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Theorem 1. (Glivenko, Theorem 5 of course notes)
`CPC ϕ iff `IPC ¬¬ϕ

Proof. The direction from right to left is trivial, so we only give the proof from
left to right. First a syntactic proof using the Hilbert type system.

For a proof one has to show ¬¬ϕ for all CPC-axioms ϕ, and prove that
modus ponens preserves this property: If `IPC ¬¬ϕ and `IPC ¬¬(ϕ → ψ),
then `IPC ¬¬ψ.

Of course ¬¬ϕ for IPC-axioms follows from the IPC-theorem ϕ → ¬¬ϕ.
That leaves of the axioms only ¬¬ϕ → ϕ. And ¬¬(¬¬ϕ → ϕ) follows from
useful equivalences 12 and 7. That modus ponens preserves the property follows
from useful equivalence 12 (ue12).

This finishes the proof, but we will also give a semantic proof. That proof as-
sumes the completeness of IPC with regard to finite models. Assume `CPC ϕ.
Then, for any endpoint w of any finite model w |= ϕ, because in an endpoint
the valuations behave as in classical logic. So, for any v in any finite model, for
all endpoints w with vRw, w |= ϕ; so v |= ¬¬ϕ. Therefore, `IPC ¬¬ϕ. a

Let ϕn be defined for IPC as in the course notes.

Lemma 2. For each ϕ, ϕn ∼ ¬¬ϕn ∼ ¬¬ϕ.
Proof. By induction on the length of ϕ. We give one example, the step for
→. Assume the statement holds for ϕ and ψ. Then ϕn → ψn ∼ ¬¬ϕn →
¬¬ψn ∼ ¬¬(ϕn → ψn) (by IH1, ue12) and also ¬¬ϕn → ¬¬ψn ∼ ¬¬ϕ →
¬¬ψ ∼ ¬¬(ϕ→ ψ) (by IH2, ue12). a

The second part of this lemma fails for IQC. And therefore the next proof
as well.

Theorem 3. (Theorem 30 of course notes) `CPC ϕ iff `IPC ϕn

Proof. Immediate from Theorem 1 and Lemma 2. a

Theorem 4. (Extended version of Glivenko)

ψ1, . . . , ψn `CPC ϕ iff ¬¬ψ1, . . . ,¬¬ψn `IPC ¬¬ϕ

The proof will be for the exercises. It is worthwhile to note though that if
one wants to prove the Glivenko Theorem through natural deduction one has
no choice but to prove the extended version.
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