
CHAPTER ??

Realizability

A. S. Troelstra1

Faculteit Wiskunde en Informatica
Universiteit van Amsterdam
Plantage Muidergracht 24

1018TV AMSTERDAM (NL)

Contents

1 Numerical realizability 2

2 Abstract realizability and function realizability 18

3 Modified realizability 26

4 Derivation of the Fan Rule 32

5 Lifschitz realizability 34

6 Extensional realizability 37

7 Realizability for intuitionistic second-order arithmetic 39

8 Realizability for higher-order logic and arithmetic 43

9 Further work 55

1 S. Buss, U. Kohlenbach, H. Luckhardt, J.R. Moschovakis and J. van Oosten have
commented on earlier drafts of this paper. Van Oosten also provided a sketch for section
8 which has been used in composing the final version.

1 Numerical realizability

1.1. Introduction

There is not just one single notion of realizability, but a whole family of
notions, which of course resemble each other in certain respects. This section
is devoted to a fairly detailed discussion of the earliest and most basic notion
of realizability, S.C. Kleene’sKleene, S.C. realizability by numbers. In later
sections we discuss more briefly variations of the basic notion. We do not aim
at an exhaustive description of all possible proof-theoretic applications of
realizability, but rather aim at presenting illustrative examples. Most of the
sections are followed by “Notes”, containing suggestions for further reading,
some historical comments, etc. The historical comments concern mainly
the period after 1972, since the history up till 1972 is fairly completely
documented in (?).

Realizability by numbers was introduced in (?) as a semantics for intu-
itionistic arithmetic, by defining for arithmetical sentences A a notion “the
number n realizes A”, intended to capture some essential aspects of the intu-
itionistic meaning of A. Here n is not a term of the arithmetical formalism,
but an element of the natural numbers IN. The definition is by induction on
the complexity of A:

• n realizes t = s iff t = s holds;

• n realizes A ∧B iff p0n realizes A and p1n realizes B;

• n realizes A ∨ B iff p0n = 0 and p1n realizes A or p0n = 1 and p1n
realizes B;

• n realizes A→ B iff for all m realizing A, n•m is defined and realizes
B;

• n realizes ¬A if for no m, m realizes A;

• n realizes ∃y A iff p1n realizes A[y/p0n].

• n realizes ∀y A iff n•m is defined and realizes A[y/m], for all m.

Here p1 and p0 are the inverses of some standard primitive recursive pairing
function p coding IN2 onto IN, and m is the standard term Sm0 (numeral)
in the language of intuitionistic arithmetic corresponding to m ; • is partial
recursive function application, i.e. n•m is the result of applying the function
with code n to m. (Later on we also use m̄, n̄, . . . for numerals.)

The definition may be extended to formulas with free variables by stip-
ulating that n realizes A if n realizes the universal closure of A.

Reading “there is a number realizing A” as “A is constructively true”, we
see that a realizing number provides witnesses for the constructive truth of

2

existential quantifiers and disjunctions, and in implications carries this type
of information from premise to conclusion by means of partial recursive
operators. In short, realizing numbers “hereditarily” encode information
about the realization of existential quantifiers and disjunctions.

Realizability, as an interpretation of “constructively true” is reminiscent
of the well-known BrouwerBrouwer, L.E.J.-HeytingHeyting, A.-KolmogorovKolmogorov,
A. explanation (BHK for short) of the intuitionistic meaning of the logical
connectives. BHK explains “p proves A” for compound A in terms of the
provability of the components of A. For prime formulas the notion of proof
is supposed to be given. Examples of the clauses of BHK are:

• p proves A → B iff p is a construction transforming any proof c of A
into a proof p(c) of B;

• p proves A ∧B iff p = (p0, p1) and p0 proves A, p1 proves B;

• p proves A ∨ B iff p = (p0, p1) with p0 ∈ {0, 1}, and p1 proves A if
p0 = 0, p1 proves B if p0 ̸= 0.

Realizability corresponds to BHK if (a) we concentrate on (numerical) infor-
mation concerning the realizations of existential quantifiers and the choices
for disjunctions, and (b) the constructions considered for ∀,→ are encoded
by (partial) recursive operations.

Realizability gives a classically meaningful definition of intuitionistic
truth; the set of realizable statements is closed under deduction and must be
consistent, since 1=0 cannot be realizable. It is to be noted that decidedly
non-classical principles are realizable, for example

¬∀x[∃yTxxy ∨ ∀y¬Txxy]

is easily seen to be realizable. (T is Kleene’sKleene, S.C. T-predicate, which
is assumed to be available in our language; Txyz is primitive recursive in
x, y, z and expresses that the algorithm with code x applied to argument y
yields a computation with code z; U is a primitive recursive function ex-
tracting from a computation code z the result Uz.) For ¬A is realizable iff
no number realizes A, and realizability of ∀x[∃yTxxy∨∀y¬Txxy] requires a
total recursive function deciding ∃yTxxy, which does not exist (more about
this below). In this way realizability shows how in constructive mathe-
matics principles may be incorporated which cause it to diverge from the
corresponding classical theory, instead of just being included in the classical
theory.

Some notational habits adopted in this paper are: dropping of distin-
guishing sub- and superscripts where the context permits; saving on paren-
theses, e.g. for a binary predicate R applied to x, y we often write Rxy
instead of R(x, y) (this habit has just been demonstrated above). The sym-
bol ≡ is used for literal identity of expressions modulo renaming of bound

3

variables. ⇒ is used as metamathematical consequence relation, and in
particular A,B ⇒ C expresses a rule which derives C from premises A,B.
FV(A) is the set of free variables of expression A.

1.2. Formalizing realizability in HA

In order to exploit realizability proof-theoretically, we have to formalize
it. Let us first discuss its formalization in ordinary intuitionistic first-order
arithmetic HA (“Heyting’s Arithmetic”), based on intuitionistic predicate
logic with equality, and containing symbols for all primitive recursive func-
tions, with their recursion equations as axioms.

x, y, z, . . . are numerical variables, S is successor. We use the notation n̄
for the term Sn0; such terms are called numerals. p0,p1 bind stronger than
infix binary operations, i.e. p0t+s is (p0t)+s. For primitive recursive pred-
icates R, Rt1 . . . tn may be treated as a prime formula since the formalism
contains a symbol for the characteristic function χR.

Now we are ready for a formalized definition of “x realizes A” in HA.

Definition. By recursion on the complexity of A we define x rnA, x ̸∈
FV(A), “x numerically realizes A” :

x rn (t = s) := (t = s)
x rn (A ∧B) := (p0x rnA) ∧ (p1x rnB),
x rn (A→ B) := ∀y(y rnA→ ∃z(Txyz ∧ Uz rnB)),
x rn ∀y A := ∀y∃z(Txyz ∧ Uz rnA),
x rn ∃y A := p1x rnA[y/p0x].

Note that FV(x rnA) ⊂ {x} ∪ FV(A). 2

Remarks. (i) We have omitted clauses for negation and disjunction, since
in arithmetic we can take ¬A := A→ 1 = 0, A∨B := ∃x((x = 0 → A)∧(x ̸=
0 → B)). If we spell out x rn (A∨B) on the basis of this definition, we find

x rn (A ∨B) := (p0x = 0 → (p0p1x)0 rnA) ∧ (p0x ̸= 0 → (p1p1x)0 rnB),

(ii) The definition of realizability permits slight variations, e.g. for the
first clause we might have taken

x rn′(t = s) := (x = t ∧ t = s).

However, it is routine to see that this variant rn′-realizability is equivalent
to rn-realizability in the following sense: for each formula A there are two
partial recursive functions ϕA and ψA such that

⊢ x rnA→ ϕA(x) rn
′A

⊢ x rn′A→ ψA(x) rnA.

4

(If in the future we shall call two versions of a realizability notion equivalent,
it will always be in this or a similar sense.) Similarly, if we treat ∨ as a
primitive, the clause for x rn (A ∨B) given above may be simplified to

x rn (A ∨B) := (p0x = 0 ∧ p1x rnA) ∨ (p0x ̸= 0 ∧ p1x rnB),

which yields an equivalent notion of realizability.
(iii) In terms of partial recursive function application • and the defined-

ness predicate ↓ (t↓ means “t is defined”), we can write more succinctly:

x rn (A→ B) := ∀y(y rnA→ x•y↓ ∧ x•y rnB),
x rn ∀y A := ∀y(x•y↓ ∧ x•y rnB).

where t↓ expresses that t is defined (cf. next subsection). Of course, the
partial operation • and the definedness predicate ↓ are not part of the lan-
guage, but expressions containing them may be treated as abbreviations,
using the following equivalences:

t1 = t2 ↔ ∃x(t1 = x ∧ t2 = x),
t1•t2 = x↔ ∃yzu(t1 = y ∧ t2 = z ∧ Tyzu ∧ Uu = x),
t↓ ↔ ∃z(t = z).

(t1, t2 terms containing •, x, y, z, u not free in t1, t2). However, note that the
logical complexity of A(t), where t is an expression containing •, depends
on the complexity of t! (On the other hand, t↓ is always expressible in Σ0

1-
form.) For metamathematical investigations it is therefore more convenient
to formalize realizability in a conservative extension HA∗ of HA in which
we can treat “•” as a primitive. Treating t1 = t2 for partially defined t1, t2
as an abbreviation in a rigorous way is possible, but involves a good deal of
lengthy inductions, as demonstrated in (?). Since ordinary logic deals with
total functions only, we first need to extend our logic to the (intuitionistic)
logic of partial terms LPT, or intuitionistic E+-logic, in the terminology of
Troelstra and van Dalen(?, 2.2.3). LPT first appeared in (?).

1.3. Intuitionistic predicate logic with partial terms LPT

Variables are supposed to range over the objects of the domain considered,
so always denote; arbitrary terms need not denote, so we need a predicate
E, expressing definedness; Et reads “t denotes” or “t is defined”. Instead of
Et we shall write t↓, in the notation commonly used in recursion theory.

If we also have equality in our logic, and read t = s as “t and s are both
defined and equal”, we can express t↓ as t = t.

5

The following axiomatization is a convenient (but not canonical) choice
for arguments proceeding by induction on the length of formal deductions:

L1 A→ A,
L2 A, A→ B ⇒ B,
L3 A→ B, B → C ⇒ A→ C,
L4 A ∧B → A, A ∧B → B,
L5 A→ B, A→ C ⇒ A→ B ∧ C,
L6 A→ A ∨B, B → A ∨B,
L7 A→ C, B → C ⇒ A ∨B → C,
L8 A ∧B → C ⇒ A→ (B → C),
L9 A→ (B → C) ⇒ A ∧B → C,
L10 ⊥ → A,
L11 B → A⇒ B → ∀xA (x ̸∈ FV(B)),
L12 ∀xA ∧ t↓ → A[x/t],
L13 A[x/t] ∧ t↓ → ∃xA,
L14 A→ B ⇒ ∃xA→ B (x ̸∈ FV(B))

where t↓ := t = t. For equality we have (F function symbol, R relation
symbol of the language):

EQ

{
∀xy(x = y → y = x), ∀xyz(x = y ∧ y = z → x = z),
∀x⃗y⃗(x⃗ = y⃗ ∧ Fx⃗↓ → Fx⃗ = F y⃗), ∀x⃗y⃗(Rx⃗ ∧ x⃗ = y⃗ → Ry⃗)

Basic predicates and functions of the language are assumed to be strict:

STR F (t1, . . . , tn)↓ → ti↓, R(t1, . . . , tn) → ti↓

Note that this logic reduces to ordinary first-order intuitionistic logic if all
functions are total, i.e. ∀x⃗(fx⃗↓), since then t↓ for all terms t.

For the notion “equally defined and equal if defined” introduced by

t ≃ s := (t↓ ∨ s↓) → t = s,

we can prove the replacement schema for arbitrary formulas A

t ≃ s ∧A[x/t] → A[x/s].

1.4. Conservativeness of defined functions

Relative to the logic of partial terms, the following conservative extension
result is easily proved. Let Γ be a theory based on LPT, such that

Γ ⊢ A(x⃗, y) ∧A(x⃗, z) → y = z.

Then we may introduce a symbol ϕA for a partial function with axiom

Ax(ϕA) A(x⃗, y) ↔ y = ϕA(x⃗).

6

The conservativeness of this addition can be proved in a straightforward
syntactic way; the easiest method, however, uses completeness for Kripke
models, see (?, 2.7).

Let Γ∗ consist of Γ and all substitution instances of the axiom schemata
w.r.t. the extended language, and let ϕ(Γ∗) be the result of systematically
eliminating the function symbol ϕA from the elements of Γ, and assume
ϕ(Γ∗) to be provable from Γ, then the conservative extension result still
holds in the form: “Γ∗ +Ax(ϕA) is conservative over Γ”.

This extended result applies to HA∗ defined below, since eliminating the
symbol for partial recursive function application from instances of induction
yields instances of induction in the language of HA.

1.5. Formalizing elementary recursion theory in HA∗

HA∗ is the conservative extension of HA, formulated in the intuitionistic
logic of partial terms, with a primitive binary partial operation • of partial
recursive function application. t1•t2•t3 . . . abbreviates (. . . ((t1•t2)•t3) . . .)
(association to the left).

Note that strictness entails in particular t•t′↓ → t↓ ∧ t′↓ for the applica-
tion operation. Of course we have to require totality for the primitive recur-
sive functions; it suffices to demand 0↓, Sx↓. In all other cases the primitive
recursive functions satisfy equations with =, characterizing them inductively
in terms of functions introduced before (e.g. x+0 = x, x+Sy = S(x+ y)).
By induction one can then prove Fx1 . . . xn↓ for each primitive recursive
function symbol F .

A smooth formalization of elementary recursion theory in HA∗ can be
given by using Kleene’sKleene, S.C. index method in combination with the
theory of elementary inductive definitions in arithmetic (?, 3.6, 3.7). In par-
ticular we obtain the smn-theorem, the recursion theorem (Kleene’sKleene,
S.C. fixed-point theorem), the KleeneKleene, S.C. normal form theorem, etc.
Moreover, by the normal form theorem, every partial recursive function is
definable by a term of the language of HA∗.

Notation. If t is a term in the language of HA∗, then Λx.t is a canon-
ically chosen code number for t as a partial recursive function of x, uni-
formly in the other free variables; by the smn-theorem we may therefore
assume Λx.t to be primitive recursive in FV(t) \ {x}. Λx1 . . . xn.t abbrevi-
ates Λx1(Λx2 . . . (Λxn.t) . . .). 2

We note the following

Lemma. In HA∗ the Σ0
1-formulas of HA are equivalent to prime formulas

of the form t = t for suitable t, and each formula t = s is equivalent to a
Σ0
1-formula of HA.

7

Proof. Systematically using the equivalences mentioned above transforms
any formula t = s of HA∗ into a Σ0

1-formula of HA. Conversely, let a Σ0
1-

formula be given; by the normal form results of recursion theory, we can
write this in the form ∃zT (n̄, ⟨x⃗⟩, z) for a numeral n̄; this is equivalent to
n̄•⟨x⃗⟩ = n̄•⟨x⃗⟩. 2

We are now ready to formalize x rnA directly in HA∗.

1.6. Formalizing rn-realizability in HA∗

Definition. x rnA is defined by induction on the complexity of A, x ̸∈
FV(A).

x rnP := P ∧ x↓ for P prime,
x rn (A ∧B) := p0x rnA ∧ p1x rnB,
x rn (A→ B) := ∀y(y rnA→ x•y rnB) ∧ x↓,
x rn ∀y A := ∀y(x•y rnA),
x rn ∃y A := p1x rnA[y/p0x].

We also define a combination of realizability with truth, x rntA; the clauses
are the same as for rn , the clause for implication excepted, which now reads:

x rnt (A→ B) := ∀y(y rntA→ x•y rntB) ∧ x↓ ∧ (A→ B). 2

Remarks. (i) t rnA is ∃-free (i.e. does not contain ∃) for all A. Note that,
by our definition of ∨ in terms of the other operators, ∃-free implies ∨-free.

(ii) The clauses “∧x↓” have been added for the cases of prime formulas
and implications, in order to guarantee the truth of part (i) of the following
lemma.

(iii) For negations we have x rn¬A↔ ∀y(¬y rnA)∧x↓, and x rn¬¬A↔
∀y(¬y rn¬A) ∧ x↓ ↔ ∀y¬∀z¬(z rnA) ∧ x↓ ↔ ¬¬∃z(z rnA) ∧ x↓.
The following lemmas are easily proved by induction on A.

Lemma. (Definedness of realizing terms; Substitution Property) For r ∈
{rn, rnt}

(i) ⊢ trA→ t↓,

(ii) (xrA)[y/t] ≡ xr (A[y/t]) (x ̸∈ FV(A) ∪ FV(t), y ̸≡ x).

Proof. By induction on the complexity ofA. Let e.g. t rn ∃yA, then p1t rnA[y/p0t],
hence by induction hypothesis p1t↓, and so by strictness t↓. 2

Lemma. HA∗ ⊢ t rntA→ A.
A similar lemma holds for all combinations of realizability with truth (i.e.
realizabilities with t in their mnemonic code) we shall encounter in the
sequel; we shall not bother to state it explicitly in the future. We can
readily prove that realizability is sound for HA∗:

8

1.7. Theorem. (Soundness theorem)

HA∗ ⊢ A⇒ HA∗ ⊢ t rnA ∧ t rntA

for a suitable term t with FV(t) ⊂ FV(A).
Proof. The proof proceeds by induction on the length of derivations; that
is to say, we have to find realizing terms for the axioms, and for the rules
we must show how to find a realizing term for the conclusion from realizing
terms for the premises. We check some cases.

L5. Assume t rn (A→ B), t′ rn (A→ C), and x rnA; then p(t•x, t′•x) rn (B∧
C), so Λx.p(t•x, t′•x) rn (A→ B ∧ C).

L14. Assume t rn (A→ B), x ̸∈ FV(B), and let y rn ∃xA, then p1y rnA[x/p0y],
hence t[x/p0y]•(p1y) rnB, so Λy.t[x/p0y]•(p1y) rn (∃xA→ B).

Of the non-logical axioms, only induction requires attention. Suppose

x rn (A[y/0] ∧ ∀y(A→ A[y/Sy])).

Then

p0x rnA[y/0], z rnA→ (p1x)•y•z rnA[y/Sy].

So let t be such that

t•0 ≃ p0x, t•(Sy) ≃ (p1x)•y•(t•y).

The existence of t follows either by an application of the recursion theorem,
or is immediate if closure under recursion has been built directly into the
definition of recursive function. It is now easy to prove by induction that t
realizes induction for A. 2

A statement weaker than soundness is ⊢ A ⇒ ⊢ ∃x(x rnA); we might
call this weak soundness. We can also prove a stronger version of soundness:

1.8. Theorem. (Strong Soundness Theorem) For closed A

HA∗ ⊢ A⇒ HA∗ ⊢ n̄ rnA ∧ n̄ rntA for some numeral n̄.

Proof. Let HA∗ ⊢ A; from the soundness theorem we find a term t such
that

t rnA, hence t↓.

t↓, i.e. t = t is equivalent to a Σ0
1-formula of HA, say ∃x(s = 0), and HA

proves only true Σ0
1-formulas, from which we see that t = n̄ must be provable

in HA∗ for some numeral n̄. Similarly for rnt. 2

9

1.9. Remark. If one formalizes the proof of the soundness theorem, it is
easy to see that there are primitive recursive functions ψ, ϕ such that

HA ⊢ Prf(x, pAq) → Prf(ϕ(x), Sub(py rnAq, y, ψ(x)))

where “Prf” is the formalized proof-predicate ofHA∗, pξq is the gödelnumber
of expression ξ, and Sub(pBq, x, psq) is the gödelnumber of B[x/s].

In fact, the whole implication is provable even in primitive recursive
arithmetic. But the statement expressing a formalized version of the strong
completeness theorem:

Prf(x, pAq) → Prf(ϕ(x), pψ(x) rnAq)

(A closed, for suitable provably recursive ϕ, ψ) is not provable in HA (see
section 1.16).

1.10. Lemma. (Self-realizing formulas) For ∃-free formulas, canonical re-
alizers exist, that is to say for each ∃-free A we have in HA∗

(i) ⊢ ∃x(x rnA) → A,

(ii) ⊢ A→ tA rnA for some term tA with FV(tA) ⊂ FV(A).

(iii) A formula A is provably equivalent to its own realizability, i.e. A ↔
∃x(x rnA)), iff A is provably equivalent to an existentially quantified
∃-free formula.

(iv) Realizability is idempotent, i.e. ∃x(x rn∃y(y rnA)) ↔ ∃x(x rnA); in
fact,even ∃x(x rn (A↔ ∃y(y rnA))) holds.

Proof. Take ts=s′ := 0, tA∧B := p(tA, tB), t∀xA := Λx.tA, tA→B := Λx.tB
(x ̸∈ FV(tB)), and prove (i) and (ii) by simultaneous induction on A. (iii)
and (iv) are immediate corollaries. 2

Remark. An observation of practical usefulness is the following. For any
definable predicate with canonical realizers (i.e. a predicate A definable by
an ∃-free formula) we obtain an equivalent realizability if we read restricted
quantifiers ∀x(A(x) → . . .) and ∃x(A(x) ∧ . . .) as quantifiers ∀x∈A, ∃x∈A
over a new domain with realizability clauses copied from numerical quan-
tification, i.e.

x rn ∀y∈A.B := ∀y∈A(x•y rnB) ∧ x↓,
x rn ∃y∈A.B := p1x rnB[x/p0x] ∧A(p0x).

In short, we may simply forget about the canonical realizers.

10

1.11. Axiomatizing provable realizability

As we have seen already in the introduction, realizability validates more
than what is provable in HA; in fact, we can formally prove realizability of
in HA∗ an intuitionistic version of Church’sChurch, A. thesis:

CT0 ∀x∃y A(x, y) → ∃z∀x(A(x, z•x) ∧ z•x↓).

CT0 is certainly not provable in HA, since it is in fact refutable in classical
arithmetic. This version of Church’sChurch, A. thesis is in fact a combi-
nation of the well-known version which states “Each humanly computable
function is recursive” and the intuitionistic reading of ∀x∃yA(x, y) which
states that there is a method for constructing, for each given x, a y such
that A(x, y). Such a method describes a humanly computable function.

We now ask ourselves: is there a reasonably simple axiomatization (by
a few axiom schemata say) of the formulas provably realizable in HA? The
answer is yes, the provably realizable formulas can be axiomatized by a
generalization of CT0, namely “Extended Church’s Thesis”:Church, A.

ECT0 ∀x(Ax→ ∃y Bxy) → ∃z∀x(Ax→ z•x↓ ∧B(x, z•x)) (A ∃-free).

Lemma. Each instance of ECT0 is HA∗-realizable.
Proof. Suppose

u rn ∀x(Ax→ ∃yBxy)

Then ∀xv(v rnAx → u•x•v rn∃yBxy), and since A is ∃-free, in particular
∀x(Ax → u•x•tA rn∃yBxy), so ∀x(Ax → p1(u•x•tA) rnB(x,p0(u•x•tA)).
Then it is straightforward to see that

p(Λx.p0(u•x•tA),Λxv.p(0,p1(u•x•tA)))

realizes the conclusion. 2

Remark. The condition “A is ∃-free” in ECT0 cannot be dropped: ap-
plying unrestricted ECT0 to Ax := ∃zTxxz ∨ ¬∃zTxxz, Bxy := (y =
0∧∃zTxxz) ∨ (y = 1∧¬∃zTxxz) yields a contradiction. In fact, this exam-
ple can be used to show that even unrestricted ECT0! fails (ECT0! is like
ECT0 except that ∃y in the premise is replaced by ∃!y; ∃!y means “there is
a unique y such that”).

Theorem. (Characterization Theorem for rn-realizability)

(i) HA∗ + ECT0 ⊢ A↔ ∃x(xrA) for r ∈ {rn, rnt},

(ii) For closed A, HA∗+ECT0 ⊢ A⇔ HA∗ ⊢ n̄ rnA for some numeral n̄.

11

Proof. (i) is proved by a straightforward induction on A. The crucial case is
A ≡ B → C; then B → C ↔ (∃x(x rnB) → ∃y(y rnC)) (by the induction
hypothesis) ↔ ∀x(x rnB → ∃y(y rnC)) (by pure logic) ↔ ∃z∀x(x rnB →
z•x rnC) (by ECT0, since x rnB is ∃-free) ≡ ∃z(z rn (B → C)).

(ii). The direction ⇒ follows from the strong soundness theorem plus
the lemma; ⇐ is an immediate consequence of (i). 2

Curiosity prompts us to ask which formulas are classically provably re-
alizable, i.e. provably realizable in first-order Peano Arithmetic PA, which
is just HA with classical logic. The answer is contained in the following

Proposition. PA ⊢ ∃x(x rnA) ⇔ HA+M+ECT0 ⊢ ¬¬A,
where M is Markov’s principle:

M ∀x(A ∨ ¬A) ∧ ¬¬∃xA→ ∃xA.

Proof. Let PA ⊢ ∃x(x rnA), and let B be a negative formula (i.e. a formula
in the ∧, ∀,→-fragment) such that HA+M ⊢ x rnA ↔ B(x). Then PA ⊢
¬∀x¬(x rnA), and since PA is conservative over HA for negative formulas
(in consequence of Gödel’s negative translation), also HA ⊢ ¬∀x¬B, i.e.
HA+M ⊢ ¬¬∃x(x rnA), and thus it follows that HA+M+ECT0 ⊢ ¬¬A.
The converse is simpler. 2

1.12. Extensions of HA∗

For suitable sets Γ of extra axioms, we may replace HA∗ in the sound-
ness and characterization theorem by HA∗ + Γ. Weak soundness and the
characterization theorem require for all A ∈ Γ

(1) HA∗ + Γ ⊢ ∃x(x rnA).

Soundness requires for all A ∈ Γ

(2) HA∗ + Γ ⊢ t rnA for some term t,

and strong soundness requires (2) and in addition: HA∗ + Γ proves only
true Σ0

1-formulas.

Examples

(a) For Γ any set of ∃-free formulas soundness and the characterization
theorem extend. If HA∗+Γ proves only true Σ0

1-formulas, strong soundness
holds. The next two examples permit characterization and strong soundness.

(b) Let ≺ be a primitive recursive well-ordering of IN, provably total and
linear in HA∗; for Γ we take all instances of transfinite induction over ≺:

TI(≺) ∀y(∀x≺y A→ A[x/y]) → ∀xA.

12

(c) Γ is the set of instances of Markov’s principle (cf. the last proposition
in 1.11). In fact, in the presence of CT0, which is valid under realizability,
Γ may be replaced by a single axiom:

∀xy(¬¬∃zTxyz → ∃zTxyz).

It is also worth noting that in the presence of M, we can use the following
variant of ECT0 which is equivalent to ECT0:

ECT′
0 ∀x(¬A→ ∃yBxy) → ∃z∀x(¬A→ z•x↓ ∧B(x, z•y)).

(d) An extension of another kind is obtained if we enrich the language
with constants for inductively defined predicates, e.g. the tree predicate
Tr. Intuitively, Tr is the least set containing the (code of the) single-
node tree (i.e. ⟨ ⟩ ∈ Tr), and with every recursive sequence of tree codes
n•0, n•1, . . . , n•m, . . . in Tr, Tr also contains a code for the infinite tree hav-
ing the trees with codes n•m as immediate subtrees, namely p(1, n). Thus
if

A(X,x) := (x = 0) ∨ (p0x = 1 ∧ ∀m(p1x•m ∈ X))

we have

A(Tr, x) → x ∈ Tr,
∀x(A(λy.B, x) → B[y/x]) → ∀x ∈ Tr.B[y/x]

for all B in the language extended with the new primitive predicate Tr.
Then we can extend rn-realizability simply by putting

x rn (t ∈ Tr) := t ∈ Tr.

Let us check that the soundness theorem extends. A(Tr, x) is equivalent to
an ∃-free formula, so its realizability implies its truth, and x ∈ Tr follows.
As to the schema, assume

u rn ∀x(A(λy.B, x) → B[y/x]), or
u rn ∀x[(x = 0 → B(0)) ∧ (p0x = 1 ∧ ∀yB(p1x•y) → Bx)].

So

p0(u•0)•(0, 0) rnB(0),
p1(u•x)•v rnB(x) if p0x = 1 and v rn (p0x = 1 ∧ ∀yB(p1x•y).

Assume ∀y(e•(p1x•y) rnB(p1x•y)), p0x = 1. Then

v = p(0,Λy.e•(p1x•y)) rn (p0x = 1 ∧ ∀yB(p1x•y)).

Therefore

if p0x = 1 and ∀y(e•(p1x•y) rnB(p1x•y))
then p1(u•x)•(0,Λy.e•(p1x•y)) rnB(x).

13

Now we construct by the recursion theorem an e such that

e•x ≃


p0(u•0)•0 if x = 0,
p1(u•x)•p(0,Λy.e•(p1x•y)) if p0x = 1,
undefined otherwise.

We then prove by induction on Tr that ∀x ∈ Tr(e•x rnB(x)). This is
straightforward. This example is capable of considerable generalization,
namely to arithmetic enriched with constants for predicates introduced by
iterated inductive definitions of higher level; see e.g. (?, IV, section 6).

The examples just mentioned also permit extension of rnt-realizability.
We end the section with some applications of rn- and rnt-realizability.

1.13. Proposition. (Consistency and inconsistency results)

(i) HA∗+ECT0 is consistent relative to HA∗ (and hence also relative to
PA).

(ii) ¬∀x(A ∨ ¬A), ¬(∀x¬¬B → ¬¬∀xB) are consistent with HA∗ for
certain arithmetical A,B.

(iii) The schema “Independence of Premise”

IP (¬A→ ∃zB) → ∃z(¬A→ B)

is not derivable inHA∗+CT0+M; in fact, HA∗+IP+CT0+M ⊢ 1 = 0.

Proof. (i) Immediate from the characterization theorem.
(ii) is a corollary of the realizability of CT0: take A ≡ ∃yTxxy, B ≡

∃yTxxy ∨ ¬∃yTxxy.
(iii) By M, ¬¬∃yTxxy → ∃zTxxz; apply IP to obtain ∀x∃z(¬¬∃yTxxy →

Txxz), then by CT0 there is a total recursive F such that ¬¬∃yTxxy →
T (x, x, Fx), and this would make ∃yTxxy recursive in x. 2
We next give an example of a conservative extension result.

1.14. Definition. CC(rn) (the rn-Conservative Class) is the class of for-
mulas A such that whenever B → C is a subformula of A, then B is ∃-free.
2

Lemma. For A ∈ CC(rn) we have ⊢ ∃x(x rnA) → A.
Proof. By induction on the structure of A. Consider the case A ≡ B → C;
then B is ∃-free, so there is a tB such that ⊢ B → tB rnB. Assume B and
x rn (B → C), then x•tB↓ ∧ x•tB rnC, hence by the induction hypothesis
C; therefore (x rn (B → C)) → (B → C). 2
The lemma in combination with the characterization theorem yields

14

Proposition. HA∗ + ECT0 is conservative over HA∗ w.r.t. formulas in
CC(rn):

(HA∗ + ECT0) ∩ CC(rn) = HA∗ ∩ CC(rn).

The following proposition follows from rnt-realizability.

1.15. Proposition. (Derived rules) In HA∗

(i) For sentences ⊢ A ∨B ⇒ ⊢ A or ⊢ B (Disjunction property DP),

(ii) For sentences ⊢ ∃xA ⇒ ⊢ A[x/n̄] for some numeral n̄ (Explicit
Definability for Numbers EDN),

(iii) Extended Church’sChurch, A. Rule: for ∃-free A

ECR ⊢ ∀x(A→ ∃yBxy) ⇒ ⊢ ∃z∀x(A→ z•x↓ ∧B(x, z•x)).

Proof. (i) follows from (ii) (actually, (i) and (ii) are equivalent for systems
containing a minimum of arithmetic, see (?)). As to (ii), let ⊢ ∃xA, then
by the strong soundness for rnt-realizability ⊢ m̄ rnt∃xA for some numeral
m̄, so ⊢ p1m̄ rntA[x/p0m̄], and hence ⊢ A[x/p0m̄].

(iii) Assume ⊢ ∀x(A → ∃yBxy), then for a suitable t ⊢ t rnt ∀x(A →
∃yBxy), i.e.

⊢ ∀x∀z(z rntA→ p1(t•x•z) rntB(x,p0(t•x•z)).

Since tA rntA,

⊢ ∀x(A→ p1(t•x•tA) rntB(x,p0(t•x•tA))),

and therefore ⊢ ∀x(A→ B(x,p0(t•x•tA)). So we can take z = Λx.p0(t•x•tA).
2

1.16. Remark. The DP cannot be formalized in any consistent extension
of HA itself ((?), (?)). We sketch Myhill’sMyhill, J. R. argument (the
result of FriedmanFriedman, H. M. is even stronger). Assume that there is
a provably recursive function f satisfying

⊢ Prf(x, pA ∨Bq) → ((fx = 0 ∧ Pr(pAq)) ∨ ((fx = 1 ∧ Pr(pBq))).

So f = {p̄}, and ⊢ ∀x∃yT n̄xy. Let F enumerate all primitive recursive
functions, i.e. λn.F (i, n) is the i-th primitive recursive function. Put

D(n) := p̄•F (n, n) ̸= 0,

then ⊢ ∀n(Dn ∨ ¬Dn) (i.e. Prf(k̄, p∀n(Dn ∨ ¬Dn)q) for a specific k̄), from
which we can find a particular primitive recursive λn.F (m̄, n) such that ⊢

15

Prf(F (m̄, n̄), pDn̄∨¬Dn̄q). ThenDm̄→ p̄•F (m̄, m̄) ̸= 0→ Prf(F (m̄, m̄), pDm̄∨
¬Dm̄q) ∧ Pr(p¬Dm̄q), hence ¬Dm̄ follows, since HA∗ is consistent. If we
start assuming ¬Dm̄, we similarly obtain a contradiction.

From this we see that DP cannot be proved in HA∗ itself; for if DP were
provable in HA∗, then a function f as above would be given by

f(x) := p0(the least y s.t.(x does not prove a closed disjunction and y = 0)
or (for some closed pA ∨Bq, Prf(x, pA ∨Bq) ∧ p0y = 0 ∧ Prf(p1y, pAq))
or (for some closed pA ∨Bq, Prf(x, pA ∨Bq) ∧ p1y = 1 ∧ Prf(p1y, pBq))).

This in turn implies that the strong soundness theorem is not formalizable in
HA∗, since strong soundness for rn-realizability immediately implies EDN
for HA∗ + ECT0.

1.17. Notes

Slash relations. Already in (?), a modification of numerical realizability
was considered, namely Γ ⊢-realizability; let us use “r” as a short designa-
tion for this kind of realizability. The clauses for ∀,∧ and for prime formulas
are as for ordinary realizability; the clauses for ∨, ∃,→ become:

• nr (A ∨B) iff p0n = 0, p1nrA and Γ ⊢ A, or p0n ̸= 0, p1nrB and
Γ ⊢ B;

• nr ∃xA iff p1nrA[x/p0n] and Γ ⊢ A[x/p0n];

• nr (A → B) iff for all m, if mrA and Γ ⊢ A, then n•m is defined
and n•mrB.

(?, Example 2 on page 510) used this notion to obtain a version of Church’sChurch,
A. thesis. Later (?) observed that by dropping the realizability part and
retaining only the provability part, one obtained an inductively defined prop-
erty of formulas which could be used to obtain quite simple proofs of (gen-
eralizations of) the disjunction- and existence properties for logic and arith-
metic. For easy reference, let us define Γ|A (“Γ slashes A”) for arithmetic,
treating ∨,¬ as defined, and putting Γ|⊢ A as short for “Γ|A and Γ ⊢ A”:

Γ|P iff Γ ⊢ P for prime sentences P,
Γ|(A ∧B) iff Γ|A and Γ|B,
Γ|(A→ B) iff Γ|⊢ A⇒ Γ|B,
Γ|∃xA iff Γ|⊢ A[x/n̄] for some numeral n̄,
Γ|∀xA iff Γ|A[x/n̄] for all numerals n̄.

Γ|A for a formula A is defined as Γ|B for some universal closure B of A.
(For predicate logic, clauses for ∨,⊥ have to be added.)

“|” is sometimes called a realizability, but we think it better to reserve
the term realizability for notions where realizing objects appear explicitly.

16

Since the “|” in “Γ|A” has nothing to do with division, the term “divides”
for “|” is also not advisable. Therefore we call the notions derived from, or
similar to Kleene’sKleene, S.C. Γ|A simply slash relations or slashes.

In one respect Γ|A is not well behaved; it is not closed under deduction,
since it may happen that Γ|A, but not Γ|(A ∨ A). (?) gave a simple mod-
ification which overcomes this defect: the deducibility requirements in the
clauses for ∨, ∃ are dropped, and for implication and universal quantification
we require instead

Γ|(A→ B) iff (Γ|A⇒ Γ|B) and Γ ⊢ A→ B,
Γ|∀xAx iff Γ ⊢ ∀xAx and Γ|A[x/n̄] for all n̄.

Now Γ|A ⇒ Γ ⊢ A holds for all A, and the modified slash yields the same
applications as the original one. In fact, one easily proves by formula induc-
tion that Γ| ⊢ A in the sense of KleeneKleene, S.C. iff Γ|A in the sense of
Aczel. The Aczel slash also has an appealing model-theoretic interpretation;
see e.g. (?, 13.7).

It is also worth noting that C|C is both necessary and sufficient for the
validity of the rule “For all A, ⊢ C → ∃xA ⇒ ⊢ C → A[x/n̄] for some n̄”
((?), (?, 3.1.8)).

Slash operators in many variants have been widely used for obtaining
metamathematical results for formalisms based on intuitionistic logic.

The slash as defined above applies to sentences only, but the use of
partial reflection principles in combination with formalized versions of the
slash relation, restricted to formulas of bounded complexity, may be used to
deal with free numerical variables, see (?, 3.1.16).

Suitable slash relations for systems beyond arithmetic may be defined
by considering conservative extensions with extra “witnessing constants” for
existential statements. The explicit definability property for numbers EDN
can then be proved by proving soundness of slash for the extended system
(a typical example is (?)).

(?) describes the extension of the KleeneKleene, S.C. slash to higher-
order logic. In (?) it is shown that this extension of the slash is in fact
equivalent to a categorical construction on the free topos due to P. Freyd
(see (?)).

(?) use slash relations and numerical realizability combined with truth
(q-realizability, see below) to obtain the explicit set-existence property (ex-
plicit definability property for sets) for intuitionistic second-order arithmetic
HAS (cf. 7.1) and intuitionistic set theory plus countable choice or rela-
tivized dependent choice.

(?) use a slash relation to establish a very interesting result: there is
a particular number-theoretic property A(n) such that if HA proves trans-
finite induction for a primitive recursive binary relation ≺ w.r.t. A, then
≺ is well-founded with ordinal less than ϵ0. (The corresponding result is
false for PA, cf. (?).) If transfinite induction is proved for ≺ w.r.t. A for

17

the theory HA+ obtained by adding transfinite induction for all recursive-
wellorderings, then ≺ is well-founded.

Of the many papers discussing or making use of slash relations we further
mention: Beeson(?, ?, ?), (?), Dragalin(?, ?), (?), (?), (?), Myhill(?, ?),
Robinson(?).

q-realizability. Since in soundness theorems for formalized realizability we
prove deducibility instead of just truth, one can replace deducibility in the
definition of Γ⊢-realizability by truth; let us use “q” for this realizability.
The clauses for ∃,→ then become:

x q (A→ B) := ∀y(y qA ∧A→ x•y qB) ∧ x↓,
x q ∃yA := p1x qA[y/p0x] ∧A[y/p0x].

Such a q-variant was used in (?) to obtain derived rules for intuitionis-
tic analysis with function variables. q-realizability is also not closed under
deducibility (think of an instance A of CT0 unprovable in HA; then A is
q-realizable, but A ∨ A is not). (?) observed that an Aczel-style mod-
ification could be used instead of q-realizability; this corresponds to our
rnt-realizability. (?) use rn -realizability and q-realizability to obtain con-
sistency with Church’sChurch, A. thesis, the disjunction property and the
numerical existence property for set theories based on intuitionistic logic,
with axioms asserting the existence of very large cardinals, thereby demon-
strating that the metamathematical properties just mentioned, often re-
garded as a test for the constructive character of a system, are not affected
by assumptions concerning large cardinals.

Shanin’s algorithm. In a number of papers ShaninShanin, N.A. presented
a systematic way of making the constructive meaning of arithmetical formu-
las explicit. His method is logically equivalent to rn-realizability, as shown
by (?). On the one hand Shanin’sShanin, N.A. algorithm is more compli-
cated than realizability, on the other hand it has the advantage of being the
identity on ∃-free formulas.

2 Abstract realizability and function realizability

2.1. After the leisurely introduction to numerical realizability in the pre-
ceding section, we now turn to variations and generalizations. In order to
distinguish easily the various concepts of realizability, we shall use a certain
mnemonic code:

18

r signifies “realizability”,
n signifies “numerical” or “by numbers”,
f signifies “by functions”,
m signifies “modified”,
t signifies “combined with truth”,
l signifies “LifschitzLifschitz, V. variant of”,
e signifies “extensional”.

Thus “rft” refers to “realizability by functions combined with truth” etc.
Strictly speaking, the r is redundant in many of these mnemonic codes.

A simple generalization of numerical realizability is realizability with a
different set of realizing objects and/or different application operator; ab-
stractly, the realizing objects with application have to form a combinatory
algebra. We shall first sketch an abstract version of numerical realizability,
namely realizability in a combinatory algebra with induction, then consider
the interesting special case of function realizability.

2.2. Definition. (The theory APP) The language is single-sorted, based
on LPT. The only non-logical predicate is N (natural numbers). There is
an application operation • and constants

0 (zero), S (successor), P (predecessor),
p, p0, p1 (pairing with inverses),
k, s (combinators), d (numerical definition by cases).

(We have used the same symbols for pairing and inverses as in the case of
HA∗, even if there is a slight difference in syntax: p(t, t′) in HA∗ corre-
sponds to (pt)t′ in APP.) For t1•t2 we simply write (t1t2), and we use
association to the left, i.e. t1t2 . . . tn is short for (. . . ((t1t2)t3) . . . tn).
Axioms for the constants:

N0, Nx→ N(Sx), Nx→ N(Px),
P (St) ≃ t, P0 = 0, 0 ̸= St,
kx↓, kty ≃ t, sxy↓, stt′t′′ ≃ tt′′(t′t′′),
pxy↓, p0x↓, p1x↓, p0(ptx) = t, p1(pxt) = t,
Nu ∧Nv → (u ̸= v → dxyuv = x) ∧ dxyuu = y.

Observe that by the general LPT-axioms we have tt′↓ → t↓ ∧ t′↓. Finally
we have induction:

A[x/0] ∧ ∀x ∈ N(A→ A[x/Sx]) → ∀x ∈ N. A 2

The combinators k, s permit us to have λ-abstraction defined by induction
on the construction of terms:

λx.t := kt for t a constant or variable ̸≡ x,
λx.x := skk,
λx.tt′ := s(λx.t)(λx.t′).

19

For this definition

FV(λx.t) ≡ FV(t) \ {x},
t′↓ → (λx.t)t′ ≃ t[x/t′] if t′ is free for x in t,
λx.t↓ for all t.

It is not generally true that2

(1) if x ̸∈ FV(t′), y ̸≡ x then λx.(t[y/t′]) ≃ (λx.t)[y/t′],

(consider e.g. t ≡ y, t′ ≡ kk) but we do have, for x ̸∈ FV(t′), y ̸∈ FV(t′′),
y ̸≡ x

(2) t′′↓ → ((λx.t)[y/t′])t′′ ≃ t[x/t′′][y/t′] ≡ t[y/t′][x/t′′].

Property (1) can be guaranteed by an alternative definition of abstraction:

λ′x.x := skk,
λ′x.t := kt if x ̸∈ FV(t),
λ′x.tt′ := s(λ′x.t)(λ′x.t′) if x ∈ FV(tt′),

but then we lose the property that λx.t↓ for all t. A recursor and a minimum
operator may be defined with help of a fixed point operator (see e.g. (?, 9.3))
which permits us to define in APP all partial recursive functions. It follows
that HA can be embedded into APP in a natural and straightforward way.

Remark. Partial combinatory algebras are structures (X, •,k, s), k ̸= s,
satisfying the relevant axioms above; in such structures we can always de-
fine terms forming a copy of IN, and appropriate S, P,p,p0,p1, and we might
simply have postulated induction for this particular copy of IN. However,
in describing models it is more convenient not to be tied to a specific rep-
resentation of IN relative to the combinators. Also, we want to leave open
the possibility that the interpretation of N is non-standard.

2.3. The model of the partial recursive operations PRO

The basic combinatory algebra is

(IN, •,Λxy.x,Λxyz.x•z•(y•z));

where • is partial recursive function application for IN. 0, S, P get their
usual interpretation (more precisely, we choose codes Λx.Sx,Λx.Px etc.; for
d take Λuvxy[u · sg|x− y|+ v(1−̇|x− y|)].

2This was overlooked in the proofs in (?, section 9.3), but is easily remedied by the use of
(2). (?) recently showed that this problem might also be overcome by considering instead
of APP based on combinators, a theory based on lambda-abstraction as a primitive
(without a ξ-rule of the form t = s ⇒ λx.t = λx.s !) and an explicit substitution operator
as part of the language.

20

In HA∗ we can prove PRO to be a model of APP, in the sense that
APP ⊢ A⇒ HA∗ ⊢ [[A]]PRO. Here and in the sequel we use “interpretation
brackets”: given some model M, we use [[t]]M, [[A]]M to indicate the inter-
pretation of term t, formula A in the model M. Thus “[[A]]M holds” means
the same as M |= A.

2.4. Definition. (Abstract realizability) x rA in APP is defined by

x rP := P ∧ x↓ for P prime,
x r (A ∧B) := (p0x rA) ∧ (p1x rB),
x r (A→ B) := ∀y(y rA→ x•y rB) ∧ x↓,
x r ∀y A := ∀y(x•y rA),
x r ∃y A := p1x rA[y/p0x]. 2

Remark. x r ∀y∈N.A becomes literally ∀yz(z r (y ∈ N) → (x•y•z) rA)).
It is easy to see that realizability with a special clause for the relativized
quantifier

x r′ ∀y∈N.A := ∀y∈N(x•y r′A)

is in fact equivalent.
The ∃-free formulas play the same role inAPP as they do inHA∗, i.e. ∃-

free formulas have canonical realizing terms, their realizability coincides with
their truth, and equivalence of realizability with truth for a formula A means
that A is equivalent to a formula ∃xB, B ∃-free; the schema characterizing
r-realizability is an Extended Axiom of Choice

EAC ∀x(Ax→ ∃yBxy) → ∃z∀x(Ax→ z•x↓ ∧B(x, z•x)) (A is ∃-free)

etc.
We may specialize r-realizability to PRO-r-realizability by interpreting

APP in PRO. It is then not difficult to show that the resulting realizability
of HA (as embedded in the obvious way into APP) becomes equivalent to
rn-realizability; cf. (?).

2.5. Partial continuous function application

Another important model of APP is the model PCO of functions with
partial continuous application. Before we can discuss this, we need some
preliminaries.

Notations. From primitive recursive p,p0,p1 we can construct primitive
recursive encodings pn of n-tuples of natural numbers, with primitive re-
cursive inverses pni (0 ≤ i < n). We may also assume finite sequences of
natural numbers to be coded onto IN; we write ⟨n0, . . . , nx−1⟩ for (the code

21

of) the finite sequence n0, . . . , nx−1; ⟨ ⟩ is the (code of the) empty sequence
(which may be assumed to be equal to 0; see below).

If m is (a code of) a sequence, lth(m) is its length; ∗ is a primitive
recursive concatenation function for codes of sequences. We abbreviate

n ≼ m := ∃n′(n ∗ n′ = m),
n ≺ m := (n ≼ m ∧ n ̸= m),
x̂ := ⟨x⟩.

The primitive recursive inverse function λxy.(x)y of sequence encoding sat-
isfies

m = ⟨n0, . . . , nx−1⟩ ⇒ (m)y = ny for y < x, (m)y = 0 for y ≥ x.

For reasons of technical convenience we assume monotonicity in the argu-
ments for encodings of pairs, n-tuples and finite sequences:

n < n′ → p(n,m) < p(n′,m), m < m′ → p(n,m) < p(n,m′),
and similarly for p-tuples;
n ≤ n ∗m; lth(n) = lth(m) ∧ ∀x((n)x ≤ (m)x) → n ≤ m.

For example, for p we may take p(n,m) = 1
2(n + m)(n + m + 1) + m.

These monotonicity conditions in fact enforce ⟨ ⟩ = 0. Encoding of n-tuples
(α1, . . . , αn) of sequences is obtained by

(α0, . . . , αn) := λx.pn(α1x, . . . , αnx).

For initial segments of functions we use

ᾱ0 := ⟨ ⟩, ᾱ(x+ 1) := ⟨α0, . . . , αx⟩. 2

Definition. Elementary Analysis EL is a conservative extension of HA
obtained by adding to HA variables (α, β, γ, δ, ϵ) and quantifiers for (total)
functions from IN to IN (i.e. infinite sequences of natural numbers). There
is λ-abstraction for explicit definition of functions, and a recursion-operator
Rec such that (t a numerical term, ϕ a function term; ϕ(t, t′) := ϕp(t, t′))

Rec(t, ϕ)(0) = t, Rec(t, ϕ)(Sx) = ϕ(x,Rec(t, ϕ)(x)).

Induction is extended to all formulas in the new language.
The functions of EL are assumed to be closed under “recursive in”, which

is expressed by including a weak choice axiom for quantifier-free A:

QF-AC ∀n∃mA(n,m) → ∃α∀nA(n, αn) 2

22

Definition. In EL we introduce abbreviations for partial continuous ap-
plication

α(β) = x := ∃y(α(β̄y) = x+ 1 ∧ ∀y′<y(α(β̄y′) = 0),
α|β = γ := ∀x(λn.α(x̂ ∗ n)(β) = γx) ∧ α0 = 0, or equivalently

∀x∃y(α(x̂ ∗ β̄y) = γx+ 1 ∧ ∀y′<y(α(x̂ ∗ β̄y′) = 0)) ∧ α0 = 0.

We may introduce | , ·(·) as primitive operators in a conservative extension
EL∗ based on the logic of partial terms (1.3). 2

Definition. EL∗ is a conservative extension of EL based on the logic of
partial terms, to which λαβ.α|β and λαβ.α(β) have been added as primitive
operations. Numerical lambda-abstraction satisfies:

s↓ ∧ (λx.t)↓ → (λx.t)s = t[x/s], (λx.t)↓ ↔ ∀x(t↓).

For function application we require

ϕt↓ ↔ ϕ↓ ∧ ϕ↓.

(The implication from left to right must hold since ϕ↓ is supposed to imply
totality of the function denoted by ϕ.) For Rec we have

Rec(t, ϕ)↓ ↔ t↓ ∧ ϕ↓.

2

2.6. The model of the partial continuous operations PCO

This model has as domain all the total functions from IN to IN; the ap-
plication is | defined above. The elementary theory of the model can be
formalized in EL∗. Some work is needed to show that PCO is actually a
model of APP.

Definition. (The class of neighbourhood functions)

α ∈ K∗ := α0 = 0 ∧ ∀nm(αn > 0 → αn = α(n ∗m)) ∧ ∀β∃x(α(β̄x) > 0).

2

Crucial is the following

Lemma. To each function term ϕ, and each numerical term t of EL∗, we
can construct function terms Φϕ ∈ K∗, Φt ∈ K∗ respectively, such that

(i) Φϕ|α ≃ ϕ;

(ii) (Φt|α)↓ iff t↓;

(iii) t↓ → (Φt|α)0 = t;

23

(iv) FV(Φt) ⊂ FV(t) \ {α}, FV(Φϕ) ⊂ FV(ϕ) \ {α}, Φt,Φϕ primitive re-
cursive in their free variables.

Proof. (i)–(iv) are proved by simultaneous induction on the construction
of numerical and function terms. The reason that we need a function term
with partial continuous application | to represent a numerical term (instead
of application ·(·)) is that a numerical term t may contain function-terms
as subterms, which all have to be defined by the strictness condition of the
logic of partial terms; this is a Π0

2-condition and cannot be expressed by
definedness of a numerical term.

We consider a few typical cases. In all cases we put Φϕ0 = 0, Φt0 = 0.
Case 1. t ≡ x. Take Φt(ẑ ∗ ᾱn) = x+ 1. Similarly for t ≡ 0.
Case 2. ϕ ≡ α. Take

Φα(ẑ ∗ ᾱn) =
{
αz + 1 if z < n,
0 otherwise.

Case 3. t ≡ ϕ(ψ). Take

Φϕ(ψ)(x̂ ∗ ᾱn) =


z + 1 if ∃u<n∀y<lth(u)(Φψ(ŷ ∗ ᾱn) = (u)y + 1 ∧

Φϕ(u) = z + 1) ∧ Φϕ(x̂ ∗ ᾱn) > 0 ∧ Φψ(x̂ ∗ ᾱn) > 0,
0 otherwise.

Case 4. ϕ ≡ ψ|ξ. Take

Φψ|ξ(x̂ ∗ ᾱn) =


z + 1 if ∃u<n∀y<lth(u)(Φξ(ŷ ∗ ᾱn) = (u)y + 1 ∧

Φψ(x̂ ∗ u) = z + 1) ∧ Φψ(x̂ ∗ ᾱn) > 0 ∧ Φξ(x̂ ∗ ᾱn) > 0,
0 otherwise .

The other cases are left to the reader. 2
It is now easy to prove in EL∗ that PCO is a model of APP (do not

confuse the λ-abstraction in EL∗ with the defined λ-operator in APP). For
example, an interpretation of [[s]] is found as follows. If ϕ is a function term
of EL∗, let us write Λα.ϕ for the Φϕ given by the lemma. Then we put

[[s]]PCO := ΛαΛβΛγ.(α|γ)|(β|γ).

Clearly ([[s]]|α)|β = Λγ(α|γ)|(β|γ), since all terms Φϕ are total, hence de-
fined. Moreover (([[s]]|α)|β)|γ ≃ (α|γ)|(β|γ).

We spell out a definition of realizability for this application which is
not literally what one obtains by interpreting r -realizability in PCO, but
equivalent to it:

24

2.7. Definition. (Realizability by functions) With each formula A of EL∗

we associate α rfA (α ̸∈ FV(A)) as follows:

α rfP := P ∧ α↓ (P prime),
α rf (A ∧B) := (p0α rfA) ∧ (p1α rfB),
α rf (A→ B) := ∀β(β rfA→ α|β rfB) ∧ α↓,
α rf∀xA := ∀x(α|λn.x rfA),
α rf∀β A := ∀β(α|β rfA),
α rf∃xA := p1α rfA[x/(p0α)0],
α rf∃β A := p1α rfA[β/p0α].

rft-realizability is defined by modifying rf-realizability as before. 2
Now the theory runs to a large extent parallel to numerical realizability.

The role of ECT0 is taken over by the following schema of Generalized
Continuity:

GC ∀α(A→ ∃βB(α, β)) → ∃γ∀α(A→ γ|α↓ ∧B(α, γ|α)) (A ∃-free)

where ∃-free in EL∗ is defined as before; in EL, ∃-free formulas correspond
to the class of formulas constructed from t = s, ∃x(t = s), ∃α(t = s) by
means of →,∧, ∀.

2.8. Proposition. (Examples of applications) For EL∗ we have

(i) ⊢ ∀α(A → ∃βB(α, β)) ⇒ ⊢ ∃γ∀α(A → γ|α↓ ∧ B(α, γ|α)) for almost
negative A (Generalized Continuity Rule GCR).

(ii) For ∃αAα closed, ⊢ ∃αAα ⇒ there exists some n̄ such that ⊢ A({n̄})∧
∀m(n̄•m↓), i.e. if ⊢ ∃αA(α), there is a total recursive function f such
that ⊢ A(f).

(iii) CC(rf) ∩EL∗ = CC(rf) ∩ (EL∗ +GC), where the conservative class
CC(rf) for rf-realizability is defined in complete analogy to CC(rn).

Proof. (Of (ii).) The strong soundness theorem yields in this case a partic-
ular function term ϕ such that ⊢ ϕ rft ∃αAα, hence ⊢ p1ϕ rftA[α/p0ϕ],
and thus ⊢ A[α/p0ϕ] ∧ p0ϕ↓; p0(ϕ) is a closed function term in the language
of EL which may be written as {n̄}. ({n̄} is short for λx.(n̄•x).) 2

2.9. Examples of extensions

Bar Induction for Decidable predicates is an induction principle

BID ∀α∃xP (ᾱx) ∧ ∀n(Pn ∨ ¬Pn) ∧ ∀n(Pn→ Qn)∧
∀n(∀m(Q(n ∗ ⟨m⟩) → Qn) → Q⟨ ⟩

An equivalent principle is BI! with ∀α∃xP (ᾱx) ∧ ∀n(Pn ∨ ¬Pn) replaced
by ∀α∃!xP (ᾱx). BID implies the Fan theorem for Decidable predicates

FAND ∀α≤β∃xA(ᾱx) ∧ ∀n(An ∨ ¬An) → ∃z∀α≤β∃x≤z A(ᾱx)

25

where α ≤ β := ∀x(αx ≤ βx). Since rf-realizability validates continuity
principles, in fact the stronger

FAN ∀α∃xA(α, x) → ∃z∀α≤β∃x≤z A(α, x)

holds.
In the soundness and characterization theorems EL∗ may be replaced

by EL∗ + Γ, where for example Γ can be the set of all instances of one or
more of the following schemata: M, TI(≺), FAND, BID.

2.10. Notes

(?) contains the first formalization of rf-realizability. In this paper KleeneK-
leene, S.C. shows a.o. that formulas such that all their subformulas in the
scope of an universal function quantifier are ∃-free are true iff rf-realizable
(provable classically). In (?) a thorough formalized treatment of function
realizability is given, also of a (version of) rft-realizability. Another notion
of realizability by functions is found in (?, ?).

(?) considers a notion of function-realizability which combines the idea
of rf-realizability with the topological model of elementary intuitionistic
analysis in (?) (itself an adaptation of a model due to (?)).

(?) used an abstract version of realizability to show consistency of an
axiom of choice with combinatory logic. Staples(?, ?) used realizability with
combinators for higher-order logic and set theory. Abstract realizability for
theories including APP was introduced by Feferman(?, ?).

Of the researches using abstract versions of realizability we further men-
tion Beeson(?, ?, ?, ?), Renardel de Lavalette(?, ?).

3 Modified realizability

In the case of numerical and function realizability, we started with the con-
crete and ended with the abstract version.

For modified realizability on the other hand, it is advantageous to start
with the abstract setting, and afterwards to specialize to more concrete
versions. The abstract setting of modified realizability is not a type-free
theory such as APP, sketched above, but a system HAω of intuitionistic
finite-type arithmetic.

3.1. Description of intuitionistic finite-type arithmetic HAω

The set of finite type symbols T is generated by the clauses 0 ∈ T (type
of the natural numbers); if σ, τ ∈ T then (σ × τ) ∈ T (formation of
product types) and (σ → τ) ∈ T (formation of function types). We use
σ, σ′, . . . , τ, τ ′, . . . , ρ, ρ′, . . . for arbitrary type symbols.

26

As an alternative for (σ → τ) we write (στ); 1 is short for (00), n + 1
for (n0). Outer parentheses in type symbols are usually omitted. Further
saving on parentheses is obtained by the convention of association to the
right, i.e. σ0σ1σ2σ3 abbreviates (σ0(σ1(σ2σ3))); σ1×σ2×· · ·×σn abbreviates
(· · · ((σ1 × σ2)× σ3) · · · × σn).

The language of of intuitionistic finite-type arithmetic HAω is a many-
sorted language with variables (xσ, yσ, zσ, . . .) of all types; for each σ ∈ T
there is a primitive equality =σ, and there are some constants listed below,
and an application operation Appσ,τ from σ → τ and σ to τ . For arbitrary
terms we use t, t′, t′′, . . . , s, s′, s′′, In order to indicate that t is a term of
type σ we write t ∈ σ or tσ. If t ∈ σ → τ , t′ ∈ σ, then Appσ,τ (t, t

′) ∈ τ .
For Appσ,τ (t, t

′) we simply write (tt′) or even tt′; we save on parentheses by
association to the left: t1 . . . tn is short for (· · · ((t1t2)t3) · · · tn). As constants
we have for all σ, τ, ρ ∈ T :

0 ∈ 0 (zero), S ∈ 00 (successor),
pσ,τ ∈ στ(σ × τ), (pairing)
pσ,τ0 ∈ (σ × τ)σ, pσ,τ1 ∈ (σ × τ)τ, (unpairing)
kσ,τ ∈ στσ, sρ,σ,τ ∈ (ρστ)(ρσ)ρτ (combinators),
rσ ∈ σ(σ0σ)0σ (recursor).

Here again we use the same symbols (k, s, p,p0,p1) for operations closely
analogous to the operations denoted by the same symbols in APP. We shall
drop type sub- en superscripts wherever it is safe to do so; types are always
assumed to be “fitting” (i.e. if tt′ is written then t ∈ στ , t′ ∈ σ for suitable
σ, τ).

The logical basis of HAω is many-sorted intuitionistic predicate logic
with equality; the constants satisfy the following equations:

p0(pxy) = x, p1(pxy) = y, p(p0x)(p1x) = x,
kxy = x, sxyz = xz(yz), rxy0 = x, rxy(Sz) = y(rxyz)z.

Finally, we have 0 ̸= Sx, Sx = Sy → x = y, and full induction. (Actually,
Sx = Sy → x = y is redundant, since we can define a predecessor function
P such that P (St) = x.)

There is defined λ-abstraction, as in for APP; we can use the second
recipe mentioned in 2.2, with λx.t = kt for all t not containing x. HA is
embedded in HAω in the obvious way.

3.2. The systems I-HAω, E-HAω

I-HAω, intensional finite-type arithmetic is a strengthening of HAω ob-
tained by including an equality functional eσ ∈ σσ0 for all σ ∈ T , satisfying

exσyσ ≤ 1, exσyσ = 0 ↔ xσ = yσ,

so equality is decidable at all types.

27

On the other hand, extensional finite-type arithmetic E-HAω is obtained
from HAω by adding extensionality axioms for all types σ:

∀xσ(yστx =τ z
στx) ↔ yστ =στ z

στ .

This permits us to define equality of type σ in terms of =0, via

y =στ z := ∀xσ(yx =τ zx),
y =σ×τ z := p0y =σ p0z ∧ p1y =τ p1z.

Therefore we may assume E-HAω to be formulated in a language which
contains only =0 as primitive equality, so that prime formulas are always
decidable.

3.3. Models of HAω

A model of HAω is given by a type structure ⟨Mσ,∼σ⟩σ∈T , with Mσ a set,
∼σ an equivalence relation on Mσ, plus suitable interpretations of Appσ,τ
and the various constants.

(i) FTS, the Full Type Structure. Take IN for M0, for Mστ take the set
of all functions from Mσ to Mτ , for Mσ×τ take Mσ ×Mτ ; this is the full
type structure; ∼σ at each type is set-theoretic equality, and it is obvious
how to interpret App and the constants.

(ii) HRO, the Hereditarily Recursive Operations. Put

HRO0 := IN,
HROσ×τ := {z : p0z ∈ HROσ ∧ p1z ∈ HROτ},
HROστ := {z : ∀x ∈ HROσ(z•x ∈ HROτ)}.

App is interpreted as partial recursive application (i.e. as •), =σ as equality
between numbers (as elements of HROσ),

[[0]] := 0, [[S]] := Λx.Sx, [[k]] := Λxy.x, [[s]] := Λxyz.xz(yz),
[[p]] := Λxy.p(x, y), [[p0]] := Λx.p0x, [[p1]] := Λx.p1x,
[[r]] := a suitable code for a recursor, [[e]] := Λxy.sg|x− y|.

The existence of a suitable code for a recursor either follows directly from the
definition of recursive function, or by an application of the recursion theorem
yielding a solution r to r•(x, y, 0) ≃ 0, r•(x, y, Sz) ≃ y•(r•(x, y, z), z), as in
(?, 3.7.5). The result is a model of I-HAω.

(iii) HEO, the model of the Hereditarily Effective Operations. We define
a partial equivalence relation ∼σ between natural numbers for each σ ∈ T
by

x ∼0 y := x = y,
x ∼σ×τ y := (p0x ∼σ p0y) ∧ (p1x ∼τ p1y),
x ∼στ y := ∀zz′(z ∼σ z

′ → x•z ∼τ y•z
′ ∧ x•z ∼τ x•z

′ ∧ y•z ∼τ y•z
′)

28

where

z ∈ HEOσ := z ∼σ z.

For the rest, the definition of interpretations of 0, S,k, s, p,p0,p1, r proceeds
as before, we interpret =σ as ∼σ, and we obtain a model of E-HAω.

3.4. Definition. (Modified realizability) We define xσ mrA, for formulas
of HAω, by induction on the complexity of A as follows. The type σ of x is
determined by the structure of A.

x0 mr (t = s) := (t = s),
x mr (A ∧B) :=p0x mrA ∧ p1x mrB,
x mr (A→ B) := ∀y(y mrA→ xy mrB),
x mr ∀xA := ∀z(xz mrA),
x mr ∃z A :=p1x mrA[z/p0x].

We also consider mrt-realizability, which is similar to rnt -realizability. All
clauses are the same as for mr, the implication clause excepted, which now
reads

x mrt (A→ B) := ∀y(y mrtA→ xy mrtB) ∧ (A→ B). 2

Remark. In the usual definition (cf. (?, 3.4.2)), one realizes with sequences
of terms t⃗, of length and types depending on the structure of A. The attrac-
tive feature of this definition is that ∃-free formulas are literally self-realizing:
for ∃-free A, t⃗ mrA := A, so t⃗ is empty.

For our definition above, the choice of type 0 for the realizing objects
of prime formulas is somewhat arbitrary; a more canonical choice might
have been obtained by (conservatively) adding a singleton type to HAω and
letting the single element of this type realize t = s iff true.

A concrete version of mr-realizability is obtained by interpreting HAω in
a modelM; this yieldsM-mr-realizability. The difference between Kleene’sKleene,
S.C. realizability and mr-realizability becomes clear by comparing rn-realizability
and HRO-mr-modified realizability of statements of the form

∀y¬∀z¬Txyz → B

For rn, this requires a realizer t which must be applicable to the canonical
realizer Λy.0 of ∀y¬∀z¬Txyz if this is true. On the other hand, in the
case of HRO-mr-realizability t•Λy.0 must be defined, whether ∀y¬∀z¬Txyz
is true or not. In other words, in modified realizability, realizing objects
for implications have a larger domain of definition than what is required by
“pure” realizability.

Soundness now takes the form

29

3.5. Theorem. (Soundness)

HAω ⊢ A ⇒ HAω ⊢ t mrA ∧ t mrtA for some term t with FV(t) ⊂
FV(A).

Proof. By a straightforward induction on the length of derivations. 2.
As noted above, for ∃-free formulas there are canonical realizers, and

truth and realizability coincide for ∃-free formulas. Therefore the ∃-free
formulas of HAω play the same role w.r.t. mr-realizability as the ∃-free
formulas of HA∗ w.r.t. rn-realizability.
For an axiomatization we need the following

3.6. Lemma. For each instance F of one of the following schemata

IPef (A→ ∃xσB) → ∃yσ(A→ B) (y ̸∈ FV(A), A ∃-free),
AC ∀xσ∃yτA(x, y) → ∃zστ∀xσA(x, zx),

there is a term t such that ⊢ t mrF , with FV(t) ⊂ FV(A).

3.7. Theorem. (Axiomatization of modified realizability)

HAω +AC+ IPef ⊢ A↔ ∃x(x mrA)

and for H ∈ {HAω, I-HAω,E-HAω}

H+AC+ IPef ⊢ A⇔ H ⊢ t mrA

for some t with FV(t) ⊂ FV(A) \{x}.

Remark. In a theory T with decidable prime formulas IPef is implied by
the schema IP defined in 1.13. To see this, note that in T ∃-free formulas
are logically equivalent to negated formulas, since ¬¬B ↔ B (by induction
on the construction of B). On the other hand, IP is mr-realizable in HAω,
so the preceding theorem also holds with IP replacing IPef , for H equal to
I-HAω or E-HAω.

3.8. Theorem. (Applications of modified realizability) Let H ∈ {HAω,
I-HAω, E-HAω}, and let H′ be H± IPef ±AC. Then

(i) H′ is consistent.

(ii) H′ ⊢ A ∨ B ⇒ H′ ⊢ A or H′ ⊢ B (for A ∨ B closed) (Disjunction
Property DP).

(iii) H′ ⊢ ∃xσA⇒ H′ ⊢ A[x/tσ] for a suitable term t, FV(t) ⊂ FV(A)\{x}
(Explicit Definability ED).

(iv) H′ ⊢ ∀xσ∃yτA(x, y) ⇒ H′ ⊢ ∃zστ∀xσA(x, zx) (Rule of choice ACR).

(v) H′ ⊢ (A→ ∃xσB)⇒H′ ⊢ ∃xσ(A→ B) where A is ∃-free (IPRef -rule).

30

3.9. Concrete forms of modified realizability

The proof-theoretic applications of mr-realizability obtained by specifying a
model for HAω have in fact two “levels of freedom”: (a) the choice of a
model M, definable in a language L say, and (b) the theory formulated in
L which is available for proving facts about M, i.e. the metatheory for M.

By “M definable in L” we do not mean that M is globally definable
in L, but only that locally, for each A of HAω, we can express [[A]]M by
a formula of L. Thus choosing HRO for M is the first level of freedom,
and choosing some theory Γ in the language of HA∗ for proving facts about
HRO is the second level of freedom.

An interesting example of this occurs in connection with two models of
HAω which are similar to HRO and HEO respectively, but based on partial
continuous function application | instead of partial recursive application • .

The Intensional Continuous Functionals ICF are an analogue of HRO; we
give the intuitively simplest definition (which does not mean the technically
slickest) of the types:

ICF0 := IN,
ICF00 := IN → IN,
ICFσ0 := {α : ∀β∈ICFσ(α(β)↓)} (σ ̸= 0),
ICF0σ := {α : ∀x(λn.α(⟨x⟩ ∗ n) ∈ ICFσ)} (σ ̸= 0),
ICFστ := {α : ∀β∈ICFσ(α|β ∈ ICFτ)} (σ, τ ̸= 0).

Application is then defined in the obvious way: Appσ,0(α, β) := α(β), App0,σ(α, n)
:= λm.α(⟨n⟩∗m), Appσ,τ (α, β) := α|β, etc. Equality at type σ is interpreted
by equality of numbers (for σ = 0) or functions (for σ ̸= 0).

The Extensional Continuous Functionals ECF are related to ICF in the
same way as HEO is related to HRO: one defines a hereditary equivalence
relation based on | instead of •. ECF coincides with Kleene’sKleene, S.C.
countable functionals or Kreisel’sKreisel, G. continuous functionals.

Both ICF and ECF are locally definable in the language of EL∗, and for
soundness of ICF-mr and ECF-mr relative to EL∗ nothing more is needed.
But additional axioms added to EL∗ may result in different properties of
the models, and hence of M-mr-realizability. Two mutually incompatible
additional axioms we can add to EL∗ are FAND and a version of Church’s
ThesisChurch, A.

CT ∀α∃x∀y(αx = x•y).

CT states that the function variables in EL∗ range over the total recursive
functions; the incompatibility of CT with FAND follows from Kleene’sKleene,
S.C. well-known example of a primitive recursive tree well-founded w.r.t. all
total recursive functions but not w.r.t. all functions, since the depth of the
tree is unbounded (cf. (?, 4.7.6)).

31

Assuming FAND, we can show that ICF and ECF contain a Fan Func-
tional ϕuc satisfying the axiom for a Modulus of Uniform Continuity

MUC ∀z2∀γ∀α≤γ∀β≤γ(ᾱ(ϕuczγ) = β̄(ϕuczγ) → zα = zβ).

If we add MUC to HAω, we can mr-interpret FAND. If, on the other hand,
we use EL∗ +CT as our metatheory for ICF-mr, we can realize a statement
positively contradicting MUC. See (?, 2.6.4, 2.6.6, 3.4.16, 3.4.19).

As an example of an application of a concrete version of mr-realizability
we can show e.g. the consistency of HAω + IPef + AC + WC-N + FAND

+ EXT1,0, where WC-N is the schema ∀α∃nA(α, n) → ∀α∃n,m∀β(ᾱm =
β̄m → A(β, n)), and EXT1,0 is ∀αβz2(α = β → z2α = z2β). (Use ICF-mr-
realizability with EL∗ + FAND as metatheory.)

Notation. Henceforth we write mrn, mrf for HRO-mr and ICF-mr-realizability
respectively. 2.

3.10. Notes

Modified realizability was first formulated by (?); a concrete version equiv-
alent to our ICF-mr-realizability was used in (?).

(?) and (?) apply mrt-realizability to bounded arithmetic and related
systems, improving on earlier results obtained by (?) by means of numerical
realizability.

(?) used modified realizability to obtain consistency of intuitionistic
analysis with a restricted form of IP (Vesley’s principle). (?) used a mod-
ified realizability interpretation to obtain consistency of a weak version of
Church’sChurch, A. thesis with Kleene’sKleene, S.C. system for intuition-
istic analysis (i.e EL with bar induction and GC for the case A ≡ 0 = 0),
together with Vesley’s Principle. The weak version of Church’sChurch, A.
thesis may be stated as: “each numerical function is not not recursive”. In
(?, 3.4.15) it is observed that the modified realizability of (?) is essentially
abstract modified realizability interpreted in the type structure consisting
of the recursive elements of ICF, and that the consistency proof covers in
fact full IPef ((?, 3.4.18)).

Some further examples of papers using or discussing modified realizabil-
ity are Dragalin(?), Diller(?), Grayson(?, ?), van Oosten (?). Scedrov and
Vesley (?). See also 9.8 on (?, ?).

4 Derivation of the Fan Rule

This section is devoted to an “indirect application” of modified realizability:
it is shown how closure under the rule of choice ACR, obtained from mrt-
realizability, may be combined with the (intrinsically interesting) notion of
“majorizable functional” to obtain closure under the Fan Rule.

32

We can define the so-called majorizable functionals relative to any finite-
type structure. They are introduced via a relation of majorization, defined
as follows.

4.1. Definition. t∗maj σt, for t
∗, t ∈ σ, is defined by induction on σ:

t∗maj 0t := t∗ ≥ t,
t∗maj σ×τ t :=p0t

∗majσ p0t ∧ p1t
∗majτ p1t,

t∗maj τσt :=∀y∗y(y∗majτ y → t∗y∗majσ ty, t
∗y).

Furthermore we put

t ∈ Maj := ∃t∗maj σt (“t is majorizable”).

Lemma. t∗maj t⇒ t∗maj t∗.
Proof. Induction on the type of t.

4.2. Definition. For each t ∈ 0σ we define t+ ∈ 0σ by induction on the
structure of σ.

t+0 = t0, t+(Sz) = max{t+z, t(Sz)} for σ = 0,
t+ := λn.[λy((λn.tny)+n)] for σ ≡ σ1σ2,
t+ = λn.p((λn.p0(tn))

+n)((λn.p1(tn))
+n) for σ ≡ σ1 × σ2.

Lemma. If ∀n0(FnmajGn), then F+majG+, G.
Proof.We use induction on σ. Let Fn,Gn ∈ σ.
Case (i) σ ≡ 0. Almost immediate.
Case (ii) σ ≡ σ1σ2. The assumption yields

s∗maj s⇒ Fns∗majFns,Gns

for all n ∈ IN. By the induction hypothesis we have

(1) (λn.Fns∗)+maj (λn.Fns)+, (λn.Fns), (λn.Gns)+, (λn.Gns),

Now by definition of F+, G+ and beta-conversion:

(λn.Fns∗)+k=F+ks∗

(λn.Fns)+k =F+ks
(λn.Gns)+k =G+ks

If n ≥ m, we obtain from (1)

F+ns∗majF+ns, F+ms,Fms, F+ns∗majG+ms,Gms.

and from this F+nmajF+m,Fm,G+m,Gm. Since n ≥ m, it follows that
F+majG+, G.

33

Case (iii) σ ≡ σ1 × σ2. We are given ∀n(FnmajGn), so

∀n(pi(Fn)majpi(Gn)) (i ∈ {0, 1}).
So we have

∀n((λn.pi(Fn))nmaj (λn.pi(Gn))n)

and hence by the induction hypothesis

(λn.pi(Fn))
+maj (λn.pi(Gn))

+, λn.pi(Gn).

From this we obtain for n ≥ m, i ∈ {0, 1}
(λn.pi(Fn))

+nmaj (λn.pi(Fn))
+m, (λn.pi(Gn))

+m, (λn.pi(Gn))m,

pi(F
+n)majpi(F

+m), pi(G
+m),pi(Gm)

and therefore hence F+majG+, G.

4.3. Proposition. Let all free variables in t ∈ τ be of type 0 or 1; then
there is a term t∗ ∈ τ with FV(t∗) ⊂ FV(t), such that HAω ⊢ t∗maj t∗, t.
Proof. For each constant or variable of type 0 or 1 of HAω (cτ say) we show
that there is a c∗ ∈ τ with c∗majτ c.

(a) 0maj 0, SmajS are immediate;
(b) x0majx0; for y1 define y∗ by recursion as y+;
(c) kmajk, smaj s, pmajp, p0majp0, p1majp1;
(d) If r is the recursor with r0ts = t etc., take r∗ := r+.

4.4. Theorem. (Fan Rule) Let A be a formula of HAω containing only
variables of types 0 or 1 free, then HAω ⊢ ∀α≤β∃nA(α, n) ⇒ HAω ⊢
∃m∀α≤β∃n≤mA(α, n), where α ≤ β := ∀m(αn ≤ βn).
Proof. Let HAω ⊢ ∀α≤β A(α, Fα) for a suitable term F ∈ (1)0. F is ma-
jorizable, so there is an F ∗ such that F ∗majF ∗, F which means in particular
that ∀αβ(β ≥ α→ F ∗β+ ≥ Fα) and henceHAω ⊢ ∀α≤β∃n≤F ∗β+A(α, n). 2

Remarks. Switching from a recursor of type σ(σ0σ)0σ to a recursor of
type 0(σ0σ)σσ is purely a matter of technical convenience; these recursors
are interdefinable.

In (?) the following generalization is established for E-HAω:

⊢ ∀α∀x≤ρsα∃yτA(α, x, y) ⇒⊢ ∀α∀x≤ρsα∃y≤ταA(α, x, y),

where τ ∈ {0, 1, 2}, s ∈ 1ρ, s closed, and where ≤σ is defined by induction
on the type structure by x0 ≤0 y0 := x ≤ y, xστ ≤στ y

στ := ∀zσ(xy ≤τ yz),
xσ×τ ≤σ×τ y

σ×τ := p0x ≤σ p0y ∧ p1x ≤τ p1y.
As observed above, the proof of closure under the Fan Rule given above

depends on realizability only to the extent that we have used modified re-
alizability to obtain closure under the fan rule. For other systems other
interpretations, such as the Dialectica interpretation, yield closure under
the rule of choice; cf. (?).

34

4.5. Notes

The notions of majorization and majorizable functional were introduced by
(?). The present version is a modification due to Bezem(?, ?), called strong
majorization by him; we have added a clause for product types.

(?) introduced a version of Bezem’sBezem, M. definition with a special
clause for types of the form σ0; however, in the presence of product types
we found it more convenient to stick to Bezem’sBezem, M. definition.

The proof of the Fan Rule presented here is due to (?). For other proofs,
see e.g. (?), (?), (?, 9.7.23).

5 Lifschitz realizability

Lifschitz, V. This type of realizability was invented by (?) to show that
Church’s Thesis with UniquenessChurch, A.

CT0! ∀x∃!y A(x, y) → ∃z∀x(z•x↓ ∧A(x, z•x))

does not imply CT0 in HA∗. The idea to achieve this, is to use as realizer
for an existential formula not a single instantiation for the quantifier, but a
finite inhabited set of possible instantiations, such that in general there is no
recursive procedure for selecting elements of such inhabited sets, although
for singletons there is such a procedure. The sets we use are given by

Vx := {y : y ≤ p1x ∧ ∀n¬T (p0x, y, n)}.

If we know that Vx is a singleton, say {y : 0 = 0}, we can find y recursively
in x as follows: we start computing p0x•z for all values of z ≤ p1x; as soon
as we have found terminating computations for p1x arguments, we know
that the remaining argument ≤ p1x is the required y.

5.1. Definition. The clauses for rln-realizability are identical to the
clauses for rn-realizability, except for the existential quantifier:

x rln ∃y A := Inh(Vx) ∧ ∀y ∈ Vx(p1y rlnA[y/p0y])

where “Inh(W)” means that ∃z(z ∈W). 2
In this form the notion appears as a modification of numerical realizabil-

ity. There is also a Lifschitz’sLifschitz, V. analogue of function realizability.
In that case the sets of realizers for the existential quantifiers take the form

Vα := {γ : γ ≤ p1α ∧ ∀n(p0α(γ̄n) = 0)}.

The Vα are not finite, but compact. There is no general method for finding
an element in inhabited Vα which is continuous in α, but there is a method
for Vα’s which are singletons. There is no interesting “abstract” version of
LifschitzLifschitz, V. realizability.

35

5.2. Definition. rlf-realizability is defined as rf-realizability, except for
the clauses for the existential quantifiers, which become:

α rlf ∃βA := Inh(Vα) ∧ ∀γ ∈ Vα(p1γ rlfA[β/p0γ]),
α rlf∃xA := Inh(Vα) ∧ ∀γ ∈ Vα(p1γ rlfA[x/(p0γ)0]). 2

5.3. Summary of results for rln-realizability

Definition. InHA∗ the bounded Σ0
2-formulas (BΣ0

2-formulas) are formulas
of the form ∃x<t¬(s = s′); the BΣ0

2-negative formulas are the formulas
constructed from prime formulas s = s′ and BΣ0

2-formulas by means of
∀,∧,→. 2

Corresponding classes in HA are defined as follows. A formula of the
form ∃x≤y∀z A with A primitive recursive is called a bounded Σ0

2-formula
(BΣ0

2-formula); the BΣ0
2-negative formulas are the formulas constructed from

Σ0
1-formulas and BΣ0

2-formulas by means of ∀, ∧, →.
N.B. Although the class of BΣ0

2-formulas in HA∗ is somewhat wider than
the corresponding class in HA, the BΣ0

2-negative formulas for HA∗ and
HA are the same modulo logical equivalence. To see this, observe that
(a) a Π0

1-formula in HA can be written as ¬s = s in HA∗, and (b) ∃x <
t¬(s = s′) in HA∗ is equivalent to a formula of the form ∃y(t = y)∧ ∀z(t =
z → ∃x<z.A(x)), with A primitive recursive, which is BΣ0

2-negative in HA
modulo logical equivalence.

In the case of numerical LifschitzLifschitz, V. realizability, we cannot
take as our basis theory HA∗, but need instead an extension HA′, which
is HA∗ + M + CBΣ0

2; here CBΣ0
2, the Cancellation of double negations in

Bounded Σ0
2-formulas is:

CBΣ0
2 ¬¬A→ A (for A in BΣ0

2).

Van OostenOosten, J. van showed that in fact CBΣ0
2 is equivalent to the

following principle

∀nm(Pn ∨Qm) → (∀nPn ∨ ∀mQm) (P,Q primitive recursive),

where n ̸∈ FV(Q), m ̸∈ FV(P). Soundness now holds w.r.t. HA′, i.e. for
all sentences A

HA′ ⊢ A ⇒ HA′ ⊢ n̄ rlnA

for a suitable numeral n̄. The following properties of the Vn are crucial in
the proof of the soundness theorem:

(i) for some total recursive f0, ∀xy(y ∈ Vf0(x) ↔ y = x), i.e. indices of
singleton Vt’s may be found recursively in their (unique) elements.

(ii) There is a partial recursive f1 such that for any operation with code
x, total on Vy, the image of Vy under x is Vf1(x,y).

(iii) There is a total recursive f2 such that Vf2(x) =
∪
{Vz : z ∈ Vx}.

36

(iv) There is a partial recursive f3 such thatHA′ ⊢ ∀x(Inh(Vx)∧ ∀y∈Vx(y rlnA)
→ f3(x) rlnA).

With respect to the class of self-realizing formulas, we note an interesting
deviation from the notions of realizability considered hitherto: these are not
just the ∃-free formulas, but the wider class of BΣ0

2-negative formulas. Now
we can axiomatize rln-realizability relative toHA′ by means of the following
scheme for BΣ0

2-negative A:

ECTL ∀x(Ax→ ∃yBxy) → ∃z∀x(Ax→ z•x↓ ∧ Inh(Vz•x) ∧ ∀u∈Vz•xBxu).

An interesting special case of ECTL is ECTL! which can be formulated as

∀x(Ax→∃!y Bxy) → ∃z∀x(Ax→ z•x↓∧B(x, z•x)) (A BΣ0
2-negative),

with the help of the following

Lemma. There is a partial recursive f5 such that

HA′ ⊢ ∀z(∃x∀y(x = y ↔ y ∈ Vz) → f5(z) ∈ Vz).

5.4. Proposition. (Applications)

(i) HA′ + ECTL is consistent;

(ii) HA∗ + ECTL! ̸⊢ CT0;

(iii) HA′ is closed under the rule ECRL and a fortiori under the rule ECRL!
(as ECTL and ECTL! but with main→ replaced by⇒ etc). SinceHA′

also satisfies the rules DP and EDN, we can formulate the rule ECRL!
even more strongly as: for A in BΣ0

2,

⊢ ∀x(Ax→ ∃!yBxy) ⇒ ⊢ ∀x(Ax→ n̄•x↓ ∧B(x, n̄•x)

for a suitable numeral n̄.

5.5. Summary of results for rlf- and rlft-realizability

The basis theory is now an extension of EL∗, namely EL′ ≡ EL∗ +MQF +
KLQF, where MQF is Markov’s principle for quantifier-free formulas, and
König’sKönig, J. Lemma for quantifier-free formulas is the schema for quantifier-
free A.

KLQF
∀x∃n(lth(n) = x ∧ n≤α ∧An)

∧∀nm(A(n ∗m) → An) → ∃β≤α∀nA(β̄n)

(n≤α := ∀y<lth(n)((n)y ≤ αy); ∃α≤ϕ(. . .) := ∃α(α ≤ ϕ ∧ . . .)). The ana-
logue in EL′ of the BΣ0

2-negative formulas are the BΣ1
2-negative formulas (a

BΣ1
2-formula is a formula of the form ∃α≤ϕ¬s = t (a Bounded Σ1

2 formula);

37

the class of BΣ1
2-negative formulas is obtained from formulas BΣ1

2-formulas
and prime formulas by means of →, ∧, ∀). 2

As a typical result one obtains that GC! (i.e.the special case of GC with
uniqueness for the existential quantifier) does not imply GC, not even the
special case of WC-N.

Remark. KLQF for the language of EL∗ follows from KLQF for EL by
observing that KL with A ∈ Σ0

1 is derivable from KLQF in EL.

5.6. Notes

(?) defined Lifschitz’Lifschitz, V. realizability for certain set theories and
uses it to obtain independence of CT0 from CT0! for these theories. Other
relevant papers are van Oosten(?, ?, ?). As to (?), see 8.28.

It is possible to combine LifschitzLifschitz, V. realizability with modified
realizability for HRO (?).

It is not known whether for some or all results perhaps weaker theories
than HA′, EL′ will suffice.

6 Extensional realizability

It is also possible to combine the idea of realizability with extensionality, by
defining not just a notion of the form “x realizes A”, but a relation between
realizing objects: “x and y equally realize A”. The definition below has
been written out for HA∗ and partial recursive application, but also makes
sense in the abstract setting of APP, if we read everywhere re for rne.

6.1. Definition. We define “x = x′ rneA” (x, x′ ̸∈ FV(A), x ̸≡ y), by
induction on the complexity of A:

x = x′ rneP := (x = x′ ∧ P ∧ x↓ ∧ x′↓) (P prime),
x = x′ rne (A ∧B) := (p0x = p0x

′ rneA) ∧ (p1x = p1x
′ rneB),

x = x′ rne (A→ B) := x↓ ∧ x′↓ ∧ ∀yy′(y = y′ rneA→
x•y = x•y′ rneB ∧ x′•y = x′•y′ rneB ∧ x•y = x′•y rneB),

x = x′ rne ∀y A := ∀y(x•y = x′•y rneA),
x = x′ rne ∃y A := (p0x = p0x

′) ∧ (p1x = p1x
′ rneA[y/p0x]),

and we put

x rneA := x = x rneA.

As always, rnet-realizability is obtained by adding “∧ (A → B)” in the
implication clause. 2

38

Remarks. Note that x rnA does not in general imply x = x rneA; for if
x = x rne [∀y(t = 0) → ∀z(s = 0)], then x must yield the same value when
applied to extensionally equal realizers z, z′ for ∀y(t = 0); on the other hand,
for an x such that x rn [∀y(t = 0) → ∀z(s = 0)] no such restriction applies.

The definition may also be formulated as a simultaneous inductive defi-
nition of “x extensionally realizes A” and “x and y are equivalent realizers
for A”, but this is more cumbersome.

It is straightforward to prove soundness.
The ∃-free formulas play the same role as in rn-realizability. On the other

hand, no simple axiomatization of the provably rne-realizable formulas is
known.

For proofs of the following facts we refer to (?).

6.2. The difference between ordinary realizability and extensional realiz-
ability is demonstrated by the fact that the following instance of ECT0 is
not rne-realizable:

∀z[∀x∃y(¬¬∃uTzxu→ Tzxy) → ∃v∀x(v•x ∧ (¬¬∃uTzxu→ T (z, x, v•x))]

On the other hand it is not hard to verify that the following “Weak Extended
Church’s Thesis” Church, A. is provably rne-realizable:

6.3. Proposition. In HA we can rne-realize:

WECT0 ∀x(A→ ∃y Bxy) → ¬¬∃z∀x(A→ z•x↓ ∧B(x, z•x))

for ∃-free A.
A nice application of rnet-realizability is the following refinement of

ECR.

6.4. Proposition. Assume for ∃-free B that in HA∗

⊢ ∀z(∀x∃y Bzxy → ∃uCzu)

then for some n̄

⊢ ∀z(n̄•z↓∧∀v, v′(∀x(v•x = v′•x∧B(z, x, v•x)) → n̄•z•v = n̄•z•v′∧C(z, n̄•z•v)).

6.5. Notes

Extensional realizability appears for the first time explicitly in some unpub-
lished notes by (?), and implicitly in (?).

(?) and Beeson(?, ?) use an abstract version of extensional realizability
in combination with forcing, to prove that ML0 (the arithmetical fragment

39

of the extensional version of Martin-Löf’sMartin-Löf, P. type theory) is con-
servative over HA. ML0 includes E-HAω+AC as a subtheory. See also (?).
The proofs by RenardelRenardel de Lavalette, G. R. and BeesonBeeson, M.
J. extend earlier work of (?)3.

There is a close similarity between “x = x′ rneA” and “x = x′ ∈ A” in
the type-theories of Martin-LöfMartin-Löf, P. (?, ?), so it is not surprising
that an interpretation akin to extensional realizability can be used to model
(parts of) Martin-Löf’sMartin-Löf, P. extensional type theories, cf. (?). See
also 9.3.

rne -realizability for the language of arithmetic does not lend itself to
a straightforward axiomatization in the same manner as ECT0 might be
said to axiomatize rn-realizability relative to HA. But (?) showed that
axiomatization is possible in a suitably chosen conservative extension of HA
plus Markov’s principle. The same paper discusses also rne-realizability for
higher-order logic in the form of certain toposes.

7 Realizability for intuitionistic second-order arith-
metic

7.1. The system HAS

HAS (HeytingHeyting, A. Arithmetic of Second order) is a two-sorted exten-
sion of HA with quantifiers over P(IN), the powerset of IN. So the language
of HA is extended with set variables X,Y, Z, and corresponding (second-
order) quantifiers ∀X, ∃Y ; atomic formulas are now of the form t = s or Xt
(also written t ∈ X) for individual terms t, s and set variable X.

Instead of formally introducing set-terms λx.B (B any formula) we can
formulate the axiom for second-order ∀ as

∀X.A→ A[X/λx.B]

where A[X/λx.B] is obtained from A by replacing every occurrence of Xt
by B[x/t]. Alternatively, we restrict the ∀2-axiom to

∀X.A→ A[X/Y]

while adding the axiom schema of full comprehension

CA ∃X∀x(Xx↔ A) (X ̸∈ FV(A)).

Moreover, we require sets to respect equality

∀Xxy(Xx ∧ x = y → Xy).

HAS∗ is related to HAS in the same way as HA∗ to HA. In particular,
for the set variables we have strictness: Xt→ t↓.

3We do not know whether the treatment in (?) is really equivalent to the one in (?).

40

7.2. Realizability for HAS∗

It is quite easy to extend rn-realizability from HA∗ to HAS∗ by “brute
force”; we assign to each set variable X a new set variable X∗, represent-
ing the “realizability predicate” and then add the following clauses to rn-
realizability for HA∗:

x rnXt := X∗(x, t) (x↓ is automatic by strictness)
x rn ∀X A := ∀X∗(x rnA),
x rn ∃X A := ∃X∗(x rnA).

Here Y (t, t′) for any set variable Y abbreviates Y (p(t, t′)). (Nothing pre-
vents us from taking X∗ ≡ X, but in discussions this is sometimes inconve-
nient and confusing.)

7.3. Remark. In a second-order context, ⊥, ∃ and ∧ are definable in terms
of → and ∀, in particular

∃Y.A := ∀Z0(∀Y (A→ Z0) → Z0,
A ∧B := ∀Z0(((A→ (B → Z)) → Z),
⊥ := ∀Z0.Z,

where Z0 ranges over propositions. (Strictly speaking, we do not have vari-
ables over propositions, only over sets, but the addition of proposition vari-
ables is conservative, since one may render (QZ0)A(Z0) as (QX)A(X0) for
Q ∈ {∀, ∃}.) Using this definition of ∃, the clause for realizing ∃X.A is in
fact redundant, and we obtain an equivalent notion of realizability. A vir-
tually immediate consequence of soundness for rn-realizability for HAS is
the consistency of HAS with Church’sChurch, A. thesis and the so-called
Uniformity principle

UP ∀X∃y A(X, y) → ∃y∀X A(X, y).

7.4. Proposition. HAS∗ + ECT0 +UP+M is consistent.
Here ECT0 is formulated as for HA∗, except that A is restricted to ∃-free
formulas of HA∗, while B is arbitrary.

7.5. rnt-realizability for HAS∗

Extension of rnt-realizability to HAS∗ is similar to the extension of rn-
realizability, but we have to be slightly more careful: we want to keep track
of realizability and truth, so we want to associate with an arbitrary set X an
arbitrary Y together with its realizability set Z. It is convenient to encode
Y and Z into a single set X∗; we put

X∗t := {n : X∗(2n)}, X∗r := {n : X∗(2n+ 1)}

41

representing the two components of truth and realizability respectively. The
new clauses in the definition of rnt-realizability now become

x rntXt := X∗t(t) ∧X∗r(x, t),
x rnt ∀X A := ∀X∗(x rntA),
x rnt ∃X A := ∃X∗(x rntA),
x rnt (A→ B) := ∀y(y rntA→ x•y rntB) ∧ (A→ B)∗,

where C∗ is obtained from C by replacing all occurrences of Y t by Y ∗t(t).
It is readily verified that for all A with second-order variables contained in
{X1, X2, . . .Xn}

⊢ A[X1, . . . , Xn/X
∗t
1 , . . . , X

∗t
n] ↔ A∗

⊢ x rntA→ A∗

and we find that soundness holds. An interesting corollary is

7.6. Proposition. HAS∗ is closed under the Uniformity Rule

UR ⊢ ∀X∃y A(X, y) ⇔ ⊢ ∃y∀X A(X, y)

and satisfies DP and EDN.

7.7. Second-order extensions of other types of realizability

The preceding two examples reveal something of a pattern for the extension
to second-order languages. The pattern will become still clearer when we
study the extension to higher-order logic in the next section, but let us
already now indicate what has to be done to extend extensional and modified
realizability.

In the case of extensional realizability, set variables should get assigned
variables ranging over partial equivalence relations over IN. (A partial equiv-
alence relation satisfies symmetry and transitivity, but not necessarily re-
flexivity). Second-order quantification is treated in the “uniform” way, just
as for ordinary realizability.

In the case of modified realizability, there is no immediate generalization
of the abstract version forHAω, but we can generalize HRO-mr-realizability;
we shall abbreviate this as mrn-realizability (“modified realizability for num-
bers”).

In this case we need to assign to each formula not only a set of re-
alizers, but also a set of “potential realizers”, which determine the do-
main of definition in the case of implication. (In the case of HRO-mrn-
realizability restricted to HAω, the sets of potential realizers are always of
the form HROσ.) In particular, we must assign to set variable X two vari-
ables Xr (representing the realizing numbers) and Xd (representing the set
of potential realizers). We then define for each formula A the predicates

42

x mrnA (“x HRO-modified realizes A”) and Ad (the set of potential real-
izers). Some typical clauses for the potential realizers: (t = s)d := IN,
(A → B)d := {x : ∀y∈Ad(x•y ∈ Bd)}, (∀X.A)d := ∀XdAd, and for the
realizability x mrnXt := x ∈ Xd ∧ Xr(x, t), x mrn (A → B) := x ∈ (A →
B)d ∧ ∀y(y mrnA→ x•y mrnB), x mrn ∀X.A := ∀XdXr(x mrnA).

The reader will have no difficulty in supplying the remaining ones, keep-
ing in mind that this is to be an extension of HRO-mr-realizability. However,
in verifying soundness, it turns out that there is on important extra prop-
erty required of the Ad: there should always be a fixed number in the sets of
potential realizers, so that operations defined over the Ad must be defined
at least somewhere. If we let the variables Xd range over inhabited sets
containing 0, and if we choose our gödelnumbering of partial recursive op-
erations in such a way that p(0, 0) = 0 and Λx.0 = 0, it follows that 0 ∈ Ad

for all A.

7.8. Realizability as a truth-value semantics

It is instructive to rewrite rn-realizability for HA∗ in the form of a valuation
in a set of truth-values. Let X,Y ∈ P(IN); we define

Definition.

X ∧ Y := {p(x, y) : x ∈ X ∧ y ∈ Y },
X → Y := {z : ∀x ∈ X(z•x ∈ Y)},
X ∨ Y := {p(0, x) : x ∈ X} ∪ {p(Sz, y) : z ∈ IN, y ∈ Y },
X ↔ Y := (X → Y) ∧ (Y → X).

We associate to each formula A of HA∗ a set [[A]] of realizing numbers:

[[t = s]] := {x : t = s},
[[A ∧B]] := [[A]] ∧ [[B]],
[[A→ B]] := [[A]] → [[B]],
[[∀xA]] := {z : ∀x(z•x ∈ [[A]])},
[[∃xA]] := {p(y, z) : z ∈ [[A[x/y]]]}.

The defined set contains the free variables of A as parameters. Furthermore
we can put, in keeping with our definition of disjunction,

[[A ∨B]] := [[A]] ∨ [[B]]. 2

The elements of P(IN) act as truth-values; all inhabited elements represent
“truth” in the sense of realizability.

If we now want to extend this to HAS∗, we should put

[[Xt]] := {x : X∗(x, t)},
[[∀X.A]] :=

∩
X

[[A(X)]].

43

and now [[A]] contains for any X free in A a parameter X∗. (We may do
without an explicit definition for the cases for ∧, ∃ since these are definable
in a second-order setting, cf. 7.3.)

Note that numerical and set quantifiers are treated in a completely dif-
ferent way. This can be remedied in this case in a more or less ad hoc
manner: we associate with each domain D a set-valued function ED on the
elements, giving their “extent”. In the case of HAS∗ we take

EIN(n) := {n}, EP(IN)(X) := {0},

and define for domains D

[[∀x ∈ D.A(x)]] :=
∩
x′

(Ex′ → [[A(x)]])

where x′ is the parameter in [[A(x)]] corresponding to x (i.e. x ≡ x′ for
numerical x, x′ = X∗ if x′ is a set variable X). (To see that the resulting
notion of realizability is equivalent in the sense of 1.2, take for the ϕ and ψ:
ϕ∀xA(y) := Λx.ϕA(x)(y•x), ψ∀xA(y) := λx.ψA(x)(y•x), ϕ∀X.A(y) := λz.ϕA(y)
(z not free in ϕA(y)), ψ∀X.A(y) := ψA(y•0).) Such an ad hoc solution to
enforce uniformity of definition will not be satisfactory in the case of higher-
order logic, to be discussed in the next section.

7.9. Notes

(?) extended mrn-realizability, and (?) extended q-realizability to HAS;
here we have recast Friedman’sFriedman, H.M. definition as rnt-realizability.

The idea of realizability as a truth-value semantics occurred to several
researchers independently, shortly before 1980. The first documented refer-
ence to “realizability treated as a truth-value semantics” I could find is (?),
cf. also (?). Other authors credit W. PowellPowell, W., or D.S. ScottScott,
D. S. with the idea.

8 Realizability for higher-order logic and arith-
metic

8.1. Formulation of HAH

Higher-order logic is based on a many-sorted language with a collection
of sorts or types; we use σ, σ′, . . . , τ, τ ′, . . . for arbitrary types. There are
variables (xσ, yσ, zσ, . . .) for each type, and an equality symbol =σ for each
σ. Relation symbols and function symbols may take arguments of different
types. For quantifiers ranging over objects of type σ we sometimes write
∀x∈σ, ∃x∈σ instead of ∀xσ, ∃xσ.

For intuitionistic and classical higher-order logic there are certain type-
forming operations generating new types with appropriate axioms connect-
ing the types.

44

Definition. (Axioms and language for higher-order logic) In a many-sorted
language for higher-order logic, the collection of types is closed under×,P,→,
i.e.

(i) with each type σ there is a power type P(σ);

(ii) with each pair of types σ, τ there is a product type σ×τ and a function
type σ → τ .

One often includes a type ω of truth-values; then P(σ) may be identified
with σ → ω.

There is a binary relation ∈σ with arguments of type σ,P(σ); instead
of ∈σ(x, y) we write x ∈σ y and sometimes y(x) (predicate applied to argu-
ment).

For types σ → τ, σ there is an application operation Appσ,τ such that
for t ∈ σ→τ , t′ ∈ σ, Appσ,τ (t, t

′) is a term of type τ . Usually we write tt′

for App(t, t′).
For each pair σ, τ there are functional constants pσ,τ ,pσ,τ0 ,pσ,τ1 such that

p takes arguments of type σ, τ and yields a value of type σ × τ , p0,p1 take
arguments of type σ × τ and yield values of type σ and τ respectively. The
pairing axioms are assumed:

PAIR ∀x0x1(pi(p(x0, x1) = xi) (i = 0, 1)

SURJ ∀xσ×τ (p(p0x,p1x) = x).

For power-types we require replacement

REPL ∀XP(σ)∀xσyσ(x ∈ X ∧ x = y → y ∈ X),

as well as extensionality and comprehension:

EXT ∀XP(σ)Y P(σ)(∀xσ(x ∈ X ↔ x ∈ Y) → X = Y)),

CA ∃XP(σ)∀xσ(x ∈ X ↔ A(x)).

For function types the corresponding requirements are

EXTF ∀yσ→τzσ→τ (∀xσ(yx = zx) → y = z)

CAF ∀xσ∃!yτA(x, y) → ∃zσ→τ∀xσA(x, zx).

If the type ω is present and P(σ) is identified with σ → ω, EXT and CA
become special cases of EXTF and CAF, and REPL follows from the fact
that functions respect equality.

45

8.2. Definition. HAH, intuitionistic higher-order arithmetic (“Heyt-
ingHeyting, A. Arithmetic of Higher order”) is a specialization of higher-
order logic based on a single basic type 0 (or N) for the natural numbers;
types are closed under power-type and function-type formation.

On the basis type 0 an injective function S : 0 → 0 is given, with axioms
Sx = Sy → x = y, 0 ̸= Sx. Defining

x ∈ IN := ∀X(0 ∈ X ∧ ∀y(Xy → X(Sy)) → x ∈ X)

we add an axiom stating that all elements of type 0 are in IN: ∀x0(x ∈ IN).
As a result, the induction axiom becomes valid. 2

Remarks. (i) E-HAω is a fragment of HAH based on type 0 and function-
type formation only.

(ii) It is well known, that if we consider in HAH any set X with a special
element x0 ∈ X and a function f : X → X, then there is a unique function
F : IN → X such that F0 = x0, F (Sx) = f(Fx). In particular, if f is
injective, then the image f [X] ∪ {x0} is isomorphic to the type N.

8.3. Numerical realizability for many-sorted logic

Since our versions of intuitionistic higher-order logic, and the system HAH
are based on intuitionistic many-sorted predicate logic, we first discuss re-
alizability for many-sorted logic. Our definition of realizability will be mo-
tivated by the truth-functional reformulation of realizability for HAS in
7.8.

We start with realizability for many-sorted logic without function sym-
bols. Below Ω ≡ P(IN), Ω∗ is the collection of all inhabited subsets of IN.
We first introduce Ω-sets, which will serve to interpret the types with their
equalities.

8.4. Definition. An Ω-set X ≡ (X,=X) is a set X together with a map
=X : X

2 −→ Ω such that the following is true (writing t =X t′ for =X (t, t
′)):∩

x,y(x =X y → y =X x) ∈ Ω∗,∩
x,y,z(x =X y ∧ y =X z → x =X z) ∈ Ω∗.

Here ∧,→ on the left have to be understood as defined for elements of Ω,
as in 7.8. We write EX t for t =X t.5

The Ω-product of two Ω-sets X ≡ (X,∼) and Y ≡ (Y,∼′) is the Ω-set
X × Y ≡ (X × Y,∼′′) where

(x, y) ∼′′ (x′, y′) := (x ∼ x′) ∧ (y ∼′ y′).

A product of n factors X1, . . . ,Xn is defined as (X1 × · · · ×Xn−1)×Xn.
We use calligraphic capitals X ,Y, . . . for Ω-sets. 2

46

Examples. Ω itself may be viewed as an Ω-set (Ω,↔) where X ↔ Y is
defined as in 7.8. Another example is N := (IN,=IN), where n =IN m :=
{n} ∩ {m} ≡ {n : n = m}.

8.5. Definition. Let X ≡ (X,∼) be an Ω-set and F : X −→ Ω a map.
We put

Strict(F) :=
∩
x∈X

(Fx→ Ex),

Repl(F) :=
∩

x,y∈X
(Fx ∧ x ∼ y → Fy).

An Ω-predicate on X is an F : X → Ω such that Strict(F) and Repl(F) are
inhabited (belong to Ω∗). An Ω-relation on X1, . . . ,Xn is an Ω-predicate on
X1 × · · · × Xn.

If (X × Y,∼) is the product of the Ω-sets (X,=X) and (Y,=Y), and
F : X × Y −→ Ω, we define

Fun(F) :=
∩
x,y,z

(F (x, y) ∧ F (x, z) → y =Y z)

Total(F) :=
∩
x

(Ex→
∪
y

F (x, y)).

An Ω-function from X to Y is an F : X × Y → Ω such that Strict(F),
Repl(F), Fun(F), Total(F) are inhabited. The definition of Ω-function for
more than one argument is reduced to this case via products of Ω-sets. 2

8.6. Definition. An interpretation [[]] of a many-sorted relational lan-
guage assigns

(i) to each type σ with equality =σ an Ω-set [[σ]]≡ (σ̄, [[=σ]]); for [[=σ]](x, x)
we also write Eσx, and we shall permit ourselves in the sequel a slight
abuse of language, using [[σ]] also for the underlying set σ̄.

(ii) to constants c of type σ an element [[c]] of [[σ]],

(iii) to each n-ary relation symbol R, taking arguments of sorts σ1, . . . , σn
respectively, an Ω-relation [[R]] on [[σ1]],. . . , [[σn]]. 2

N.B. It is important to observe that for practical purposes the definition of
Ex for an Ω-set (X,∼) may be liberalized, it suffices that

∩
x(Ex ↔ x ∼

x) ∈ Ω∗.

Remark. If in the definition above we take for Ω a complete HeytingHeyt-
ing, A. algebra, and replace

∩
in the conditions above by the meet operator∧

, and take Ω∗ := {⊤}, ⊤ the top element of Ω, we obtain precisely the
interpretation of many-sorted intuitionistic logic in Ω-sets, as described in
(?) or (?). There Et measures the “degree of existence” of t.

47

8.7. Definition. Let X ≡ (X,∼) be an Ω-set, and let F : X → Ω, then

∀x∈XF (x) :=
∩
x∈X

(EXx→ Fx), ∃x∈XF (x) :=
∪
x∈X

(EXx ∧ Fx). 2

N.B. “∀x ∈ X . . .”, “∃x ∈ X . . .” indicate elements of Ω, but “∀x ∈ X . . .”,
“∃x ∈ X . . .” refer to ordinary quantification.

8.8. Definition. The interpretation of formulas of a many-sorted rela-
tional language may now be given modulo assignments ρ for the variables.
Let ρ be an assignment of elements of [[σ]] to the variables of type σ, for
all σ. For constants c the interpretation [[c]]ρ is supposed to be given; for
variables [[x]]ρ := ρ(x), and for prime formulas

[[t =σ t
′]]ρ := [[=σ]]([[t]]ρ, [[t

′]]ρ), [[R(t1, . . . , tn)]]ρ := [[R]]([[t1]]ρ, . . . , [[tn]]ρ),

and for compound formulas according to 7.8, i.e.

[[A ∧B]]ρ := [[A]]ρ ∧ [[B]]ρ,
[[A→ B]]ρ := [[A]]ρ → [[B]]ρ,
[[¬A]]ρ := [[A]]ρ → ∅,
[[∀x∈σ.A]]ρ := (∀d∈[[σ]])[[A]]ρ[x/d],
[[∃x∈σ.A]]ρ := (∃d∈[[σ]])[[A]]ρ[x/d],

where ρ[x/d] is the assignment given by ρ[x/d](y) = ρ(y) for y ̸≡ x, ρ[x/d](x) =
d. Instead of using assignments, we may also use a language enriched with
constants as names for each Ω-set used for the interpretation of the types,
and define the interpretation only for sentences.

A sentence A is said to be valid if [[A]] ∈ Ω∗. 2
N.B. In the sequel we shall sometimes used “mixed” expressions: for an
Ω-set X ≡ (X,∼) [[∀x ∈ XA(x)]] :=

∩
x∈X(Ex→ [[A(x)]]), [[∃x ∈ XA(x)]] :=∪

x∈X(Ex ∧ [[A(x)]]).

8.9. Proposition. Intuitionistic many-sorted predicate logic is sound for
realizability.
Proof. The proof is routine. The definition of an interpretation says that
for the Ω-relation [[R]] interpreting relation R of the language the following
hold: ∩

x,y

([[x = y]] → [[y = x]]) ∈ Ω∗,(1)

∩
x,y,z

([[x = y]] ∧ [[y = z]] → [[x = z]]) ∈ Ω∗,(2)

∩
x1,...,xn

([[R]](x1, . . . , xn) → Ex1 ∧ . . . ∧ Exn) ∈ Ω∗,(3)

48

∩
x⃗,y⃗

([[R]](x⃗) ∧ [[x⃗ = y⃗]] → [[R]](y⃗)) ∈ Ω∗(4)

where of course [[x⃗ = y⃗]] abbreviates [[x1 = y1]] ∧ . . . ∧ [[xn = yn]]; similarly
we may abbreviate Ex1 ∧ . . . ∧ En as Ex⃗.

(1) and (2) guarantee the validity of symmetry and transitivity of equal-
ity, and (3) and (4) the validity of strictness and replacement for R. Reflex-
ivity translates into the trivial

∩
x(Ex → [[x = x]]) ∈ Ω∗, so does not need

an extra condition. 2
The definition of the interpretation of a language with function sym-

bols is reduced to the case of relational languages, by regarding functions
as special relations (a partial function is a relation which is functional:
∀x⃗yz(R(x⃗, y) ∧ R(x⃗, z) → y = z), and a (total) function is a relation which
is functional and total, i.e. satisfies ∀x⃗∃yR(x⃗, y)).

8.10. Definition. (Interpretation of function symbols) To each function
symbol F : σ1× · · · ×σn → σ we assign an Ω-function [[F]] from [[σ1]]× · · · ×
[[σn]] to [[σ]]. In full the conditions read:∩

x⃗

(Ex⃗→
∪
y[[F]](x⃗, y)) ∈ Ω∗,∩

x⃗,y,z

([[F]](x⃗, y) ∧ [[F]](x⃗, z) → [[y = z]]) ∈ Ω∗.

For partial functions the first condition may be omitted. 2
As to the reason for using relations to interpret functions, see 8.11.

8.11. Definition. (Interpretation of formulas for languages with function
symbols) We now assume a language with relation symbols and symbols for
total functions.

We have to say how to interpret t1 = t2 and Rt1 . . . tn for compound
terms t1, . . . , tn. This is done recursively: t1 = t2 for arbitrary t1, t2 is inter-
preted as ∃x(t1 = x∧ t2 = x); Ft1 . . . tn = x is interpreted as ∃x1 . . . xn(t1 =
x1 ∧ . . . ∧ tn = xn ∧ Fx1 . . . xn = x); the value of Fx1 . . . xn = x is given by
[[F]](ρx1, . . . , ρxn, ρx). Rt1 . . . tn is interpreted as ∃x⃗(⃗t = x⃗ ∧R(x⃗)). 2

8.12. Theorem. The interpretation above is sound for many-sorted logic.
Proof. Almost entirely routine. To see that e.g. all instances of ∀xA →
A[x/t] are valid, one should note that the “unwinding” of t1 = t2 and
Rt1 . . . tn mentioned above is precisely what one does in showing syntac-
tically that the addition of symbols for definable functions with the appro-
priate axiom is conservative; the standard proof, e.g. (?), shows that the
“unwinding” translation of ∀xA → A[x/t] is in fact derivable in the rela-
tional part of the language.

49

In our case this means that the soundness reduces to the soundness for
a relational language with an extra relation symbol RF for each function
symbol F in the original language. 2.

8.13. Remark. The reason that we have not imposed the stronger re-
quirement that a function symbol F : σ1 × · · · × σn → σ is to be interpreted
by a function [[F]] : [[σ1]] × · · · × [[σn]] → [[σ]] lies in the fact that this some-
times not sufficiently general: the interpretation of ∀x∃!yR(x, y) says that∩
x(Ex →

∪
y[[R]](x, y)) ∈ Ω∗, and

∩
x,y,z([[R]](x, y) ∧ [[R]](x, z) → [[y =

z]]) ∈ Ω∗, but there is no guarantee that we can find a function f such that∩
x[[R]](x, fx) ∈ Ω∗. Cf. the similar situation for the interpretations where

Ω is a complete HeytingHeyting, A. algebra; only for sheaves the situation
simplifies; see (?, 1.3.16, chapter 14).

Example. Let f be a primitive recursive function with function symbol F
in the language of HA. Over the domain N ≡ (IN, [[=IN]]) as defined above
we can introduce the interpretation of F by the relation

RF (n,m) := En ∧ [[m = fn]]

we add En to guarantee the strictness of RF), so RF := {p(n, fn) : n ∈ IN}.
It is now routine to see that this yields a realizability for HA (equivalent
to) the one defined before.

8.14. Remark. The modelling of many-sorted logic described above is
an interpretation in a certain category Eff, with as objects the Ω-sets, and
as morphisms (equivalence classes of) Ω-functions. More precisely, the mor-
phisms from X to Y are given by Ω-relations on X×Y such that (cf. definition
??)

Strict(F), Repl(F), Fun(F), Total(F) ∈ Ω∗,

modulo an equivalence ≈ defined as

F ≈ F ′ := [[∀xy(Fxy ↔ F ′xy)]] =
∩
x,y

(Ex ∧ Ey → (Fxy ↔ F ′xy)) ∈ Ω∗.

Composition of morphisms F : X → Y, G : Y → Z is given by the relational
product: G ◦ F is the relation on X × Z given by

(G ◦ F)(x, z) := ∃y ∈ Y(F (x, y) ∧G(y, z)).

The identity morphism idX : X → X is simply (the equivalence class of)
idX (x, y) := x =X y.

Let Sets be the category of sets and set-theoretic mappings. There are
functors ∆ : Sets → Eff and Γ : Eff → Sets which may be described as
follows.

50

∆, the “constant-objects functor”, maps a set X to the Ω-set (X,∼) with
x ∼ y := {n ∈ IN : x = y}, and if f : X → Y , then ∆f is represented by
the Ω-relation Rf , Rf := (fx ∼ y).

Γ(X,∼) = {x : Ex inhabited}/≃, where ≃ is the equivalence relation
x ≃ x′ := (x ∼ x′ inhabited). Γ is usually called the global-sections functor,
since it is naturally isomorphic tot the functor which assigns to (X,∼) the
set of morphisms ⊤ → (X,∼); ⊤ is the terminal object ({∗},=∗) with
(∗ =∗ ∗) = IN.

∆ preserves finite limits and is full and faithful; Γ also preserves finite
limits, and Γ is left-adjoint to ∆. N is a natural-numbers object in Eff, and
Eff is in fact a topos (see 8.15). For the theory of Eff, with proofs of the
facts mentioned above, see (?); the general theory of realizability toposes is
treated in (?). Other sources of information on Eff are (?) and (?).

The categorical view provided by Eff suggests the following

8.15. Definition. The Ω-sets X ≡ (X,∼), Y ≡ (Y,∼′) are said to be
isomorphic if there are Ω-functions F : X × Y → Ω, G : Y × X → Ω
such that G ◦ F ≈ idX , F ◦ G ≈ idY , where ≈ is defined as above, i.e.,
H ≈ H ′ := [[∀xy(Hxy ↔ H ′xy)]]. 2

It is easy to see that quantification over isomorphic sets yields equivalent
results, in the following sense:

Lemma. Let X and Y be isomorphic via F,G. Then

∀x∈X .A(x) = ∀y∈Y.A(Gy) = ∀y∈Y∀x∈X .(G(y, x) → A(x)),

and similarly for existential quantification.
The proof is routine, relying on the soundness of logic. Important special

cases are (a) any Ω-set X ≡ (X,∼) is isomorphic to (X ′,∼� X ′×X ′) where
X ′ := {x : x ∈ X and Ex ∈ Ω∗}, and (b) the following situation: let
X ≡ (X,∼) be an Ω-set, and let X ′ ⊂ X such that

∀x ∈ X(Ex ∈ Ω∗ → ∃x′ ∈ X ′(x ∼ x′) ∈ Ω∗).

8.16. Products, powersets and exponentials

Definition. The interpretation of a product [[σ1 × σ2]] is [[σ1]]× [[σ2]]. The
functions pσ,τ ,pσ,τ0 ,pσ,τ1 are simply represented by the pairing and unpairing
on the relevant Ω-sets. 2

In order to interpret higher-order logic, the interpretation of type σ and
types P (σ) and σ → τ relative to the interpretation of σ, τ , and the inter-
pretation of the relation ∈σ as well as the operator App must be such that
extensionality and comprehension are valid.

51

Definition. Let X ≡ (X,∼) be an Ω-set; the Ω-powerset of X , P(X), is
an Ω-set (X → Ω,≃) where for F,G of X → Ω:

E(F) := Strict(F) ∧ Repl(F),
F ≃ G := E(F) ∧ E(G) ∧

∩
x(Fx↔ Gx),

x ∈X F := Fx ∧ EF.

Let X ≡ (X,∼),Y ≡ (Y,∼′) be Ω-sets, then the Ω-functionset X → Y is
(X × Y → Ω,≈) such that for F,G ∈ X × Y → Ω

E(F) := Str(F) ∧ Repl(F) ∧ Fun(F) ∧ Total(F)
F ≈ G :=

∩
x,y(Ex ∧ Ey → (Fxy ↔ Gxy)) ∧ EF ∧ EG,

AppX ,Y(F, x, y) := EF ∧ Fxy.

N.B. Here we have availed ourselves of the freedom to define E(F) so as to
be equivalent only to F ≈ F in the realizability sense, not literally identical.
2

Remark. As noted above, Ω itself may be viewed as an Ω-set (Ω,∼). It is
then not hard to see that the Ω-powerset of a Ω-set X is in fact isomorphic
to the Ω-functionset X → Ω.

Definition. In an interpretation of intuitionistic higher-order logic pow-
ertypes and exponentials are interpreted such that [[P(σ)]] is the P[[σ]] and
such that [[σ → τ]] is [[σ]] → [[τ]]. [[∈σ]] :=∈[[σ]], [[Appσ,τ]] := App[[σ]],[[τ]]. 2

Remark. We can easily introduce subtypes of a given type, as follows. Let
X ≡ (X,∼) be an Ω-set. Intuitively an Ω-predicate over X determines a
subset of X . We may again make this into an Ω-set:

Definition. Let X ≡ (X,∼) be an Ω-set, and let F : X → Ω be an Ω-
predicate; then the Ω-subset of X determined by F is (X ′,∼′) with X ′ :=
{x : Fx ∈ Ω∗}, x ∼′ y := x ∼ y. 2
N.B. An equivalent definition would have been obtained by taking X ′ = X,
and x ∼ y := Fx∧Fy ∧x ∼ y. The resulting Ω-set is isomorphic to the one
defined above.

8.17. Proposition. Extensionality and comprehension are valid.
The proof is routine.

Remarks. (i) In categorical terms, the preceding facts mean that the cat-
egory Eff has products and exponentials (i.e. is cartesian closed), and more-
over has a classifying truth-value object, namely (Ω,↔), and hence is a
topos.

52

The fact that the natural numbers are unique modulo isomorphism in
higher-order logic (8.2) corresponds in categorical terms to the uniqueness
of the natural number object in a topos.

(ii) Obviously, the notions needed for the realizability interpretation of
HAH can be formalized in HAH itself. If we assign a level ℓ(σ) to types σ
according to ℓ(0) = ℓ(ω) = 0, ℓ(Pσ) = ℓ(σ)+1, ℓ(σ→τ) = max(ℓ(σ)+1, ℓ(τ),
ℓ(σ×τ) = max(ℓ(σ), ℓ(τ)), then the interpretation of a formula of level ≤ n
(i.e. all variables are of level ≤ n) is definable by a formula of level ≤ n.

Our next aim will be to show that for HAS the resulting notion of
realizability is in fact equivalent to realizability as defined in 7.2.

8.18. Definition. An Ω-set X ≡ (X,∼) is called canonically uniform if∩
x∈X Ex is inhabited. X is uniform if it is isomorphic to a canonically

uniform set.

8.19. Lemma. For uniform Ω-sets X ≡ (X,∼) interpretation of universal
and existential quantifiers may be simplified to

∀x∈X Fx :=
∩
x∈X

Fx, ∃x∈X Fx :=
∪
x∈X

Fx;

more precisely, (
∩
x(Ex→ Fx) ↔

∩
x Fx) ∈ Ω∗, (

∪
x(Ex∧Fx) ↔

∪
x Fx) ∈

Ω∗.
proof. It suffices to prove this for canonically uniform Ω-sets, and then it
is easy: let n ∈

∩
xEx, and let m ∈

∩
x(Ex → Fx), then ∀x(m•n ∈ Fx),

i.e. m•n ∈
∩
x Fx, etc. 2

8.20. Definition. Let X ≡ (X,∼) be an Ω-set. X is canonically separated
if

(x ∼ y) inhabited ⇒ x = y.

X is canonically proto-effective if

Ex ∩ Ey inhabited ⇒ x = y.

X is separated [proto-effective] if X is isomorphic to a canonically separated
[canonically proto-effective] Ω-set. X is [canonically] effective if X is [canon-
ically] separated and [canonically] effective. 2

8.21. Proposition. Let X ≡ (X,∼) be a uniform and Y ≡ (Y,∼′) a
proto-effective Ω-set. Then the uniformity principle

UP(X ,Y) ∀x∈X ∃y∈Y A(x, y) → ∃y∈Y ∀x∈X A(x, y)

is valid.

53

Proof.Without loss of generality we may assume Y to be canonically proto-
effective. Let n ∈

∩
x∈X ∃y ∈ YA(x, y), so n ∈

∪
y∈Y (Ey ∧ A(x, y)), then

∀x∈X∃y∈Y (p0n ∈ Ey), i.e. n ∈
∪
y∈Y Ey ∧

∩
x∈X A(x, y). 2

The following proposition is not needed in what follows but describes
the logical significance of separatedness:

8.22. Proposition. An Ω-set X ≡ (X,∼) is separated iff ∀x, y∈X (¬¬x∼y →
x∼y) is valid.
Proof. It is easy to see that a canonically separated Ω-set X satisfies ∀x, y∈X (¬¬x∼y →
x∼y). Conversely, assume ∀x, y∈X (¬¬x∼y → x∼y) to be valid. We define
for x, y ∈ X:

[x] := {x′ ∈ X : x′ ∼ x inhabited},
[x] ≈ [y] := {n ∈ IN : x ∼ y inhabited},
X ′ := {[x] : x ∈ X}.

Then X ′ ≡ (X ′,≈) is canonically separated and isomorphic to X via the
Ω-relations F on X × X and G on X × X ′, defined by

F ([x], y) ≡ G(x, [y]) := {n ∈ IN : y ∼ x inhabited}.

We have to show that F,G are strict, total, functional and that their com-
position is the identity. This is mostly routine. For example, to see that F
is functional, observe that our hypothesis gives the existence of an n such
that

(1) ∀m,m′(m ∈ Ex ∧m′ ∈ Ey ∧ (∃m′′(m′′ ∈ x∼y) → n•p(m,m′) ∈ (x∼y)).

The functionality of F amounts to validity of ∀[x], y, y′(F ([x], y)∧F ([x], y′) →
y ∼ y′), i.e.

(2)

∩
[x]∈X′

∩
y,y′∈X

(E[x] ∧ Ey ∧ Ey′ ∧ {n ∈ IN : ∃m(m ∈ x ∼ y)}∧

{n∈IN : ∃m(m ∈ x ∼ y′)} → y ∼ y′) ∈ Ω∗.

Since x ∼ y and x ∼ y′ inhabited implies y ∼ y′ inhabited, (2) readily
follows from (1). 2

The following proposition, with a proof due to van Oosten, justifies the
terminology “uniform”.

8.23. Proposition. An Ω-set X ≡ (X,∼) is uniform iff X satisfies
UP(X ,N).
Proof. One direction is a consequence of proposition 8.19. The other direc-
tion is proved as follows. Given X , consider the Ω-set Y ≡ (Y,≃) defined
by

Y := {p(x, n) : n ∈ EXx},
(x, n) ≃ (y,m) := {n : n ∈ x∼y ∧ n = m}.

54

We shall write (y, n) for p(y, n) in what follows. There is an Ω-function
G : Y → X given by

G((x, n), x′) := (x ∼ x′) ∧ {n}.
G is surjective as an Ω-function, i.e.

∀y∈Y∃x∈X .G(y, x),
i.e. ∩

(y,n)∈Y

(EY(y, n) →
∪
x∈X

(EXx ∧G((y, n), x)) ∈ Ω∗.

Let H : Y → N be the surjective Ω-function

H((x, n),m) := {n : n = m}.
Then

∀x∈X ∃y∈Y ∃n∈N (G(y, x) ∧H(y, n))

is valid. If we assume UP(X ,N), it follows that

∃n∈N ∀x∈X ∃y∈Y(G(y, x) ∧H(y, n))

is valid, which means that for some n ∈ IN

(1)
∩
x∈X

(Ex→
∪

x′∈X,n∈Ex′
(x ∼ x′))

is inhabited. Let now Z := (Z,∼′), Z := {x∈X : n∈Ex}, ∼′ the restriction
of ∼ to Z. Clearly F defined by F (x, x′) := (x ∼ x′) is an injection of Z
into X ; and the formula (1) states that this injection is also a surjection,
hence Z and X are isomorphic. 2

8.24. Proposition. The Ω-powerset of a separated Ω-set X = (X,∼) is
uniform.
Proof. Let X be canonically separated, and let Y : X → Ω be an element of
the Ω-powerset P(X) of X , then Λk.p0k realizes Repl(Y); n ∈ Str(Y) means
n ∈

∩
x∈X(x ∈ Y → Ex).

By restricting attention to “normal” Y we can construct uniform realizers
for Ey. Let us call Y normal if

m ∈ Y(x) ⇒ p1m ∈ Ex.

For normal Y, Λm.p1m ∈ Str(Y), and so always

p(Λk.p0k,Λm.p1m) ∈ E(Y).

To show Ω-isomorphism of P(X) with the subset of normal elements, observe
that if we map arbitrary Y to Φ(Y) with Φ(Y)(x) := {p(n,m) : n ∈ Y(x)∧
m ∈ Ex}, we have that Y =P(X) Φ(Y) is inhabited:∩

x∈X
(x ∈ Y ↔ x ∈ Φ(Y)) ∈ Ω∗.

If n ∈ Str(Y), k ∈ (x ∈ Y), then n•k ∈ Ex, and p(k, n•k) ∈ Φ(Y)(x), etc. 2

55

8.25. Proposition. For HAS the realizability as defined above is equiv-
alent to rn as defined in 7.2.
Proof. This result is now obtainable as a corollary to the preceding propo-
sitions. As to the second-order quantifiers, we may restrict attention to the
normal elements of the Ω-powerset of N . Let

Φ′(X) := {p(p(x, y), y) : p(x, y) ∈ X},
Φ′′(X) := {p(x, y) : p(p(x, y), y) ∈ X}.

Φ′ corresponds as operation on binary relations to Φ above, Φ′′ is its inverse.
Let rn be defined as forHAS-formulas as in 7.2 relative to an assignment

X 7→ X∗ for second-order variables; and let rn′ be the realizability notion
as defined in this section, relative to an assignment X 7→ X◦ of normal
binary relations to the second-order variables (i.e. x rn′Xt := x ∈ [[Xt]] :=
X◦(x, t); x rn′A := x ∈ [[A]]). Then for all formulas A of HAS there are
ϕA, ψA such that

x rnA(X1, . . . , Xn) → ψA rn′A(X1, . . . , Xn)[X
◦
1 , . . . , X

◦
n/Φ

′X∗
1 , . . . ,Φ

′X∗
n],

x rnA(X1, . . . , Xn) → ϕA rnA(X1, . . . , Xn)[X
∗
1 , . . . , X

∗
n/Φ

′′X◦
1 , . . . ,Φ

′′X◦
n],

where X1, . . . , Xn is a complete list of the second-order variables free in A.
2

8.26. Lemma. For Ω-sets X ≡ (X,∼), Y ≡ (Y,∼′), Y separated, the
elements of the Ω-functionset X → Y may be represented by functions
f : X → Y .
Proof. Let F : X × Y → Ω be an arbitrary element of the Ω-exponent, for
which EF is inhabited. Then for certain k, k′

k ∈
∩
x∈X(Ex→

∪
y∈Y Fxy),

k′ ∈
∩
x∈X,y,y′∈Y (Fxy ∧ Fxy′ → y ∼′ y′).

By the second statement, it readily follows in combination with separated-
ness, that

Fxy inhabited, Fxy′ inhabited ⇒ y = y′,

and from the first statement that for all x with Ex inhabited, there is a y
such that Fxy is inhabited; so let f be the function defined for x with Ex
inhabited, such that F (x, fx) is inhabited. 2

8.27. Lemma. For separated [effective] Y ≡ (Y,∼′) the Ω-function set
(X,∼) → (Y,∼′) is separated [effective].
Proof. By the preceding lemma we may represent (there is a little checking
to do, but we leave this to the reader) the elements of the exponent by the
isomorphic (X→Y,≈) with

(f ≈ g) inhabited ⇒ f = g,
f ≈ f := {m : ∀y ∈ Y ∀n ∈ Ey(m•n ∈ E(fy))},

56

or combined into a single definition:

f ≈ g := {m : f = g ∧ ∀y ∈ Y ∀n ∈ Ey(m•n ∈ E(fy))}.

The separatedness has been built into the definition; as to proto-effectiveness,
suppose Ef ∩ Eg inhabited, then for some m

∀y ∈ Y ∀n ∈ Ey(m•n ∈ E(fy) ∩ E(gy));

by the proto-effectivity of Y it follows that ∀y ∈ Y (fy = gy), i.e. f = g. 2

Remark. The fact that X → Y is separated for separated Y is also easily
seen to hold for logical reasons (cf. 8.20): ¬¬f = g ↔ ¬¬∀x(fx = gx) →
∀x(fx = gx) ↔ f = g.

8.28. Proposition. The structure of functional ω-sets generated from N
is isomorphic to HEO as defined in 3.3.
Proof. Induction on the type structure. 2
The following is immediate:

8.29. Proposition. For all function types σ generated from type 0 in
HAH, the realizability interpretation validates a uniformity principle:

∀XP[0]∃xσA(X,x) → ∃xσ∀XP[0]A(X,x).

8.30. Generalization to other kinds of realizability

In the preceding section we have already indicated how the generalizations
of realizabilities to second-order logic follow a pattern. If we combine this
with the “truth-value semantics” idea introduced in the preceding section
and used extensively above, we are led to consider other choices for Ω and
Ω∗.

Examples. (a) If we want to generalize rnt-realizability, we take

Ωrnt := {(X, p) : X ⊂ IN, p ⊂ {0}},
Ωrnt∗ := {(X, p) ∈ Ω : X inhabited, 0 ∈ p}.

The crucial operations we have to define are ∧rnt, →rnt,
∩rnt:

(X, p) ∧rnt (Y, q) := ((X ∧ Y, {0 : 0 ∈ p ∧ 0 ∈ q}),
(X, p) →rnt (Y, q) := ((X → Y), {0 : 0 ∈ p→ 0 ∈ q}),∩rnt
y∈Y (Zy, py) := (

∩
y∈Y Zy,

∩
y∈Y py).

N.B. We do not really need to define an operation ∧rnt, since in a second-
order context we can define (7.3) operation ∧′ in terms of the other opera-
tions, producing objects (X, p) ∧′ (Y, q) isomorphic to (X, p) ∧rnt (Y, q).

57

(b) For modified realizability we can put

Ωmrn := {(X,Y) : X ⊂ Y ⊂ IN, 0 ∈ Y },
Ωmrn∗ := {(X,Y) ∈ Ω : X inhabited}.∩mrn is defined component-wise, and for →mrn we take

(X,Y) →mrn (X ′, Y ′) := ((X → Y) ∩ (X ′ → Y ′), X ′ → Y ′)).

(In order to guarantee that 0 always occurs in the second component we
must choose our gödelnumbering of the partial recursive functions such that
Λx.0 = 0.)

(c) For LifschitzLifschitz, V. realizability another idea is needed, a refor-
mulation of the original definition which makes LifschitzLifschitz, V. realiz-
ability fit the general pattern (?).

8.31. Notes

The proper definition of realizability for higher-order logic emerged from the
study of special toposes ((?), (?), (?), Grayson(?, ?, ?)). Aczel(?) described
a less far-reaching common generalization of HeytingHeyting, A.-valued and
realizability semantics. The higher-order extension of rln-realizability is due
to (?). By means of this extension he shows that the following principle RP
(Richman’sRichman, F. Principle)

∀Xd(∀Y d(X ⊂ Y ∨X ∩ Y = ∅ → ∃n∀x(x ∈ X → x = n))

(where ∀Xd, ∃Y d are quantifiers ranging over decidable subsets of IN) is false
in the “LifschitzLifschitz, V. topos” and true in Eff, that is to say false in the
higher-order extension of LifschitzLifschitz, V. realizability and true in the
realizability interpretation for higher-order logic described in the preceding
section. More information on the LifschitzLifschitz, V. topos Lif is given in
(?).

9 Further work

9.1. Realizability for set-theory

It is also possible to define rn-realizability, or the abstract version r-realizability
for the language of set theory. The definition is straightforward except for
the fact that we have to build in extensionality.

The problem becomes clear if we try to extend the definition of rn-
realizability given in 7.2 to intuitionistic third-order arithmetic HAS3 (vari-
ables X2, Y 2, . . .) in which we can also quantify over PP(IN), and with full
impredicative comprehension and extensionality

EXT ∀X2(Y 1 ∈ X2 ∧ Y 1 = Z1 → Z1 ∈ X2)

58

whereX1 = Y 1 := ∀z(z ∈ X ↔ z ∈ Y). If we take as clauses x rnX2(Y 1) :=
X∗2(Y ∗1, x), x rn∀X2.A(X2) := ∀X∗2(x rnA(X2), etc., we discover that
there is no problem in proving soundness except for the axiom EXT; this
imposes a restriction on the sets over which the “starred variables” X∗2

should range.
Some authors, e.g. (?), solve the problem in the case of set theory

by first giving a realizability interpretation for a set theory without the
extensionality axiom, combined with an interpretation of the theory with
extensionality into set theory without extensionality. Others such as (?)
build the extensionality into the definition of realizability.

The earliest paper defining realizability for set theory is (?). Other
papers using realizability for set theory are: (?), Friedman and Scedrov(?,
?), McCarty(?, ?), (?), and the series of papers by KhakhanyanKhakhanyan,
V. Kh..

9.2. Comparison with functional interpretations

Another type of interpretation which is in certain respects analogous to
(modified) realizability, but in other respects quite different, is the so-called
Dialectica interpretation devised by (?). There is also a modification due
to (?). As we have seen, modified realizability associates to formulas A of
HAω ∃-free formulas of the form Amr(x

σ) (xσ a new variable not free in
A), expressing “xσ modified-realizes A”. The Dialectica- and DillerDiller,
J.–NahmNahm, W. interpretation on the other hand associate with A for-
mulas ∀yτAD(xσ, yτ) and ∀yτADN (xσ, yτ) respectively, σ, τ depending on
the logical structure of A alone, AD, ADN quantifier-free; we may read
∀yτAD(xσ, yτ), ∀yτADN (xσ, yτ) as “xσ D-interpretsA”and “xσ DN-interprets
A” respectively.

For a soundness proof for the Dialectica interpretation, the prime for-
mulas of the theory considered have to be decidable with a decision function
of the appropriate type; for the DillerDiller, J.-NahmNahm, W. interpreta-
tion this is not necessary. For theories with decidable prime formulas (e.g.
I-HAω) the DillerDiller, J.-NahmNahm, W. interpretation is equivalent to
the Dialectica interpretation. For background information the reader may
consult the commentary to (?) in (?), and the relevant chapter elsewhere in
this volume.

SteinStein, M. has constructed a whole sequence of interpretations inter-
mediate between the DN-interpretation and modified realizability; see the
papers by SteinStein, M., and (?).

9.3. Formulas-as-types realizability

In the formulas-as-types paradigm, formulas (representing propositions) are
regarded as determined by (identified with) the set of their proofs. The

59

idea is illustrated by taking a natural deduction formulation of intuitionistic
predicate logic, and writing the deductions as terms in a typed lambda-
calculus.

Normalization of the deductions suggests equations between the terms
of such a calculus (in particular beta-conversion) and “t proves A” for com-
pound A then behaves like an abstract realizability notion. Of particular
interest is the realizability obtained by stripping the proof-terms of their
types. With combinators instead of lambda-abstraction, such a realizability
is already used in Staples(?, ?). (?) uses this concept for an elegant version
of Girard’sGirard, J.-Y. proof of the normalization theorem for second-order
intuitionistic logic. For another version of the proof see (?).

(?, ?) study completeness questions for such realizabilities. More specif-
ically, one is interested in completeness results of the following type: for all
formulas A of a certain formal system S, ⊢S A iff ⊢T ∃x(xrA) where T is a
suitable formal system (intuitionistic or classical logic), and r the abstract
version of realizability studied.

“Formulas-as-types” has also been a leading idea in the formulation of
various typed theories, such as the theories of Martin-Löf(?, ?), permit-
ting to absorb logical operations into type-forming operations (implication
is subsumed under function-type formation, universal quantification under
formation products of dependent types, etc.). In the proof-theoretic inves-
tigations of Martin-Löf’sMartin-Löf, P. type theories by de Swaen(?, ?, ?)
realizability plays an important role.

9.4. Completeness questions for realizabilities

(?) gave an example of a classically valid, but not intuitionistically prov-
able formula of propositional logic, such that all its arithmetical substitution
examples are (classically) realizable; this result was improved by (?), who
showed that the example also worked for rf- and mrf-realizability (in the
latter case the substitution instances were provably realizable even intuition-
istically). See also (?). On the other hand, (?) proved that the principle
“Every formula for which all arithmetical substitution instances are realiz-
able, is provable in intuitionistic propositional logic” is consistent with HAS
(but not with HAS + M).

KleeneKleene, S.C. also showed that the class of formulas of predicate
logic which are realizable under substitution is not recursive (for rn, rf, mrn).
Similar questions have been studied at length in a series of papers by Plisko-
Plisko, V.E.. A typical result of this kind is the following. Let R [AR] be
the class of all formulas A(P1, . . . , Pn) of predicate logic such that all arith-
metical substitution instances (i.e. formulas A(P ∗

1 , . . . , P
∗
n) with P

∗
1 ,. . . ,P

∗
n

arithmetical) are rn-realizable [such that ∀X1 . . . Xn A(X1, . . . , Xn) is rn-
realizable as defined for HAS].

(?) showed that AR is a complete Π1
1-set, and that AR ⊂ R; R is also

60

not arithmetical as shown in (?).
Van Oosten(?), adapting a method originally due to de JonghJongh,

D.H.J. de, gave a semantical proof of a result earlier established by proof-
theoretic means by D. LeivantLeivant, D.: if all arithmetical substitution
instances of a formula of predicate logic are provable in HA, the formula it-
self is a theorem of intuitionistic predicate logic(“maximality of intuitionistic
arithmetic”). The method uses a realizability in which rn-realizability and
Beth-semantics are combined. His proof also yields the following complete-
ness result for realizability. Let HA+ be an extension of HA obtained by
adding to the language primitive constants • (application), k, s (combina-
tors), with axioms saying that (IN, •,k, s) is a partial combinatory algebra.
Define r-realizability for HA+ relative to this combinatory algebra. Then a
predicate formula A is provable in intuitionistic predicate logic iff all arith-
metical instances of A are provably realizable in HA+.

A different sort of completeness result has been obtained by (?). He
defined a modified realizability for predicate logic with a set-theoretic hier-
archy as models for the finite-type functionals. All formula of predicate logic
is realizable by an element of this hierarchy iff it is classically provable; but
if we require that the realizing functionals are invariant under permutations
of the basic domains, we obtain precisely the intuitionistically provable for-
mulas. Inspection shows that the “modified” aspect of Läuchli’sLäuchli, H.
construction is not really relevant. A modern recasting of Läuchli’sLäuchli,
H. result, linking it with the category-theoretic interpretation of logic, was
given by (?). See also (?).

9.5. Realizability for subsystems of intuitionistic arithmetic

(?) considers realizability for primitive recursive arithmetic, using primi-
tive recursive functions instead of partial recursive functions. In particular
the clauses for → and ∀ require modification. This is achieved using levels,
which are provided by the Grzegorczyk hierarchy for the primitive recursive
functions. In (?) the same idea is applied to obtain a realizability for HA,
using so-called < ε0–recursive functions instead of general recursive func-
tions. (The < ε0–recursive functions are precisely the functions provably
recursive in HA and PA.) This permits reproving a number of metamathe-
matical results for HA by realizability methods. The technique also applies
to elementary analysis and finite–type arithmetic.

(?) uses rn- and rnt-realizability in a study of intuitionistic arithmetic
with Σ1-induction, IΣ1. Wehmeier shows that whenever ⊢ ∀n∃mA(n,m)
then there is a primitive recursive t(x) such that ∀nA(n, t(n)). (?) use a
version of rnt-realizability for a language of arithmetic extended with infinite
disjunctions in a study of the intuitionistic counterpart IS12 of Buss’s system
S12 ((?)), and of IΣ1 just mentioned. The authors obtain a new proof of the
fact, established in (?) by mrt-realizability, that whenever ⊢ ∀n∃mA(n,m)

61

in IS12, then ⊢ ∀nA(n, t(n)) where t(x) is polynomial-time computable in x.
They also sketch another proof of Wehmeier’s result.

9.6. Combining realizability with classical logic

Lifschitz(?, ?) considered an extension of classical arithmetic with an ad-
ditional predicate K(x), “x is computable”. The result is a combination of
classical arithmetic and realizability. It is to be noted that in the category
Eff we can obtain something similar by considering side by side N and ∆IN.

9.7. Medvedev’sMedvedev, Yu. T. calculus of finite problems

The calculus of finite problems as formulated by MedvedevMedvedev, Yu.
T., is somewhat reminiscent of, but actually diverges rather far from recur-
sive realizability. See the papers by MedvedevMedvedev, Yu. T., and by
(?).

9.8. Applications to Computer Science

For some examples, see (?), (?) (realizability modeling of the theory of
constructions), (?) (slash relations for type theory) and the papers by Tat-
sutaTatsuta, M. (program synthesis by “realizability-cum-truth”). Within
the effective topos one can find models for strong polymorphic type theories;
see e.g. (?).

In (?) program-extraction from classical proofs of statements ∀n∃mA(n,m),
A quantifier-free, is studied. Two methods are compared; one method is
based on normalization of classical proofs formalized in a calculus of natural
deduction, the other method uses modified realizability. The two methods
yield terms t1(x), t2(x) respectively such that ∀nA(n, ti(n)) (i = 1, 2) and
for all numerals n̄, t1(n̄) = t2(n̄). An ingredient in the second method is the
combination of the Gödel–Gentzen translation ((?, 2.3)) with the Friedman-
Dragalin A-translation ((?, 3.5)); by this combination a classical proof of
∀n∃mA(n,m), A quantifier-free, can be transformed into an intuitionistic
proof of the same statement.

Interesting applications of the second method are given in (?). One of
the examples concerns the following special case of Higman’s lemma:

If x1, y1 are two number-theoretic functions, we can find n < m
such that x1n ≤ x1m and y1n ≤ y1m.

This fact is easily proved classically. Applying the program extraction via
modified realizability, one obtains an algorithm which is in suitable cases
quadratically faster than “brute–force” search. The syntactic definition of
modified realizability and of the Friedman-Dragalin translation are used in a
variant which helps keeping the complexity of the extracted program (term)
down.

62

Abbreviations in the references

AML = Annals of Mathematical Logic.

AMS Transl. = American Mathematical Society Translations, Series 2.

APAL = Annals of Pure and Applied Logic.

Archiv = Archiv für mathematische Logik und Grundlagenforschung.

Doklady = Doklady Akademii Nauk SSSR.

Izv.Akad.Nauk = Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya.

JSL = The Journal of Symbolic Logic.

LMPS = Logic, Methodology and Philosophy of Science.

Math. Izv. = Mathematics of the USSR, Izvestiya.

SM = Soviet Mathematics. Doklady.

ZLGM = Zeitschrift für Logik und Grundlagen der Mathematik

Zapiski = Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-

eskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI).

63

