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Haskell is free: grab it from www.haskell.org
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In the second lecture, we look at the extension of dynamic predicate

logic to type theory. This gives rise to a system that is very much like

modern compositional versions of discourse representation theory. We

present an implementation and comment on its failings.

In the third lecture, we focus on those shortcomings of dynamic Mon-

tague grammar or compositional DRT that have to do with the use of

dynamic variable binding and destructive assignment. We show how

these can be overcome, and we look at issues of updating salience in

context and pronoun reference resolution.


