1. (a) Show that \textbf{LC} characterizes the upwards linear frames ($\forall x, y, z (xRy \land xRz \rightarrow yRz \lor zRy)$), i.e., show that $\mathcal{F} \models \textbf{LC}$ iff R is upwards linear. [2 pts]

(b) Prove, using the canonical model method, strong completeness of \textbf{LC} with respect to the linear frames. [2 pts]

(c) Prove that \textbf{LC} has the FMP (finite model property w.r.t. linear frames) by means of filtration [2 pts]

2. (a) Let φ contain only \land, \lor and \rightarrow but no \neg and no \bot. Let \mathcal{M} be any Kripke-model (for the language of φ). Extend the model \mathcal{M} to \mathcal{M}^+ by adding one more node x at the top above all the nodes of \mathcal{M}, and making all the propositional variables of φ true in x. Show that, for all the nodes w in \mathcal{M} we have:

$\mathcal{M}, w \models \varphi$ iff $\mathcal{M}^+, w \models \varphi$

(satisfaction in the old and new model is the same for φ). [4 pts]

(b) Let φ contain only \land, \lor and \rightarrow but no \neg and no \bot. Show that $\vdash_{\textbf{IPC}} \varphi$ iff $\vdash_{\textbf{KC}} \varphi$. (You may use what is claimed about completeness of \textbf{KC} in class.) [2 pts]

3. Give an example of a finite rooted frame \mathcal{F} with a rooted generated subframe \mathcal{G} that is not a p-morphic image of \mathcal{F}. Sketch the proof. (Hint: there exists an example with 6 worlds.) [6 pts]