
A Program for Computational Semantics

Jan van Eijck

CLCG, 5 November 2010

Texts in Logic and Games | 5

New Perspectives on Games and Interaction is a collection
of papers presented at the 2007 colloquium on new per-
spectives on games and interaction at the Royal Dutch
Academy of Sciences in Amsterdam. The purpose of the
colloquium was to clarify the uses of the concepts of game
theory, and to identify promising new directions. This
important collection testifies to the growing relevance of
game theory as a tool to capture the concepts of strategy,
interaction, argumentation, communication, coopera-
tion and competition. Also, it provides evidence for the
richness of game theory and for its impressive and grow-
ing applications.

9 7 8 9 0 8 9 6 4 0 5 7 4

isbn 978 90 8964

amsterdam university press
www.aup.nl

Discourses on
Social Software
 	 	

Edited by
JAN VAN EIJCK AND RINEKE VERBRUGGE

amsterdam university press

T∙L∙G
Texts in Logic and Games
Volume 5

T ∙L ∙G
 5

N
e

w
 P

e
r

sp
e

c
t

iv
e

s o
n

G

a
m

e
s a

n
d

 In
t

e
r

a
c

t
io

n
A

pt | Van R
ooij (eds.)

Abstract

Just as war can be viewed as continuation of diplomacy using other
means, computational semantics is continuation of logical analysis
of natural language by other means. For a long time, the tool of
choice for this used to be Prolog. In our recent textbook we ar-
gue (and try to demonstrate by example) that lazy functional pro-
gramming is a more appropriate tool. In the talk we will lay out
a program for computational semantics, by linking computational
semantics to the general analysis of procedures for social interac-
tion. The talk will give examples of how Haskell can be used to
begin carrying out this program.

http://www.cambridge.org/vaneijck-unger

http://www.computational-semantics.eu/

http://www.cwi.nl/~jve/nias/discourses/discourses.pdf

http://www.cambridge.org/vaneijck-unger
http://www.computational-semantics.eu/
http://www.cwi.nl/~jve/nias/discourses/discourses.pdf

Old Heroes

New Heroes

And Some More

What is Computational Semantics? (Wikipedia)

Computational semantics is the study of how to automate the pro-
cess of constructing and reasoning with meaning representations
of natural language expressions. It consequently plays an impor-
tant role in natural language processing and computational linguis-
tics.

Some traditional topics of interest are: construction of meaning
representations, semantic underspecification, anaphora resolution,
presupposition projection, and quantifier scope resolution. Meth-
ods employed usually draw from formal semantics or statistical se-
mantics. Computational semantics has points of contact with the
areas of lexical semantics (word sense disambiguation and se-
mantic role labeling), discourse semantics, knowledge represen-
tation and automated reasoning [. . .].

SIGSEM

http://www.sigsem.org/wiki/

If you click on ‘books’ you get the same list as in the wikipedia
article.

I did not succeed in editing the page, to add a recent book ¨̂

http://www.sigsem.org/wiki/

What is computational semantics?
The art and science of computing or processing meanings

• ‘meaning’: informational content, as opposed to syntactic ‘form’

• ‘computing’: what computers do

• ‘processing’: what happens in the human brain

A Brief History of Formal Linguistics

1916 Ferdinand de Saussure, Cours de linguistique générale pub-
lished posthumously. Natural language may be analyzed as a
formal system.

1957 Noam Chomsky, Syntactic Structures, proposes to define
natural languages as sets of grammatical sentences, and to
study their structure with formal (mathematical) means. Presents
a formal grammar for a fragment of English.

1970 Richard Montague, English as a Formal Language, proposes
to extend the Chomskyan program to semantics and pragmat-
ics. Presents a formal grammar for a fragment of English, in-
cluding semantics (rules for computing meanings). Links the
study of natural language to the study of formal languages
(languages from logic and computer science).

Richard Montague (1930-1971)

Developed higher-order typed intensional logic with a possible-
worlds semantics and a formal pragmatics incorporating indexical
pronouns and tenses.

Program in semantics (around 1970): universal grammar.

Towards a philosophically satisfactory and logically precise account
of syntax, semantics, and pragmatics, covering both formal and
natural languages.

“The Proper Treatment of Quantification was as profound for se-
mantics as Chomsky’s Syntactic Structures was for syntax.” (Bar-
bara Partee on Montague, in the Encyclopedia of Language and
Linguistics.)

• Chomsky: English can be described as a formal system.

• Montague: English can be described as a formal system with
a formal semantics, and with a formal pragmatics.

Montague’s program can be viewed as an extension of Chomsky’s
program.

The Program of Montague Grammar

• Montague’s thesis: there is no essential difference between
the semantics of natural languages and that of formal lan-
guages (such as that of predicate logic, or programming lan-
guages).

• The method of fragments: UG [10], EFL [9], PTQ [8]

• The misleading form thesis (Russell, Quine)

• Proposed solution to the misleading form thesis

• Key challenges: quantification, anaphoric linking, tense, inten-
sionality.

Misleading Form

Aristotle’s theory of quantification has two logical defects:

1. Quantifier combinations are not treated; only one quantifier per
sentence is allowed.

2. ‘Non-standard quantifiers’ such as most, half of, at least five,
. . . are not covered.

Frege’s theory of quantification removed the first defect.

The Fregean view of quantifiers in natural language: quantified
Noun Phrases are systematically misleading expressions.

Their natural language syntax does not correspond to their logic:

“Nobody is on the road”{ ¬∃x(Person(x) ∧ OnTheRoad(x))

Solution to the Misleading Form Thesis

expression translation type
every every (e→ t)→ ((e→ t)→ t)
princess P (e→ t)
every princess every P (e→ t)→ t
laughed S (e→ t)
every princess laughed (every P) S t

where every is a name for the constant λPλQ.∀x(Px→ Qx).

From semantics to pragmatics

• Analysing communication as flow of knowledge.

• Logical tool: Dynamic Epistemic Logic

• Computational tool: Dynamic Epistemic Model Checking

• DEMO: Epistemic Model Checker [2]

• All this in [4]

A Brief History of Functional Programming

1932 Alonzo Church presents the lambda calculus

1937 Alan Turing proves that lambda calculus and Turing machines
have the same computational power.

1958 John McCarthy starts to implement LISP.

1978-9 Robin Milner cs develop ML.

1987 Agreement on a common standard for lazy purely functional
programming: Haskell.

http://www.haskell.org

http://www.haskell.org

Natural language analysis and functional programming

• Usefulness of typed lambda calculus for NL analysis.

• Linguist Barbara Partee: “Lambda’s have changed my life.”

• Computational linguistics: From Prolog to Haskell?

• Appeal of Prolog: Prolog-style unification [12], ‘Parsing as De-
duction’ [11], useful didactic tool [1].

• But a new trend is emerging [5, 6]

• NLP Resources in Haskell: see

http://www.haskell.org/haskellwiki/Applications_and_

libraries/Linguistics

http://www.haskell.org/haskellwiki/Applications_and_libraries/Linguistics
http://www.haskell.org/haskellwiki/Applications_and_libraries/Linguistics

Using Prolog for NL Semantics: An Ancient Art (1992)

The Simplest Natural Language Engine You Can Get

All A are B No A are B

Some A are B Not all A are B

Aristotle interprets his quantifiers with existential import: All A are
B and No A are B are taken to imply that there are A.

What can we ask or state with the Aristetelian quantifiers?

Questions and Statements (PN for plural nouns):

Q ::= Are all PN PN?
| Are no PN PN?
| Are any PN PN?
| Are any PN not PN?
| What about PN?

S ::= All PN are PN.
| No PN are PN.
| Some PN are PN.
| Some PN are not PN.

Example Interaction

jve@vuur:~/courses/lot2009$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Example Knowledge Base

nonmen beautiesnonbullies

mortals

men

humansnonwomen

women

The Simplest Knowledge Base You Can Get

The two relations we are going to model in the knowledge base
are that of inclusion ⊆ and that of non-inclusion *.

‘all A are B’{ A ⊆ B

‘no A are B’{ A ⊆ B

‘some A are not B’{ A * B

‘some A are B’{ A * B (equivalently: A ∩ B , ∅).

A knowledge base is a list of triples

(Class1,Class2,Boolean)

where (A, B,>) expresses that A ⊆ B,

and (A, B,⊥) expresses that A * B.

Rules of the Inference Engine

Let Ã be given by: if A is of the form C then Ã = C, otherwise
Ã = A.

Computing the subset relation from the knowledge base:

A ⊆ B

B̃ ⊆ Ã

A ⊆ B B ⊆ C
A ⊆ C

Computing the non-subset relation from the knowledge base:

A * B

B̃ * Ã

A ⊇ B B * C
A * C

B * C C ⊇ D
B * D

Reflexivity and existential import:

A ⊆ A
A not of the form C

A * Ã

Consistency of a Knowledge Base

A Knowledge Base K is inconsistent if for some A ⊆ B:

K
A ⊆ B

K
A * B

Otherwise K is consistent.

Soundness and Completeness of Inference System

Exercise 1 An inference system is called sound if all conclusions
that can be derived are valid, i.e. if all axioms are true and all
inference rules preserve truth. Show that the inference system for
Aristotelian syllogistics is sound.

Exercise 2 An inference system is called complete if it can derive
all valid conclusions from a set of premisses. In other words: if
A ⊆ B does not follow from a knowledge base, then there is a class
model for the knowledge base where A * B, and if A * B does not
follow from a knowledge base, then there is a class model for the
knowledge base where A ⊆ B. Show that the inference system for
Aristotelian syllogistics is complete.

Implementation (in Haskell)

We will need list and character processing, and we want to read
natural language sentences from a file, so we import the I/O-module
System.IO.

import List

import Char

import System.IO

In our Haskell implementation we can use [(a,a)] for relations.

type Rel a = [(a,a)]

If R ⊆ A2 and x ∈ A, then xR := {y | (x, y) ∈ R}.

rSection :: Eq a => a -> Rel a -> [a]

rSection x r = [y | (z,y) <- r, x == z]

Eq a indicates that a is in the equality class.

The composition of two relations R and S on A.

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Computation of transitive closure using a function for least fixpoint.
TC(R) = lfp (λS .S ∪ S · S) R.

tc :: Ord a => Rel a -> Rel a

tc = lfp (\ s -> (sort.nub) (s ++ (s@@s)))

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

Assume that each class has an opposite class. The opposite of an
opposite class is the class itself.

data Class = Class String | OppClass String

deriving (Eq,Ord)

instance Show Class where

show (Class xs) = xs

show (OppClass xs) = "non-" ++ xs

opp :: Class -> Class

opp (Class name) = OppClass name

opp (OppClass name) = Class name

Declaration of the knowledge base:

type KB = [(Class, Class, Bool)]

A data types for statements and queries:

data Statement =

All Class Class | No Class Class

| Some Class Class | SomeNot Class Class

| AreAll Class Class | AreNo Class Class

| AreAny Class Class | AnyNot Class Class

| What Class

deriving Eq

Show function for statements:

instance Show Statement where

show (All as bs) =

"All " ++ show as ++ " are " ++ show bs ++ "."

show (No as bs) =

"No " ++ show as ++ " are " ++ show bs ++ "."

show (Some as bs) =

"Some " ++ show as ++ " are " ++ show bs ++ "."

show (SomeNot as bs) =

"Some " ++ show as ++ " are not " ++ show bs ++ "."

and for queries:

show (AreAll as bs) =

"Are all " ++ show as ++ show bs ++ "?"

show (AreNo as bs) =

"Are no " ++ show as ++ show bs ++ "?"

show (AreAny as bs) =

"Are any " ++ show as ++ show bs ++ "?"

show (AnyNot as bs) =

"Are any " ++ show as ++ " not " ++ show bs ++ "?"

show (What as) =

"What about " ++ show as ++ "?"

Classification of statements:

isQuery :: Statement -> Bool

isQuery (AreAll _ _) = True

isQuery (AreNo _ _) = True

isQuery (AreAny _ _) = True

isQuery (AnyNot _ _) = True

isQuery (What _) = True

isQuery _ = False

Negations of queries:

neg :: Statement -> Statement

neg (AreAll as bs) = AnyNot as bs

neg (AreNo as bs) = AreAny as bs

neg (AreAny as bs) = AreNo as bs

neg (AnyNot as bs) = AreAll as bs

Use the transitive closure operation to compute the subset relation
from the knowledge base.

subsetRel :: KB -> [(Class,Class)]

subsetRel kb =

tc ([(x,y) | (x,y,True) <- kb]

++ [(opp y,opp x) | (x,y,True) <- kb]

++ [(x,x) | (x,_,_) <- kb]

++ [(opp x,opp x) | (x,_,_) <- kb]

++ [(y,y) | (_,y,_) <- kb]

++ [(opp y,opp y) | (_,y,_) <- kb])

The supersets of a particular class are given by a right section of
the subset relation. I.e. the supersets of a class are all classes of
which it is a subset.
supersets :: Class -> KB -> [Class]
supersets cl kb = rSection cl (subsetRel kb)

Computing the non-subset relation from the knowledge base:

nsubsetRel :: KB -> [(Class,Class)]

nsubsetRel kb =

let

r = nub ([(x,y) | (x,y,False) <- kb]

++ [(opp y,opp x) | (x,y,False) <- kb]

++ [(Class xs,OppClass xs) |

(Class xs,_,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,Class ys,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,OppClass ys,_) <- kb])

s = [(y,x) | (x,y) <- subsetRel kb]

in s @@ r @@ s

The non-supersets of a class:

nsupersets :: Class -> KB -> [Class]

nsupersets cl kb = rSection cl (nsubsetRel kb)

Query of a knowledge base by means of yes/no questions is sim-
ple:
deriv :: KB -> Statement -> Bool

deriv kb (AreAll as bs) = elem bs (supersets as kb)

deriv kb (AreNo as bs) = elem (opp bs) (supersets as kb)

deriv kb (AreAny as bs) = elem (opp bs) (nsupersets as kb)

deriv kb (AnyNot as bs) = elem bs (nsupersets as kb)

Caution: there are three possibilities:

• deriv kb stmt holds. So the statement is derivable, hence
true.

• deriv kb (neg stmt) holds. So the negation of stmt is
derivable, hence true. So stmt is false.

• neither deriv kb stmt nor deriv kb (neg stmt) holds. So
the knowledge base has no information about stmt.

Open queries (“How about A?”) are slightly more complicated.

We should take care to select the most natural statements to report
on a class:

A ⊆ B is expressed with ‘all’,

A ⊆ B is expressed with ‘no’,

A * B is expressed with ‘some not’,

A * B is expressed with ‘some’.

f2s :: (Class, Class, Bool) -> Statement

f2s (as, Class bs, True) = All as (Class bs)

f2s (as, OppClass bs, True) = No as (Class bs)

f2s (as, OppClass bs, False) = Some as (Class bs)

f2s (as, Class bs, False) = SomeNot as (Class bs)

Giving an explicit account of a class:

tellAbout :: KB -> Class -> [Statement]

tellAbout kb as =

[All as (Class bs) |

(Class bs) <- supersets as kb,

as /= (Class bs)]

++

[No as (Class bs) |

(OppClass bs) <- supersets as kb,

as /= (OppClass bs)]

A bit of pragmatics: do not tell ‘Some A are B’ if ‘All A are B’ also
holds.

++

[Some as (Class bs) |

(OppClass bs) <- nsupersets as kb,

as /= (OppClass bs),

notElem (as,Class bs) (subsetRel kb)]

Do not tell ‘Some A are not B’ if ‘No A are B’ also holds.

++

[SomeNot as (Class bs) |

(Class bs) <- nsupersets as kb,

as /= (Class bs),

notElem (as,OppClass bs) (subsetRel kb)]

To build a knowledge base we need a function for updating an
existing knowledge base with a statement.

If the update is successful, we want an updated knowledge base. If
it is not, we want to get an indication of failure. The Haskell Maybe
data type gives us just this.

data Maybe a = Nothing | Just a

The update function checks for possible inconsistencies. E.g., a
request to add an A ⊆ B fact to the knowledge base leads to an
inconsistency if A * B is already derivable.

update :: Statement -> KB -> Maybe (KB,Bool)

update (All as bs) kb

| elem bs (nsupersets as kb) = Nothing

| elem bs (supersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs,True): kb),True)

A request to add A ⊆ B leads to an inconsistency if A * B is
already derivable.

update (No as bs) kb

| elem bs’ (nsupersets as kb) = Nothing

| elem bs’ (supersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs’,True):kb),True)

where bs’ = opp bs

Similarly for the requests to update with A * B and with A * B:

update (Some as bs) kb

| elem bs’ (supersets as kb) = Nothing

| elem bs’ (nsupersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs’,False):kb),True)

where bs’ = opp bs

update (SomeNot as bs) kb

| elem bs (supersets as kb) = Nothing

| elem bs (nsupersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs,False):kb),True)

Use this to build a knowledge base from a list of statements. Again,
this process can fail, so we use the Maybe datatype.

makeKB :: [Statement] -> Maybe KB

makeKB = makeKB’ []

where

makeKB’ kb [] = Just kb

makeKB’ kb (s:ss) =

case update s kb of

Just (kb’,_) -> makeKB’ kb’ ss

Nothing -> Nothing

Preprocessing of strings, to prepare them for parsing:

preprocess :: String -> [String]

preprocess = words . (map toLower) .

(takeWhile (\ x -> isAlpha x || isSpace x))

This will map a string to a list of words:

Main> preprocess "Are any women sailors?"

["are","any","women","sailors"]

A simple parser for statements:

parse :: String -> Maybe Statement

parse = parse’ . preprocess

where

parse’ ["all",as,"are",bs] =

Just (All (Class as) (Class bs))

parse’ ["no",as,"are",bs] =

Just (No (Class as) (Class bs))

parse’ ["some",as,"are",bs] =

Just (Some (Class as) (Class bs))

parse’ ["some",as,"are","not",bs] =

Just (SomeNot (Class as) (Class bs))

and for queries:

parse’ ["are","all",as,bs] =

Just (AreAll (Class as) (Class bs))

parse’ ["are","no",as,bs] =

Just (AreNo (Class as) (Class bs))

parse’ ["are","any",as,bs] =

Just (AreAny (Class as) (Class bs))

parse’ ["are","any",as,"not",bs] =

Just (AnyNot (Class as) (Class bs))

parse’ ["what", "about", as] = Just (What (Class as))

parse’ ["how", "about", as] = Just (What (Class as))

parse’ _ = Nothing

Parsing a text to construct a knowledge base:

process :: String -> KB

process txt = maybe [] id

(mapM parse (lines txt) >>= makeKB)

This uses the maybe function, for getting out of the Maybe type.
Instead of returning Nothing, this returns an empty knowledge
base.

maybe :: b -> (a -> b) -> Maybe a -> b

maybe _ f (Just x) = f x

maybe z _ Nothing = z

mytxt = "all bears are mammals\n"

++ "no owls are mammals\n"

++ "some bears are stupids\n"

++ "all men are humans\n"

++ "no men are women\n"

++ "all women are humans\n"

++ "all humans are mammals\n"

++ "some men are stupids\n"

++ "some men are not stupids"

Main> process mytxt

[(men,stupids,False),(men,non-stupids,False),

(humans,mammals,True),(women,humans,True),

(men,non-women,True),(men,humans,True),

(bears,non-stupids,False),(owls,non-mammals,True),

(bears,mammals,True)]

Now suppose we have a text file of declarative natural language
sentences about classes. Here is how to turn that into a knowledge
base.

getKB :: FilePath -> IO KB

getKB p = do

txt <- readFile p

return (process txt)

And here is how to write a knowledge base to file:

writeKB :: FilePath -> KB -> IO ()

writeKB p kb = writeFile p

(unlines (map (show.f2s) kb))

The inference engine in action:

chat :: IO ()

chat = do

kb <- getKB "kb.txt"

putStrLn "Update or query the KB:"

str <- getLine

if str == "" then return ()

else do

case parse str of

Just (What as) -> let info = tellAbout kb as in

if info == [] then putStrLn "No info.\n"

else putStrLn (unlines (map show info))

Just stmt ->

if isQuery stmt then

if deriv kb stmt then putStrLn "Yes.\n"

else if deriv kb (neg stmt)
then putStrLn "No.\n"

else putStrLn "I don’t know.\n"

else case update stmt kb of

Just (kb’,True) -> do

writeKB "kb.txt" kb’

putStrLn "OK.\n"

Just (_,False) -> putStrLn

"I knew that already.\n"

Nothing -> putStrLn

"Inconsistent with my info.\n"

Nothing -> putStrLn "Wrong input.\n"

chat

main = do

putStrLn "Welcome to the Knowledge Base."

chat

Summary

• Cognitive research focusses on this kind of quantifier reason-
ing. Links with cognition by refinement of this calculus . . . The
“natural logic for natural language” enterprise: special work-
shop during Amsterdam Colloquium 2009 (see http://www.
illc.uva.nl/AC2009/)

• “Our ultimate goal is to form an adequate model of parts of our
language competence. Adequate means that the model has
to be realistic in terms of complexity and learnability. We will
not be so ambitious as to claim that our account mirrors real
cognitive processes, but what we do claim is that our account
imposes constraints on what the real cognitive processes can
look like.” [4]

http://www.illc.uva.nl/AC2009/
http://www.illc.uva.nl/AC2009/

The Muddy Children Puzzle

a (1) clean, b (2), c (3) and d (4) muddy.

a b c d
◦ • • •

? ? ? ?
? ? ? ?
? ! ! !
! ! ! !

Individual Ignorance

You have to finish a paper, and you are faced with a choice: do it
today, or put it off until tomorrow. You decide to play a little game
with yourself. You will flip a coin, and you promise yourself: “If it
lands heads I will have to do it now, if it lands tails I can postpone
it until tomorrow. But wait, I don’t have to know right away, do I? I
will toss the coin in a cup.” And this is what you do. Now the cup is
upside down on the table, covering the coin. The coin is showing
heads up, but you cannot see that.

w : h w′ : h

Multi Agent Ignorance

Suppose Alice and Bob are present, and Alice tosses a coin under
a cup. We will use a for Alice and b for Bob. The result of a hidden
coin toss with the coin heads up:

w : h w′ : h
ab

After Alice has taken a look

Assume that Alice is taking a look under the cup, while Bob is
watching.

Now Alice knows whether the coin shows heads or tails.

Bob knows that Alice knows the outcome of the toss, but he does
not know the outcome himself.

w : h w′ : h
b

Bob leaves the room and returns

The coin gets tossed under the cup and lands heads up. Alice and
Bob are present. Now Bob leaves the room for an instant. After he
comes back, the cup is still over the coin. Bob realizes that Alice
might have taken a look. She might even have reversed the coin!
Alice also realizes that Bob considers this possible.

w0 : h w1 : h

w2 : h w3 : h

ba

b

b bb b

Card Deals

Three players, Alice, Bob and Carol, each draw a card from a stack
of three cards. The cards are red, white and blue and their back-
sides are indistinguishable. Let rwb stand for the deal of cards
where Alice holds the red card, Bob the white card, and Carol the
blue card. There are six different card deals. Players can only see
their own card, but not the cards of other players. They do see that
other players also only hold a single card, and that this cannot be
their own card, and they do know that all the players know that.

wrb rwb bwr brw

wbr rbw

Communication

wrb rwb bwr brw

wbr rbw

Alice says: ’I hold the red card’. What is the effect of this?

rwb rbw

Communication 2

wrb rwb bwr brw

wbr rbw

Alice says: ’I do not hold the white card’. What is the effect of this?

rwb rbw

brw bwr

Epistemic formulas and their interpretation

Kaφ: agent a knows that φ

w0 : h w1 : h

w2 : h w3 : h

ba

b

b bb b

Now evaluate some formulas: Kah, KbKah, Kah ∨ Ka¬h,
¬Kb(Kah ∨ Ka¬h), Ka¬Kb(Kah ∨ Ka¬h).

Epistemic Model Checking: Muddy Children

• initMuddy: model where children cannot see their own state

• m1: model after the public announcement that at least one
child is muddy.

• m2: model after public announcement that none of them knows
their state.

• m3: model after public announcement that none of them knows
their state.

• m4: model after public announcement that b, c, d know their
state.

Aim of Communicative Discourse

We

You

It, He, She, They

Aim of a communicative discourse is to create common knowledge
between us and you.

Common Knowledge

What does it mean to create common knowledge? If we inform
you that something is the case, say that there is a party on tonight,
then not only do you know that there is a party on, but also we
know that you know, and you know that we know that you know.
And so on, ad infinitum. This is common knowledge.

If a denotes Alice’s accessibility relation and b Bob’s, and we use
∪ for union of relations, and ∗ for reflexive transitive closure, then
(a ∪ b)∗ expresses the common knowledge of Alice and Bob.

Formula for this: Ca,bφ.

Exercise 3 When money is paid out to you by an ATM, does this
create common knowledge between you and the machine? Why
(not)?

Exercises about Common Knowledge

w0 : h w1 : h

w2 : h w3 : h

ba

b

b bb b

Exercise 4 Is it common knowledge between a and b in w1 that
Bob does not know that Alice does not know the outcome of the
toss? Formula for this: Ca,b¬Kb(Kah ∨ Ka¬h).

Exercise 5 Is it common knowledge between a and b in w0 that
Alice knows that Bob does not know the outcome of the toss? For-
mula for this: Ca,bKa¬(Kbh ∨ Kb¬h).

Public Announcement

The effect of a public announcement ‘I have the red card’ or ‘I do
not have the white card’ is that the worlds where these announce-
ments are false disappear.

wrb rwb bwr brw

wbr rbw
‘I do not hold the white card’

rwb rbw

brw bwr

Effect of Public Announcement, Formally

Use [!φ]ψ for: ‘after public announcement of φ, ψ holds’.

Formally: M |=w [!φ]ψ iff (M |=w φ implies M | φ |=w ψ).

M | φ is the result of removing all non-φ worlds from M.

wrb rwb bwr brw

wbr rbw

!¬aw

rwb rbw

brw bwr

Presupposition

A presupposition of an utterance is an implicit assumption about
the world or a background belief shared by speaker and hearer in
a discourse.

“Shall we do it again?”

Presupposition: we have done it before.

“Jan is a bachelor.”

Presupposition: ‘Jan’ refers to a male person. (True in the Nether-
lands and Poland, false in the United Kingdom.)

Second presupposition: ‘Jan’ refers to an adult.

So: ‘bachelor’ presupposes ‘male’ and ‘adult’, and conveys ‘un-
married’.

Presupposition and Common Knowledge [3]

Extend the language with public announcements.

[!φ]ψ expresses that after public announcement of φ, ψ holds.

Now consider the special case of an update of the form “it is com-
mon knowledge between i and j that φ”.

Formally: !Ci, jφ.

• In case φ is already common knowledge, this update does not
change the model.

• In case φ is not yet common knowledge, the update leads to a
model without actual worlds.

Example
mau mau

mau mau

i

i

i

i j i

m for ‘male’, a for ‘adult’, u for ‘unmarried’.

j does not know about u

i does not know about a, u.

Ci jm holds, Ci ja and Ci ju do not hold.

Analysis of Presupposition in terms of Common Knowledge

mau mau
i j

A presupposition is a piece of common knowledge between speaker
and hearer in a discourse.

‘bachelor’ has presupposition ‘male’ and ‘adult’, and conveys infor-
mation ‘unmarried’.

!(Ci j(m ∧ a) ∧ u)

Update result:

mau

Facts About Public Announcement of Common Knowledge

M |=w [!Ci jφ]ψ iff M |=w Ci jφ→ ψ.

Public announcement of common knowledge has the force of an
implication.

M |=w [!(Ci jφ ∧ φ
′)]ψ iff M |=w [!Ci jφ][!φ′]ψ.

Putting a presupposition before an assertion has the same effect
as lumping them together.

Presupposition Projection

Example: update without presupposition !m (the statement male)
followed by the update for bachelor).

[!m][!(Ci j(m ∧ a) ∧ u)]χ↔ [!(m ∧ [!m](Ci j(m ∧ a) ∧ u))]χ
↔ [!(m ∧ [!m]Ci jm ∧ [!m]Ci ja ∧ [!m]u)]χ
↔ [!(m ∧ [!m]Ci ja ∧ [!m]u)]χ
↔ [!(m ∧Ci j(m, a) ∧ m→ u)]χ
↔ [!(Ci j(m, a) ∧ m ∧ u)]χ

Ci j(φ, ψ) for [!φ]Ci jψ.

So the presuppositional part of the combined statement is Ci j(m, a).

The assertional part is m ∧ u.

Presupposition Accommodation

Suppose p is common knowledge.

Then updating with statement !(Cp ∧ q) has the same effect as
updating with !q.

Suppose p is true in the actual world but not yet common knowl-
edge.

Updating with !(Cp ∧ q) wil lead to an inconsistent state

Updating with !p followed by an update with !(Cp ∧ q) will not.

Accommodation of the presupposition would consist of replace-
ment of !(Cp ∧ q) by [!p][!(Cp ∧ q)].

By invoking the Gricean maxim ‘be informative’ one can explain
why [!p][!(Cp ∧ q)] is not appropriate in contexts where p is com-
mon knowledge.

Public Change

Extend the language with public change.

[p := φ]ψ.

True in world w of M if ψ is true in world wp:=[[φ]]w of Mp:=[[φ]].

p := φ changes the model M to Mp:=[[φ]].

Performative speech acts are examples:

• ‘I call you Adam’

• ‘Call me Ishmael’

• ‘I declare you man and wife’

Marriage mau mau

mau mau

i

i

i

i j i

Public change:
u := ⊥

Result:

mau mau
i

Epistemic Analysis of Yes/No Questions [7]

Let f be a propositional variable for question focus.

Analyse a Yes/No Question φ? as:

f := φ

Analyze the answer ‘yes’ as:

! f

Analyze the answer ‘no’ as:

!¬ f

Questions and Appropriate Answers

Question: ‘Is Johnny married?’ Answer: ‘Johnny is not an adult.’

This answer is appropriate: updating with this answer makes ‘John
is not married’ common knowledge. The update entails the answer
‘no’.

Question:
f := φ

Answer:
!ψ

This is appropriate if either updating with ψ has the effect that f
becomes common knowledge, or updating with ψ has the effect
that ¬ f becomes common knowledge.

Dynamic Semantics

“Dynamic semantics is a perspective on natural language
semantics that emphasises the growth of information in
time. It is an approach to meaning representation where
pieces of text or discourse are viewed as instructions to
update an existing context with new information, with an
updated context as result. In a slogan: meaning is context
change potential. Prime source of inspiration for this dy-
namic turn is the way in which the semantics of imperative
programming languages like C is defined.”

Entry ‘Dynamic Semantics’ in the Stanford Encyclopedia
of Philosophy http://plato.stanford.edu/

http://plato.stanford.edu/

Connection with Dynamic Epistemic Logic

The SEP entry goes on:

“Dynamic semantics comes with a set of flexible tools, and
with a collection of ‘killer applications’, such as the com-
positional treatment of Donkey sentences, the account of
anaphoric linking, the account of presupposition projec-
tion, and the account of epistemic updating. It is to be ex-
pected that advances in dynamic epistemic logic will lead
to further integration. Taking a broader perspective, Some
would even suggest that dynamic semantics is (nothing
but) the application of dynamic epistemic logic in natural
language semantics. But this view is certainly too narrow,
although it is true that dynamic epistemic logic offers a
promising general perspective on communication.”

Conclusions: Program for Computational Semantics

• Common Knowledge and Common Belief Central Notions in
Discourse Analysis, in Social Software, in Interaction Protocols

• Program: Analyzing Discourse as sequences of public an-
nouncements

• Program: Analyze Presupposition Projection and Accommo-
dation in terms of common knowledge

• Analyze yes/no questions as public change of focus, Analyze
appropriate answers in terms of ‘same update effect’
Program: extend this to a full semantic/pragmatic theory of
questions and answers.

• Program: Analyze (language use in) social software protocols,
and develop model checking tools for this.

References

[1] P. Blackburn and J. Bos. Representation and Inference for
Natural Language; A First Course in Computational Seman-
tics. CSLI Lecture Notes, 2005.

[2] Jan van Eijck. DEMO — a demo of epistemic modelling. In
Johan van Benthem, Dov Gabbay, and Benedikt Löwe, edi-
tors, Interactive Logic — Proceedings of the 7th Augustus de
Morgan Workshop, number 1 in Texts in Logic and Games,
pages 305ŋ–363. Amsterdam University Press, 2007.

[3] Jan van Eijck and Christina Unger. The epistemics of presup-
position projection. In Maria Aloni, Paul Dekker, and Floris
Roelofsen, editors, Proceedings of the Sixteenth Amsterdam
Colloquium, December 17–19, 2007, pages 235–240, Ams-
terdam, December 2007. ILLC.

[4] Jan van Eijck and Christina Unger. Computational Semantics
with Functional Programming. Cambridge University Press,
2010.

[5] R. Frost and J. Launchbury. Constructing natural language in-
terpreters in a lazy functional language. The Computer Jour-
nal, 32(2):108–121, 1989.

[6] Richard A. Frost. Realization of natural language interfaces
using lazy functional programming. ACM Comput. Surv.,
38(4), 2006.

[7] J. Groenendijk and M. Stokhof. Studies on the Semantics
of Questions and the Pragmatics of Answers. PhD thesis,
University of Amsterdam, 1984.

[8] R. Montague. The proper treatment of quantification in or-

dinary English. In J. Hintikka, editor, Approaches to Natural
Language, pages 221–242. Reidel, 1973.

[9] R. Montague. English as a formal language. In R.H. Thoma-
son, editor, Formal Philosophy; Selected Papers of Richard
Montague, pages 188–221. Yale University Press, New Haven
and London, 1974.

[10] R. Montague. Universal grammar. In R.H. Thomason, editor,
Formal Philosophy; Selected Papers of Richard Montague,
pages 222–246. Yale University Press, New Haven and Lon-
don, 1974.

[11] F.C.N. Pereira and H.D. Warren. Parsing as deduction. In
Proceedings of the 21st Annual Meeting of the ACL, pages
137–111. MIT, Cambridge, Mass., 1983.

[12] S.M. Shieber. An Introduction to Unification Based Ap-

proaches to Grammar, volume 4 of CSLI Lecture Notes. CSLI,
Stanford, 1986. Distributed by University of Chicago Press.

