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a b s t r a c t

In this paper, we study IL(PRA), the interpretability logic of PRA. As PRA is neither
an essentially reflexive theory nor finitely axiomatizable, the two known arithmetical
completeness results do not apply to PRA: IL(PRA) is not ILM or ILP. IL(PRA) does, of
course, contain all the principles known to be part of IL(All), the interpretability logic of
the principles common to all reasonable arithmetical theories. In this paper, we take two
arithmetical properties of PRA and see what their consequences in the modal logic IL(PRA)
are. These properties are reflected in the so-called Beklemishev Principle B, and Zambella’s
Principle Z, neither of which is a part of IL(All). Both principles and their interrelation are
submitted to a modal study. In particular, we prove a frame condition for B. Moreover, we
prove that Z follows from a restricted form of B. Finally, we give an overview of the known
relationships of IL(PRA) to important other interpretability principles.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The notion of a relativized interpretation occurs in many places in mathematics and in mathematical logic. If a theory
T interprets a theory S, we shall write T B S, which then, roughly, means that there is a translation ·t from symbols
in the language of S to formulas in the language of T such that any theorem of S becomes a theorem of T under the
canonical extension of this translation to formulas. In the notion of interpretation that we are interested in, the logical
structure of formulas has to be preserved under the translation. Thus, for example, (ϕ ∨ ψ)t = ϕt ∨ ψ t and in particular
⊥
t
= (∨∅)

t
= ∨∅ = ⊥. We refer the reader to [17,5,15] for precise definitions and examples.

In this paper, we shall not gomuch into the technical details of interpretations. Rather, we are interested in the structural
behavior of this notion of interpretability. In particular, we are interested in the structural behavior of interpretability
on sentential extensions of a certain base theory T . An easy example of such a structural property is the transitivity of
interpretations:

(T + α B T + β) ∧ (T + β B T + γ )→ (T + α B T + γ ).
We can use so-called interpretability logics to capture, in a sense, the complete structural behavior of interpretability
between sentential extensions of a certain base theory. We shall soon say a bit more on this. For now, it is important to
note that, for a large collection of theories, the interpretability logic is known.
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notion of B-simulation. We thank Albert Visser for fruitful discussions and challenges. We also thank Franco Montagna for his many contributions to the
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We call a theory reflexive if it proves the consistency of any of its finite sub-theories (as sets of axioms). We call a theory
essentially reflexive if any finite sentential extension of it is reflexive. It is easy to see that any theory with full induction,
like Peano Arithmetic, is essentially reflexive. The interpretability logic of essentially reflexive theories was determined
independently by Berarducci and Shavrukov [4,13].We shall encounter this logic belowunder the name of ILM. The principle
(ABB)→ (A∧�CBB∧�C)which is the particular feature of this system. It is calledMontagna’s principle since it arose during
the original discussions between Franco Montagna and Albert Visser about the modal principles underlying interpetability
logic. It was known to Lindström and Švejdar in arithmetic disguise before.
It turns out that theories which are finitely axiomatizable and which contain a sufficient amount of arithmetic, have a

different interpretability logic which is called ILP. In [17], the first proof was given.
For no theory that is neither finitely axiomatizable nor essentially reflexive, the interpretability logic is known. PRA is

one such theory. In this paper, we shall make some first attempts to work out the interpretability logic of PRA.
As such, this paper also fits into a larger project. As pointed out above, different arithmetical theories have different

interpretability logics. A question that is open since a long time concerns the logic of the core principles that pertain to all
reasonable arithmetical theories — IL(All). As PRA is certainly a ‘reasonable arithmetical theory’, this core logic should also
be a part of IL(PRA). In this paper, we shall not focus too much on the principles in the core logic. Rather shall we consider
the interpretability behavior of PRA that is typical for this theory.
One such principle that is characteristic for PRA is Beklemishev’s principle that shall be studied closely in this paper.

This principle exploits the fact that any theory which is an extension of PRA by Σ2 sentences is reflexive. We give a
characterization of this principle in terms of the modal semantics for interpretability logics.
A topic that is closely related to interpretability logics, is that ofΠ1-conservativity logics. A theory S isΠ1 conservative

over a theory T in the same language of arithmetic, we shall write SBΠ1 T whenever S proves anyΠ1 theorem that is proven
by T . In symbols: T ` π =⇒ S ` π for any π ∈ Π1. It is easy to see that for any Σ1 sentence σ , the following is a valid
principle S BΠ1 T → S + σ BΠ1 T + σ . This principle is the basis for Montagna’s principle for interpretability logic, and
Beklemishev’s principle which is studied in this paper is a restriction of Montagna’s principle.
When T and S are both reflexive theories we have that S B T ↔ S BΠ1 T . This equivalence was exploited by Hájek

and Montagna who were the first to show that the Π1-conservativity logic of PA is ILM as well [9]. The observation
about the equivalence is more generally important when looking at the repercussions of Π1-conservativity principles on
interpretability logics. In this paper, we shall consider Zambella’s principle for Π1-conservativity logics and look at its
repercussions for the interpretability logic of PRA. We shall show that Zambella does not add new information in the sense
that its modal-logical consequences are already implied by Beklemishev’s principle.
It is remarkable that the notion of interpretability is, in a sense, less stable than that of Π1-conservativity. Hájek and

Montagna show that their results extends to all reasonable theories containing IΣ1. This was strengthened by Beklemishev
and Visser in [3]: all theories extending the parameter-free induction schema IΠ−1 have the same Π1-conservativity logic
(ILM) whereas in this range the interpretability logics expose a diverse and wild behavior. Note though that PRA does not
prove IΠ−1 , and, in fact, theΠ1-conservativity logic of PRA remains unknown.
A number of the results in this paper was first proved in [10].

2. Arithmetic

Let us first fix some arithmetical notation.Weusemodal symbols�, ♦,B both inmodal and arithmetical statements, here
we fix their arithmetical meaning. We write, for an arithmetical sentence α, �Tα for formalized provability in T , �T ,nα for
formalized provability of α in T using only non-logical axioms with Gödel numbers≤ n and formulas of logical complexity
≤ n.1 Dually, ♦Tα = ¬�T¬α means formalized consistency of α over T (i.e. nonexistence of a proof of a contradiction from
α), while♦T ,nαmeans¬�T ,n¬α. For theories T , Swe use TBS to denote formalized interpretability of S in T . For arithmetical
sentences α, β , αBT β means T +αB T +β . Similarly for theories T , S,BΠ1 denotes formalizedΠ1-conservativity of T over
S and for arithmetical sentences α, β , α BΠ1 β means T + α BΠ1 T + β .

2.1. What is PRA?

In the literature, there are many definitions of PRA. Probably the best known definition uses a language that contains
a function symbol for every primitive recursive function. The axioms contain the defining equations of these functions.
Moreover, there are induction axioms for each∆0-formula in this enriched language.
Beklemishev has shown in [2] that PRA is in a strong sense equivalent (faithfully mutually interpretable) with (EA)2ω .

Here, (EA)2ω is the theory that is obtained by starting with EA (=I∆0 + exp) and iterating ‘ω many times’ Π2-reflection. In
symbols: (EA)20 = EA, and (EA)

2
n+1 = RFN(EA)2n(Π2).

1 Since PRA proves superexponentiation this is, in the case under study, equivalent to the restriction of axioms to those≤ n.
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In this paper, we shall use the definition:

PRA := (EA)2ω.

Under this definition, the following lemma is immediate.

Lemma 1. Any r.e. extension of PRA byΣ02 sentences is reflexive.

2.2. The Orey–Hájek characterizations

All theories that are mentioned here are supposed to be consistent and have a poly-time recognizable axiomatization.
Orey and Hájek have given several equivalent conditions on theories which express that the one interprets the other. In this
subsection, we shall briefly mention the one we shall need and refer to the literature for proofs.

Lemma 2. Whenever T is reflexive we have that

T B S ⇔ ∀x T ` ¬�S,x⊥

Moreover in the presence of the totality of exponentiation this equivalence can be formalized.

` T B S ↔ ∀x �T¬�S,x⊥

In [10] an overview is given of all the implications, corresponding requirements and necessary arguments regarding
Orey–Hájek. In the above Lemma the⇐ does not need the requirement of reflexivity and can actually be formalized in S12.
For the other direction reflexivity is needed, and for its formalization, the totality of exp as well.
Note that, using the above characterization, the prima facieΣ3 notion of interpretability becomesΠ2.

3. Modal logics and semantics

Similarly as formalized provability can be captured by modal provability logic, we can use modal logic to reason about
formalized interpretability. Modal logic proved to be an extremely useful tool to reason about such formalized phenomena
since it can visualize their behavior using a simple language and an intuitive frame semantics. Perhaps the most significant
point where modal logic shows its skills are completeness proofs — arithmetical completeness proofs are based on modal
completeness proofs obtained by rather standard method of model theory of modal logics. For more on material contained
in this section we refer to [17,10,8].
We will work with modal propositional language containing two modalities — a unary � modality for provability and

a binary Bmodality for interpretability. Modal interpretability formulas are defined as follows:

A ::= p | ⊥ | (A ∧A) | (A→ A) | (�A) | (A BA)

Wewill use standard abbreviations ♦,∨,¬,>,↔, and we write A ≡ B instead of (AB B)∧ (BB A). We shall often omit
brackets writing formulas. We say that ¬,�, and ♦ bind equally strong, they bind stronger then equally strong binding ∨
and ∧which in turn bind stronger then B. The weakest binding connectives are→ and↔.
An arithmetical interpretation of modal formulas is given by arithmetical realizations: for an arithmetical theory T ,

an arithmetical T -realization is a map ∗ sending propositional variables p to arithmetical sentences p∗. It is extended to
interpretability modal formulas as follows: first ∗ commutes with all boolean connectives. Moreover (�A)∗ = �TA∗ and
(A B B)∗ = A∗ BT B∗, i.e. ∗ translates modal operators to formalized provability and interpretability over T respectively.
An interpretability principle of an arithmetical theory T is a modal formula A such that ∀∗ T ` A∗. The interpretability logic

of a theory T , denoted IL(T), is then the set of all the interpretability principles of T .

3.1. The logic IL

The logic IL is in a sense the core interpretability logic — it is a (proper) part of the interpretability logic of any reasonable
arithmetical theory: IL ⊂ IL(T). It captures the basic structural behavior of interpretability.

IL is defined as the smallest set of formulas containing all propositional tautologies, all instantiations of the following
schemata, and is closed under the Necessitation and Modus Ponens rules:

L1 �(A→ B)→ (�A→ �B)
L2 �A→ ��A
L3 �(�A→ A)→ �A
J1 �(A→ B)→ A B B
J2 (A B B) ∧ (B B C)→ A B C
J3 (A B C) ∧ (B B C)→ A ∨ B B C
J4 A B B→ (♦A→ ♦B)
J5 ♦A B A
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Note that the part of IL not containing the Bmodality is the well-known Gödel–Löb provability logic GL, axiomatized by
the first three schemata. It is easy to show that � can be defined in terms of Bmodality: `IL �A↔ ¬A B⊥.
More interpretability logics are obtained extending IL by new interpretability principles. Some of such principles are

listed below:

W A B B→ A B B ∧ �¬A
W∗ A B B→ B ∧ �C B B ∧ �C ∧ �¬A
M0 A B B→ ♦A ∧ �C B B ∧ �C
M A B B→ A ∧ �C B B ∧ �C
P A B B→ �(A B B)
R A B B→ ¬(A B ¬C) B B ∧ �C
R∗ A B B→ ¬(A B ¬C) B B ∧ �C ∧ �¬A

All of these principles are in IL(All) except the principlesM and Pwhich were mentioned above already. For an overview,
see [17,8]. For the last word on IL(All) see [11].
For X a set of principles we denote ILX the logic extending ILwith schemata from X.
There are some results considering arithmetical completeness of interpretability logics: it was shown in [4,13] that

the interpretability logic of an essentially reflexive theory (as e.g. PA) is ILM. For finitely axiomatizable theories containing
supexp the interpretability logic is known to be ILP ([16]).
An important consequence of ILM that expresses theΠ1-conservativity of interpretability more directly is (A B ♦B)→

�(A→ ♦B).

3.2. Modal semantics

Modal frame semantics of interpretability logics is based on GL-frames extended with a ternary accessibility relation
interpreting the binary Bmodality. The ternary relation is however given by a set of binary relations indexed by the nodes:

Definition 1. An IL-frame (a Veltman frame) is a triple 〈W , R, S〉whereW is a nonempty universe, R is a binary relation on
W , and S is a set of binary relations onW , indexed by elements ofW such that

1. R is transitive and conversely well-founded
2. ySxz ⇒ xRy& xRz
3. xRy⇒ ySxy
4. xRyRz ⇒ ySxz
5. uSxvSxw⇒ uSxw

An IL-model is a quadruple 〈W , R, S,〉where 〈W , R, S〉 is a IL-frame and is a subset ofW×Prop, extending to boolean
formulas as usually and to modal formulas as follows:

w  �A iff ∀v(wRv ⇒ v  A)
w  A B B iff ∀u(wRu & u  A⇒ ∃v(uSwv  B))

We adopt standard definitions of validity of a modal formula in a model and in a frame. Moreover, let X be a scheme of
interpretability logic. We say that a formula C in first or higher order logic is a frame condition for X if, for each frame F ,

F |= C iff F |= X.

Let us list some known frame conditions (to be read universally quantified):

M xRySxzRu⇒ yRu
M0 xRyRzSxuRv ⇒ yRv
P xRyRzSxu⇒ yRu ∧ zSyu
W (Sw; R) is conversely well-founded
R xRyRzSxuRv ⇒ zSyv

We have the following completeness results: IL is sound and complete w.r.t. (finite) IL frames, ILP is complete w.r.t. (finite)
ILP frames (all in [6]), ILW is complete w.r.t. (finite) ILW frames ([7], see also [8]), ILM is complete w.r.t. (finite) ILM frames
(in [6], also in [4]).

4. Beklemishev’s principle

It is possible to write down a valid principle specific for the interpretability logic of PRA. This was first done by
Beklemishev (see [17]). Beklemishev’s principle B exploits the fact that any finiteΣ2-extension of PRA is reflexive, together
with the fact that we have a good Orey–Hájek characterization for reflexive theories.
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It turns out to be possible to define a class of modal formulae which are under any arithmetical realization provablyΣ2
in PRA. These are called essentiallyΣ2-formulas, we write ES2. Let us start by defining this class and some related classes.
The idea behind this definition is as follows. It is clear that each modal formula that starts with a � will become under

any arithmetical realization aΣ1 formula. Likewise, taking Lemma 2 into account, we see that any formula of the form AB B
where A isΣ2, will be under any arithmetical realization of complexityΠ2 and hence, ¬(A B B)will again beΣ2. Note that
we are here only formulating sufficient conditions. It turns out to be rather tough to show these classes actually cover, up to
provable equivalence, all formulae in the intended complexity class.
The class BS1 denotes the formulae that are boolean combinations of Σ1 formulae ad thus certainly ∆2. Likewise, ES3

and ES4, stands for those modal formulae that are under any arithmetical realization alwaysΣ3 orΣ4 respectively.
In our definition,Awill stand for the set of all modal interpretability formulae.

BS1 ::= �A | ¬BS1 | BS1 ∧ BS1 | BS1 ∨ BS1

ES2 ::= �A | ¬�A | ES2 ∧ ES2 | ES2 ∨ ES2 | ¬(ES2 BA)
ES3 ::= �A | ¬�A | ES3 ∧ ES3 | ES3 ∨ ES3 | A BA
ES4 ::= �A | ¬ES4 | ES4 ∧ ES4 | ES4 ∨ ES4 | A BA

For n ≥ 4 we set ESn := ES4. We can now formulate Beklemishev’s principle B.

B := A B B→ A ∧ �C B B ∧ �C for A ∈ ES2

Note that B is just Montagna’s principleM restricted to ES2-formulas.

Lemma 3. ILB ` B′, where B′ : A B B → A ∧ C B B ∧ C with A ∈ ES2 and C a CNF (a conjunction of disjunctions) of boxed
formulas.

Proof. Easy. �

5. Arithmetical soundness of B

By Lemma 1 we know that PRA+ σ is reflexive for anyΣ2(PRA)-sentence σ . Thus, we get by Orey–Hájek that

PRA ` σ BPRA ψ ↔ ∀x �PRA(σ → ♦PRA,xψ). (1)

Consequently, for σ ∈ Σ2(PRA),¬(σ BPRAψ) ∈ Σ2(PRA) andwe see that, indeed, ∀ A ∈ ES2 ∀∗ A∗ ∈ Σ2(PRA). This enables
us to prove the arithmetical soundness of B.

Theorem 1. For any formulas B and C we have that ∀ A ∈ ES2 ∀ ∗ PRA ` (A B B→ A ∧ �C B B ∧ �C)∗.

Proof. For some A ∈ ES2 and arbitrary B and C , we consider some realization ∗ and let α := A∗, β := B∗ and γ := C∗. We
reason in PRA and assume α BPRA β . As α isΣ2(PRA), we get by (1) that

∀x �PRA(α→ ♦PRA,xβ). (2)

We now consider n large enough (dependent on γ ) such that

�PRA(�PRAγ → �PRA,n�PRAγ ). (3)

From general observations we have that, for large enough n,

�PRA,n(δ→ ¬ε) ∧ �PRA,nδ→ �PRA,n¬ε,

whence

♦PRA,nε ∧ �PRA,nδ→ ♦PRA,n(δ ∧ ε) (4)

Combining (2), (3), and using (4), we see that for any n, �(α∧�γ → ♦PRA,n(β ∧�γ )). Clearly, α∧�γ is still aΣ2(PRA)-
sentence.2 Again by (1) we get α ∧ �γ B β ∧ �γ . �

Let MESn be the schema A B B → A ∧ �C B B ∧ �C with A ∈ ESn. Theorem 1 can be generalized using results of [1] to
the theory IΣRn , which is Robinson’s arithmetic Q plus theΣn induction rule, for n = 1, 2, 3 as follows:

Theorem 2. IL(IΣRn ) ` MESn+1 for n = 1, 2, 3.

2 Actually, this observation is not necessary as we use the direction in the Orey–Hájek Characterization that does not rely on the reflexivity.
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6. A frame condition for B

Let us first fix some notation. If C is a finite set, we write xRC as short for
∧∧

c∈C xRc. Similar conventions hold for the
other relations. The A-critical cone of x, CAx is in this section defined as C

A
x := {y | xRy ∧ ∀z (ySxz → z 6 A)}.

By x↑we denote the set of worlds that lie above xw.r.t. the R relation. That is, x↑ := {y | xRy}. With ySx↑we denote the
set of those z for which ySxz.
We will consider frames both as modal models without a valuation and as structures for first- (or sometimes second)

order logic. We say that a modelM is based on a frame F if F is preciselyM with the  relation left out.
In this subsection we give the frame condition of Beklemishev’s principle. Our frame condition holds on the class of finite

frames. At first sight, the condition might seem a bit awkward. On second sight it is just the frame condition ofMwith some
simulation built in. First we approximate the class ES2 by stages.

Definition 2.
ES0

2 := BS1

ESn+1
2 := ESn

2 | ES
n+1
2 ∧ ESn+1

2 | ESn+1
2 ∨ ESn+1

2 | ¬(ESn
2 BA)

It is clear that ES2 = ∪iESi
2. We now define some first order formulas Si(b, u) that say that two nodes b and u in a frame

look alike. The larger i is, the more the two points look alike. We use the letter S as to hint at a simulation.

Definition 3.
S0(b, u) := b↑ = u↑
Sn+1(b, u) := Sn(b, u)∧

∀c (bRc → ∃c ′ (uRc ′ ∧ Sn(c, c ′) ∧ c ′Su↑ ⊆ cSb↑))

By induction on n we easily see that ∀n F |= Sn(b, b) for all frames F and all b ∈ F . For i ≥ 1 the relation Si(b, u) is in
general not symmetric. However it is not hard to see that the Si are transitive and reflexive.

Lemma 4. Let F be a model. For all n we have the following. If F |= Sn(b, u), then b  A⇒ u  A for all A ∈ ESn
2 .

Proof. We proceed by induction on n. If n = 0, A ∈ ES0
2 can be written as

∨∨
i(�Ai ∧

∧∧
j ♦Aij). Clearly, if b↑ = u↑ then

b  A⇒ u  A.
Now consider A ∈ ESn+1

2 and b and u such that F |= Sn+1(b, u). We can write

A =
∨∨
i

(
Ai0 ∧

∧∧
j6=0

¬(Aij B Bij)

)
,

with Aij in ESn
2 . If b  A, then for some i, b  Ai0 ∧

∧∧
j6=0 ¬(Aij B Bij). As Sn+1(b, u) → Sn(b, u), and by the induction

hypothesis we see that u  Ai0. So, we only need to see that u  ¬(Aij BBij) for j6=0. As b  ¬(Aij BBij), for some c ∈ C
Bij
b we

have c  Aij. By Sn+1(b, u)we find a c ′ such that uRc ′, and c ′Su↑ ⊆ cSb↑ (thus cSbc ′). This guarantees that c ′ ∈ C
Bij
u . Moreover

we know that Sn(c, c ′), thus by the induction hypothesis, as c  Aij, we get that c ′  Aij. Consequently u  ¬(Aij B Bij). �

Lemma 5. Let F be a finite frame. For all i, and any b ∈ F , there is a valuation V bi on F and a formula A
b
i ∈ ESi

2 such that
F |= Si(b, u)⇔ u  Abi .

Proof. The proof proceeds by induction on i. First consider the basis case, that is, i = 0. Let b↑ be given by the finite set
{xj}j∈J . We define

y  pj ⇔ y = xj
y  r ⇔ bRy.

Let Ab0 be �r ∧
∧∧

j ♦pj. It is now obvious that u  A0 ⇔ u↑ = b↑.
For the inductive step, we fix some b and reason as follows. First, let V bi and A

b
i be given by the induction hypothesis such

that u  Abi ⇔ F |= Si(b, u). We do not specify the variables in Ai but we suppose they do not coincide with any of the ones
mentioned below. Let b↑ = {xj}j∈J . The induction hypothesis gives us sentences A

j
i (no sharing of variables) and valuations

V ji such that F , u  A
j
i ⇔ F |= Si(xj, u).

Let {qj}j∈J be a set of fresh variables. V bi+1 will be V
b
i and V

j
i on the old variables. For the {qj}j∈J we define V

b
i+1 to act as

follows:

y  qj ⇔ y 6∈ xjSb↑.

Moreover we define

Abi+1 := A
b
i ∧

∧∧
j

¬(Aji B qj).

Now we will see that under the new valuation V bi+1,
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(i) u  Abi+1 ⇒ F |= Si+1(b, u),
(ii) F |= Si+1(b, u)⇒ u  Abi+1.

For (i) we reason as follows. Suppose u  Abi+1. Then also u  A
b
i and thus F |= Si(b, u). It remains to show that

F |= ∀c (bRc → ∃c ′ (uRc ′ ∧ Si(c, c ′) ∧ cSbc ′ ∧ c ′Su↑ ⊆ cSb↑)).

To this purpose we consider and fix some xj in b↑. As u  Abi+1, we get that u  ¬(A
j
iBqj). Thus, for some c

′
∈ C

qj
u , c ′  A

j
i.

Clearly c ′  ¬qjwhence xjSbc ′. Also ∀t (c ′Suy⇒ y  ¬qj)which, by the definition of V bi+1 translates to c
′Su↑ ⊆ xjSb↑. Clearly

also uRc ′. By c ′  Aji and the induction hypothesis we get that Si(xj, c
′). Indeed we see that F |= Si+1(b, u).

For (ii) we reason as follows. As F |= Si+1(b, u), also F |= Si(b, u) and by the induction hypothesis, u  Abi . It remains to
show that u  ¬(Aji B qj) for any j. So, let us fix some j. Then, by the second part of the Si+1 requirement we find a c ′ such
that

uRc ′ ∧ Si(xj, c ′) ∧ xjSbc ′ ∧ c ′Su↑ ⊆ xjSb↑.

Now, uRc ′ ∧ xjSbc ′ ∧ c ′Su↑ ⊆ xjSb↑ gives us that c ′ ∈ C
qj
u . By Si(xj, c ′) and the induction hypothesis we get that c ′  A

j
i. Thus

indeed u  ¬(Aji B qj). �

Note that, in the proof of this lemma, we have only used conjunctions to construct the formulas Abi .

Definition 4. For every iwe define the frame condition Ci to be

∀ a, b (aRb→ ∃u (bSau ∧ Si(b, u) ∧ ∀ d, e (uSadRe→ bRe))).

Lemma 6. Let F be a finite frame. For all i, we have that

for all A ∈ ESi
2, F |= A B B→ A ∧ �C B B ∧ �C,

if and only if F |= Ci.

Proof. First suppose that F |= Ci and that a  A B B for some A ∈ ESi
2 and some valuation on F . We will show that

a  A ∧ �C B B ∧ �C for any C . Consider therefore some bwith aRb and b  A ∧ �C . The Ci condition provides us with a u
such that

bSau ∧ Si(b, u) ∧ ∀ d, e (uSadRe→ bRe) (∗)

As F |= Si(b, u), we get by Lemma 4 that u  A. Thus, as aRu and a  A B B, we know that there is some d with uSad and
d  B. If now dRe, by (∗), also bRe and hence e  C . Thus, d  B ∧ �C . Clearly bSad and thus a  A ∧ �C B B ∧ �C .
For the opposite direction we reason as follows. Suppose that F 6|= Ci. Thus, we can find a, bwith

aRb ∧ ∀u (bSau ∧ Si(b, u)→ ∃ d, e (uSadRe ∧ ¬bRe)). (∗∗)

By Lemma 5 we can find a valuation V bi and a sentence A
b
i ∈ ESi

2 such that u  A
b
i ⇔ F |= Si(b, u). Let q and s be fresh

variables. Moreover, letD be the following set.

D := {d ∈ F | bSadRe ∧ ¬bRe for some e}.

We define a valuation V that is an extension of V bi by stipulating that

y  q ↔ (y ∈ D) ∨ ¬(bSay),
y  s ↔ bRy.

We now see that

(i) a  Abi B q,
(ii) a  ¬(Abi ∧ �s B q ∧ �s).

For (i) we reason as follows. Suppose that aRb′ and b′  Abi . If ¬(bSab
′), b′  q and we are done. So, we consider the case in

which bSab′. As Si(b, b′), (∗∗) now yields us a d ∈ D such that b′Sad. Clearly bSad and thus, by definition, d  q.
To see (ii) we notice that b  Abi ∧ �s. But if bSay and y  q, by definition y ∈ D and thus y  ¬�s. Thus b ∈ C

q∧�s
a and

a  ¬(Ai ∧ �s B q ∧ �s). �

The following theorem is now an immediate corollary of the above reasoning.

Theorem 3. A finite frame F validates all instances of Beklemishev’s principle if and only if ∀i F |= Ci.

Definition 5. Let Bi be the principle A B B→ A ∧ �C B B ∧ �C for A ∈ ESi
2.

Corollary 1. For a finite frame we have F |= Bi ⇔ F |= Ci.



Author's personal copy

M. Bílková et al. / Annals of Pure and Applied Logic 161 (2009) 128–138 135

For the class of finite frames, we can get rid of the universal quantification in the frame condition of Beklemishev’s
principle. Remember that depth(x), the depth of a point x, is the length of the longest chain of R-successors starting in x.

Lemma 7. If Sn(x, x′), then depth(x) = depth(x′).

Proof. Sn(x, x′)⇒ S0(x, x′)⇒ x↑ = x′↑. �

Lemma 8. If Sn(x, x′) & depth(x) ≤ n, then Sm(x, x′) for all m.

Proof. Theproof goes by induction onn. Forn = 0, the result is clear. So,we consider some x, x′withSn+1(x, x′)&depth(x) ≤
n+ 1. We are done if we can show Sm+1(x, x′) form ≥ n+ 1.
This, we prove by a subsidiary induction on m. The basis is trivial. For the inductive step, we assume Sm(x, x′) for some

m ≥ n+ 1 and set out to prove Sm+1(x, x′), that is

Sm(x, x′) ∧ ∀y (xRy→ ∃y′ (ySxy′ ∧ Sm(y, y′) ∧ y′Sx′↑ ⊆ ySx↑))

The first conjunct is precisely the induction hypothesis. For the second conjunctwe reason as follows. Asm ≥ n+1, certainly
Sn+1(x, x′). We consider ywith xRy. By Sn+1(x, x′), we find a y′ with

ySxy′ ∧ Sn(y, y′) ∧ y′Sx′↑ ⊆ ySx↑.

As xRy and depth(x) ≤ n+ 1, we see depth(y) ≤ n. Hence by the main induction, we get that Sm(y, y′) and we are done. �

Definition 6. A B-simulation on a frame is a binary relation S for which the following holds.

1. S(x, x′)→ x↑ = x′↑
2. S(x, x′) & xRy→ ∃y′(ySxy′ ∧ S(y, y′) ∧ y′Sx′↑ ⊆ ySx↑)

If F is a finite frame that satisfies Ci for all i, we can consider
⋂
i∈ω Si. This will certainly be a B-simulation.

Definition 7. The frame condition CB is defined as follows. F |= CB if and only if there is a B-simulation S on F such that for
all x and y,

xRy→ ∃y′(ySxy′ ∧ S(y, y′) ∧ ∀d, e (y′SxdRe→ yRd)).

An immediate consequence of Lemma 8 is the following theorem.

Theorem 4. For F a finite frame, we have

F |= B ⇔ F |= CB.

Note that theM-frame condition can be seen as a special case of the frame condition of B: we demand that S be the identity
relation.
It is not hard to see that the frame condition ofM0 follows fromC0. And indeed, ILB ` M0 as ♦A ∈ ES2 and ABB→ ♦ABB.

Actually, we have that ILB1 ` M0.

7. Beklemishev and Zambella

Zambella proved in [18] a fact concerning Π1-consequences of theories with a Π2 axiomatization. As we shall see, his
result has some repercussions on the study of the interpretability logic of PRA.

Lemma 9 (Zambella). Let T and S be two theories axiomatized by Π2-axioms. If T and S have the same Π1-consequences then
T + S has no moreΠ1-consequences than T or S.

In [18], Zambella gave a model-theoretic proof of this lemma. As was sketched by Mints (see [3]), also a finitary proof based
on Herbrand’s theorem can be given. This proof can certainly be formalized in the presence of the superexponentiation
function, thus it yields a principle for theΠ1-conservativity logic ofΠ2-axiomatized theories. We denote it here as Z(EPc

2).

Z(EPc
2) (A ≡Π1 B)→ A BΠ1 A ∧ B for A and B in EPc

2.

where the class EPc
2 of modal formulas is defined as follows:

EPc
2 ::= �A | ¬�A | EPc

2 ∧ EPc
2 | EP

c
2 ∨ EPc

2 | A BA.

The class EPc2 is of course tailored so that any arithmetical realization will be provably Π2. Note that the superscript c is
there to indicate that the Bmodality is to be interpreted as a formalization of the notion ofΠ1 conservativity. It is not hard
to see that the formalization of this notion is itselfΠ2. Moreover, note that this class coincides in extension with the earlier
defined class ES3.
Since PRA isΠ2 axiomatized and proves totality of the supexp function the principle Z(EP)c2 applies to PRA.
But there are repercussions for the interpretability logic of PRA as well. We know that for reflexive theories Π1-

conservativity coincideswith interpretability.We also know that anyΣ2-extension of PRA is reflexive (Lemma1). Altogether
this means that a statement α B β and α BΠ1 β are equivalent if α is inΣ2 and PRA+ α isΠ2-axiomatized, i.e. α is in∆2.
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We arrive at Zambella’s principle for interpretability logic:

Z (A ≡ B)→ A B A ∧ B for A and B in BS1

For the Π1-conservativity logic of PRA, the principle Z(EPc
2) is really informative (see [3]), it is the only principle known

on top of the basic ones for the Π1-conservativity logic of PRA. The principle Z for interpretability logic is very interesting
as well but it does turn out to be derivable in ILB as we will now proceed to show. (See however the final remark of this
section.)
Here modal logic again proves to be informative — to have such a proof is interesting since it is not at all clear to us how

the two principles relate arithmetically.
We shall give a purely syntactical proof of ILB0 ` Z, B0 being a restriction of B to BS1 formulas, see Definition 5. The proof

in [10] of the same fact was not correct.
Throughout the proof we consider a full disjunctive normal form of modal formulas:

Definition 8. A full disjunctive normal form (a full DNF) over a finite set of formulas {C1, . . . , Cn} is a disjunction of
conjunctions of the form ±C1 ∧ · · · ∧ ±Cn where +Ci means Ci and −Ci means ¬Ci, i.e., each Ci occurs either positively
or negatively in each disjunct.

Each propositional formula is clearly equivalent to a formula in full DNF over the set of propositional atoms occurring
in it. Similarly each modal BS1-formula, being a boolean combination of boxed formulas, is equivalent to a formula in full
DNF over the set of its boxed subformulas, or even over any finite set of boxed formulas containing its boxed subformulas
(or just its boxed subforumulas maximal w.r.t. box-depth).

Theorem 5. ILB0 ` Z

Proof. Let A, B ∈ BS1 and let {A1, . . . , Am} be the set of boxed subformulas of both A and B. Assume w.l.o.g. that A and B are
in full DNF over {A1, . . . , Am}. Assume A ≡ B. We show that A B A ∧ B. Since A comes in full DNF, this means to show, for
each disjunct D of A, that D B A ∧ B. In fact, we show this for any disjunct of A or B.
A disjunct D of either A or B is fully determined by the set D� of boxed formulas occurring positively in it. We shall write

D� also for the conjunction of its members.
We first show, ifD is amember of A or Bwhich has amaximal setD� (no disjunct E with E� properly containingD� occurs

in A or B) then D B A ∧ B:
Suppose such D is in A, the other case is symmetrical. Since DBAwe have also DBB. Then, noting that D� is a conjunction

of boxed formulas and applying B0, we obtain D B B ∧ D�.
Now take any disjunct E of B for which E� does not contain D�. Then E contradicts D� by its negative part. We distinguish

two cases: if for all E in B the set E� does not contain D�, then B contradicts D�. It follows from D B B∧ D� that D B⊥. Then
clearly D B A ∧ B.
Otherwise B does contain E with E� containing D�. But since D has a maximal Box-set, E and Dmust be the same and D

occurs in B as well. Thus D B B ∧ D and, since ` D→ A, also D B A ∧ B.
We have shown that all maximal disjuncts interpret A ∧ B.
We show by induction that the same is true for all other disjuncts of A and B. This suffices for the proof.
Assume that, for all k′ with m ≥ k′ > k and all disjuncts D in either A or B with D� of size k′, D B A ∧ B (this has already

been shown for k equal to the size of the maximal Box-set in A and in B which is certainly less then m). Consider a disjunct
D of A, the other case is again symmetrical. Assume w.l.o.g. that D� has size k. We have to show D B A ∧ B:
Since DBA and hence DB B, we again have that DB B∧D�. Now D� conflicts with all the disjuncts of B, Box-set of which

is not a superset of D�. Again, we distinguish two cases: if there are no disjuncts of B with a Box-set which is a superset of
D� then B conflicts with D� and D B⊥ and thus D B A ∧ B.
Otherwise some disjuncts of B do have a Box-set which is a superset of D�. Let E1, . . . , El be all such disjuncts of B. Then,

since D B B ∧ D� and ` B ∧ D� → E1 ∨ · · · ∨ El (where E1 ∨ · · · ∨ El is the part of B not conflicting with D�), we obtain
D B E1 ∨ · · · ∨ El. Now it suffices to show that each Ei interprets A ∧ B.
Fix an Ei and suppose E�i have size k. But then Ei = D and thus we have, as before, D B (B ∧ D) B (B ∧ A). If E

�
i have size

greater then k, the induction hypothesis apply and we obtain that Ei interprets A ∧ B. �

Actually it is possible to extend Zambella’s principle somewhat in such a way that it is no longer clear whether the result
is still derivable from B. First note that the formulas in ES2 are just the propositional combinations of �-formulas.
Zambella’s principle for interpretability logic as studied in this paper reads

A ≡ B→ A B A ∧ B

where A and B should both be BS1. However, to have access to the ideas behind Zambella’s principle, it is sufficient that
A and B be both provably of complexity ∆2. We can thus look at those ES2 formulae who are provably equivalent to the
negation of some other ES2 formula and plug those formulae in. Reflecting this thought in a formula yields3

�((A↔ A′) ∧ (B↔ B′))→ (A ≡ B→ A B A ∧ B)

3 We would like to thank one of the referees for pointing out that our original extension of Zambella’s principle for interpretability logic could actually
be even generalized to its current form.
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where A, A′, B and B′ are all from ES2. It actually makes sense to call this principle the Zambella principle for interpretability
logic as it more precisely reflects the arithmetical ingredients. We have chosen not to do so as to be consistent with earlier
papers.

8. Delimitation of IL(PRA)

Let us see what we can conclude about IL(PRA) from the above. Certainly IL(PRA) includes IL(All) but it is more than that
because B is not a principle of IL(All). The latter is clear from the fact that IL(All) ⊆ ILM ∩ ILP and Z is not in ILP: consider
the following model:

We havew  ♦p ≡ ♦q andw 1 p B p ∧ q, thus Zambella fails. The model is clearly an ILPmodel.
This shows, by derivability of Z from B, that indeed B is not a principle of IL(All).
Also we know that IL(PRA) is not ILM since M is not in IL(PRA), as A. Visser discusses in [17]: the two logics cannot be

the same because if ILM is a part of the interpretability logic of a theory then it is a part of the interpretability logic of any
of its finite extensions as well. This cannot be the case for PRA because not all of its finite extensions are reflexive. A more
specific example of a principle of ILMwhich is not in IL(PRA) can be given:

A B ♦B→ �(A B ♦B).

That this formula is not in IL(PRA) can be shown using Shavrukov’s result from [14] about complexity of the set {ψ |ψ ∈
Π1 & φ B ψ}; see [17] for the full proof.
We know thatM0 is provable in ILB. The other principles surely contained in IL(PRA) are B, R andW (R∗ is the conjunction

of R andW). Let us show they are mutually independent. Note that for nonderivability proofs soundness suffices.
First let us recall the frame conditions for the two principlesW and R. The condition forW requires that the composition

(Sw; R) is conversely well-founded, the condition for R is the following: xRyRzSxuRv ⇒ zSyv.

W vs. B: It is easy to see that W 0 B since the former is in IL(All) while the later is not in it. Since R is in IL(All) as well,
W,R 0 B. The following frame

is an ILB frame and it violates the frame condition forW:wRxRy and xSwySwx andwRz. Now z is bi-similar to y and
B is ensured. Thus B 0 W.
Moreover, the same frame, being an R frame, shows that B,R 0 W: the only case to check iswRxRySwxRy. Now

the condition for R requires ySxy, but this is clearly the case since Sx is reflexive over x.
R vs. B: Again, since R ∈ IL(All), it cannot be that R ` B. We have already discussed that neither R,W ` B. The following

frame

is an ILB-frame violating the frame condition of R: We have a basic situation violating R, which is xRyRzSxuRv and
¬zSyv. To ensure B for ywe add an arrow yRv, to ensure B for z, we add a bi-similar world z ′ such that xRz ′ and z ′
has no successors at all.
Moreover, since the frame is clearly aW frame as well, we have shown that B,W 0 R.

R vs.W: already discussed in [8].
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It is clear from our exposition that, although we have solved a number of problems concerning IL(PRA), many remain
open, e.g. those connected with our incomplete knowledge of IL(All). Also, we lack a modal completeness theorem for ILB.
Unfortunately, the complexity of the frame condition for Bmakes this seem an intractable problem at the present time. In
any case, the logic of interpretability is far from being a finished subject.
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