
Computational Semantics, Type Theory,
and Functional Programming

Jan van Eijck

CWI and ILLC, Amsterdam, Uil-OTS, Utrecht

LOLA7 Tutorial, Pecs

August 2002



In this tutorial we link computational semantics with polymorphic type

theory and functional programming.

An emerging standard for polymorphically typed, lazy, purely functional

programming is Haskell, a language named after Haskell Curry. Haskell

is based on (polymorphically typed) lambda calculus, which makes it

an excellent tool for computational semantics.



In this tutorial we link computational semantics with polymorphic type

theory and functional programming.

An emerging standard for polymorphically typed, lazy, purely functional

programming is Haskell, a language named after Haskell Curry. Haskell

is based on (polymorphically typed) lambda calculus, which makes it

an excellent tool for computational semantics.

Haskell is easy. In fact, you will learn Haskell programming in the course

of this tutorial.



In this tutorial we link computational semantics with polymorphic type

theory and functional programming.

An emerging standard for polymorphically typed, lazy, purely functional

programming is Haskell, a language named after Haskell Curry. Haskell

is based on (polymorphically typed) lambda calculus, which makes it

an excellent tool for computational semantics.

Haskell is easy. In fact, you will learn Haskell programming in the course

of this tutorial.

Haskell is free: grab it from www.haskell.org



In the first lecture we give a brief introduction to polymorphic type

theory, and we show how Montague Grammarians can be converted

into programmers in one easy step.



In the first lecture we give a brief introduction to polymorphic type

theory, and we show how Montague Grammarians can be converted

into programmers in one easy step.

In the second lecture, we look at the extension of dynamic predicate

logic to type theory. This gives rise to a system that is very much like

modern compositional versions of discourse representation theory. We

present an implementation and comment on its failings.



In the first lecture we give a brief introduction to polymorphic type

theory, and we show how Montague Grammarians can be converted

into programmers in one easy step.

In the second lecture, we look at the extension of dynamic predicate

logic to type theory. This gives rise to a system that is very much like

modern compositional versions of discourse representation theory. We

present an implementation and comment on its failings.

In the third lecture, we focus on those shortcomings of dynamic Mon-

tague grammar or compositional DRT that have to do with the use of

dynamic variable binding and destructive assignment. We show how

these can be overcome, and we look at issues of updating salience in

context and pronoun reference resolution.


