusions and Future Work

In this paper we have described a software architec-
ture that allows researchers in image processing to develop
parallel applications in a fully transparent (i.e., sequential)
manner. Based on a description of the sequential imple-
mentation and parallel execution of three different exam-
ple applications we have given an assessment of the effec-
tiveness of this architecture in providing significant perfor-
mance gains. These example applications are highly rele-
vant because all are well-known from the literature, and all
contain fundamental operations required in many other im-
age processing research areas as well.

The results presented in this paper have shown our archi-
tecture to serve well in obtaining efficient parallel applica-
tions. In almost all situations hand-coded programs would
not have produced significantly better results. However, as
indicated in Section 6.3, in certain situations we have de-
cided that code maintainability is more important than high-
est performance, thus resulting in applications that could
be executed more efficiently (but often only marginally so).
Therefore, based on the presented results, and given the fact
that all parallelism is shielded from the application pro-
grammer, we conclude that our architecture constitutes a
powerful and user-friendly tool for obtaining high perfor-
mance in many important image processing research areas.

In the near future we will focus our attention on an ex-
tension of the set of (sequential) generic algorithms as de-
scribed in Section 2. Also, we will continue implementing
example applications to investigate the implication of paral-
lelization of typical image processing problems, especially
in the area of real-time image processing.
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Figure 6. Performance (left) and speedup characteristics (right) for computing a typical orientation
scale-space at � � angular resolution (i.e., 36 orientations) and 8 ( � � ��� � ) combinations. Scales com-
puted are � � ��� �4� �4����� and � � ��� �2� /�� �	� , ignoring the isotropic case � � � � � � � � �
� . Image size is
512 � 512 (4-byte) pixels. All times in seconds.
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Figure 7. Results for computing a minimal orientation scale-space at ����� angular resolution (i.e.,
12 orientations) and 2 ( � � ��� � ) combinations. Scales computed are � � � � � � ��� �
� and � � � � � � � ����� .
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