Intuitionisitic Logic Spring 2012

Homework 3

(due Monday, 12th March)

- 1. Prove that the canonical model $\mathfrak{M}_{\mathbf{KC}_{prop}}$ of $\mathbf{KC}_{prop} := \mathbf{IPC} + \neg p \lor \neg \neg p$ for propositional variables p only, has a largest element above each world, and simultaneously that \mathbf{KC}_{prop} is equal to \mathbf{KC} , in the following manner:
 - (a) Take a node Γ of the canonical model of $\mathbf{K}C_{prop}$. Show that Γ contains either $\neg p_i$ or $\neg \neg p_i$ for each *i*. [1 pt]
 - (b) Assume that Γ contains $\neg p_i$ for $i \in A$, $\neg \neg p_j$ for $j \in B$, where $A \cup B = \mathbb{N}$. Show that then $\Gamma \cup \{\neg p_i \mid i \in A\} \cup \{p_i \mid j \in B\}$ is consistent. [1 pt]
 - (c) Show that there is a unique Δ in $\mathfrak{M}_{\mathbf{KC}_{prop}}$ containing $\{\neg p_i \mid i \in A\} \cup \{p_j \mid j \in B\}$ (you may use the fact that $\mathbf{CPC}_{prop} := \mathbf{IPC} + p \lor \neg p$ for propositional variables p only, is equal to \mathbf{CPC}), and that this Δ is the largest element above Γ . [2 pts]
 - (d) Conclude that any such Γ satisfies all of **KC** and therefore **KC**_{prop} is equal to **KC**. [2 pts]
- 2. Let \mathfrak{F} be a frame with a non-empty domain attached to each node.
 - (a) Assume the domain is the same for each node (constant domains). Show that $\forall x(\varphi \lor \psi(x)) \to \varphi \lor \forall x \psi(x)$ (x not free in φ) is valid on this frame. [2 pts]
 - (b) Assume wRu with D_w ⊂ D_u (the domain of w is strictly contained in the domain of u). Give a valuation to p and an interpretation of A so that, in the resulting model on ℑ, ∀x(p ∨ A(x)) → p ∨ ∀xA(x) is not valid. [2 pts]
- 3. Let \mathfrak{F} be a frame.
 - (a) Assume for each $w \in W$ there exists an endpoint u with wRu. Show that $\forall x \neg \neg \varphi(x) \rightarrow \neg \neg \forall x \varphi(x)$ is valid on this frame. [2 pts]
 - (b)* Assume there exists a sequence $w_1R^+w_2R^+\ldots(xR^+y \text{ standing for } xRy \text{ and } x \neq y)$ in W such that for each $w \in W$ there is an n such that wRw_n . Give domains for all worlds in the model and an interpretation for A such that, in the resulting model on \mathfrak{F} , $\forall x \neg \neg A(x) \rightarrow \neg \neg \forall xA(x)$ is not valid. [2 pts]
- 4. Prove that $\vdash_{\mathbf{IPC}} \varphi$ implies $\vdash_{\mathbf{S4}} \varphi^{\Box}$ in the following manner:

Assume \mathfrak{M} on \mathfrak{F} is an **S4**-countermodel to φ^{\Box} . Take the frame \mathfrak{G} that is obtained from \mathfrak{F} by replacing each cluster (collection of nodes that are pairwise accessible from each other) by a single node (try to define this exactly.) There is an obvious function from \mathfrak{F} onto \mathfrak{G} . Show that it is a **frame**-p-morphism. Define a valuation on \mathfrak{G} in such a way that the resulting model \mathfrak{N} is an **IPC**-model. Show, by induction on the length of $\psi(p_1, \ldots, p_n)$ that, for each $w \in W, \mathfrak{M}, w \models \psi^{\Box}$ (as an **S4**-model) iff $\mathfrak{N}, f(w) \models \psi$ (as an **IPC**-model). Finally conclude that \mathfrak{N} (as an **IPC**-model) falsifies φ . [7 pts]