
Recursion theory for realizability

Dick de Jongh

April 10, 2012

The basic principles for the theory of recursive functions Nk → N needed
for realizability will be given. We will define the set of effectively computable
functions, the recursive functions. The core of this set is formed by the
primitive recursive functions, which will be defined first.

Definition 1. 1. The constant zero function 0 is the function defined by
0(x) = 0 (i.e. S = λx.0)

2. The successor function S is defined by Sx = x (i.e. S = λx. x+ 1).

3. The projection functions Un
i , for each n ≥ 1, 1 ≤ i ≤ n, are defined by

Un
i (~x) = xi (where ~x = x1, . . . xn, i.e. Un

i = λ~x. xi).

Definition 2. The class of primitive recursive functions Nk → N (k ≥ 1)
is defined as the closure of the set of functions containing the constant
zero function, the successor function and the projection functions under the
following two operations:

1. explicit definition:

h is defined from f and g1, . . . gk if h(~x) = f(g1(~x), . . . , gk(~x)), i.e.
h = λ~x.f(g1(~x), . . . , gk(~x)).

2. primitive recursion:

h is defined from f and g if:

h(~x, 0) = f(~x),

h(~x, y + 1) = g(~x, y, h(~x, y)).

All the standard functions like +, ×, exponentiation, !, etc. are easily seen
to be primitive recursive.

Proposition 1.

1



1. (pairing function) There exists a primitive recursive bijection p of the
natural numbers with primitive recursive inverses p0 and p1: i.e., for
all x, y, z ∈ N: p0(p(x, y)) = x, p1(p(x, y)) = y, p(p0(x),p1(x)) = x.

2. (sequences) There exists a bijection < · · · > from N to the set of all
finite sequences of natural numbers (if x =< y0, . . . , yn > we say that
x codes the sequence (y1, . . . , yn) ) with primitive recursive inverses
λx, i. xi in such a way that xi = yi if i ≤ n, xi = 0 otherwise.

To obtain all effectively computable functions (at least if one believes the
Church-Turing thesis) one introduces partial functions, functions that are
not defined on the whole domain Nn. We write f(~x) ↓ for f(~x) is defined,
and f(~x) ↑ for f(~x) is undefined, t ' t′ will mean that both t and t′ are
defined and equal, or both are undefined.

Definition 3. The set partial recursive functions is defined as the closure
of the set of functions containing the constant zero function, the successor
function and the projection functions under explicit definition, primitive re-
cursion and minimalization: f(~x) ' µy. g(~x, y) = 0, i.e. f(~x) is the minimal
y such that f(~x) is the minimal y such that g(~x, y) = 0 (and g(~x, z) ↓ for all
z smaller than y) and is undefined otherwise. A partial recursive function
is total recursive (or recursive for short) if it is defined on its whole domain.

Definition 4. A predicate on Nk is (primitive) recursive if its characteristic
function is.

There exist various types of virtual mathematical machines, the most
famous ones Turing machines, that can compute all (partial) recursive func-
tions. Turing machines themselves and their computations can be coded
by natural numbers in a primitive recursive manner by using the sequence
coding.

This leads to the following:

Definition 5.

1. The predicate Tn(z, ~x, y) which is true if y codes a finished computa-
tion of the Turing machine coded by z and input ~x (of length n) is
primitive recursive. We write T for T 1.

2. The function U that on input y determines the outcome of a compu-
tation coded by y is primitive recursive.

2



So, the Turing machine e is defined on input x if ∃y Texy. This predicate is
typically not primitive recursive, it is in general undecidable.

This leads to Kleene’s Normal Form Theorem:

Definition 6. 1. An n-place function f is partial recursive iff, for some
e, f(~x) ' U(µy. T (e, ~x, y).

2. In such a case we write e • ~x for f(~x).

Other notations in the literature for e • ~x are {e}(~x) (Kleene) and ϕe(~x)
(Rogers). Basic theorems that will be used are:

Theorem 1. (The Sm
n -theorem)

There exist primitive recursive functions Sm
n (e, x1, . . . , xn) such that

Sm
n (e, x1, . . . , xn) • (y1, . . . , ym) ' e • (x1, . . . , xn, y1, . . . , ym)

In case the Sm
n -theorem is applied to a partial recursive function f(~x, ~y) =

e • (~x, ~y) we may write Λe~y.f(~x, ~y) for Sm
n (e, ~x) and will usually drop the

e. The purpose of this is that Λ~y.f(~x, ~y) • ~y = f(~x, ~y), i.e., Λ~y acts as a
λ-notation giving the code of the function instead of the function itself.

Theorem 2. (Recursion theorem)
For each n+1-place partial recursive function f there exists e such that,

for all ~x, e • ~x = f(e, ~x).

3


