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First Testing Challenge

You have 27 coins and a balance. All coins have the same weight,

except for one coin, which is counterfeit: it is lighter than the other

coins.

1. How many weighing tests are needed to find the light coin?

2. And how do you do it?

3. Can you show that a more efficient method (using fewer tests) is

impossible?

*Balance> balance [C 1] [C 2]

EQ

*Balance> balance [C 1, C 2] [C 3, C 4]

GT



Second Testing Challenge

This time you have 3 coins and a balance. Two coins have the same

weight, but there is one coin which has different weight from the other

coins.

1. How many weighing tests are needed to find the odd coin?

2. And how do you do it?

3. Can you show that a more efficient method (using fewer tests) is

impossible?



Third Testing Challenge

This time you have 12 coins and a balance. All coins have the same

weight, except for one coin which has different weight from the other

coins.

1. How many weighing tests are needed to find the odd coin?

2. And how do you do it?

3. Can you show that a more efficient method (using fewer tests) is

impossible?



Aside: Balance Program in Haskell

module Balance where

data Coin = C Int

lighter, heavier :: Int

lighter = 3

heavier = 0

w :: Coin -> Float

w (C n) = if n == lighter then 1 - 0.01

else if n == heavier then 1 + 0.01

else 1



weight :: [Coin] -> Float
weight = sum . (map w)

balance :: [Coin] -> [Coin] -> Ordering

balance xs ys = if weight xs < weight ys then LT

else if weight xs > weight ys then GT

else EQ



Some General Questions

1. Using a balance can be viewed as a test with three possible out-

comes. If you perform n balance tests, how much information

does that give you?

2. How much information is required to pick out an odd coin from

among n other coins? What can you conclude?

3. If you perform n tests, each of which has m possible outcomes,

how much information does your testing activity give you?



Now about programming

1. Suppose a program P takes user input (with n possible choices)

and returns a number in the range {0, . . . ,m}. How many pos-

sibilities are there for how P could behave?

2. Suppose we know that P computes one particular function f .

Then we can test the program by checking P (x) against f (x) for

every possible input x. How many such tests are needed to check

that the program always gives the right outcome?

[NOTE: Correction on what was said during the course: this takes n

tests. There are (m+ 1)n functions of the same type as P and f , but

to check whether P and f are the same, we only have to check for all

the possible inputs.]



Fourth Testing Challenge

Jill and Joe are dividing two cakes. The cakes are uniform, so only

size matters. The rules are: Joe cuts, and Jill can choose once (either

for the first cake, or for the second cake). After the first cake is cut,

Jill decides about first or second choice.

1. Represent a cut as a floating point number between 0 and 1. Call

the first cut x and the second cut y.

2. Represent the first choice as picking a member of {x, 1− x} and

the second choice as picking a member of {y, 1− y}.

3. Program for Joe: output x, input F/S, output y.

4. Program for Jill: read x, next either pick a member of {x, 1−x}
or read y and pick a member of of {y, 1− y}.



5. Implement these programs as Joe and Jill. Run them against

each other.

6. Next discuss: How can you test Joe and Jill?



Fifth Testing Challenge

Does the following Ruby program always terminate?

def run k

raise "argument < 1" if k < 1

return [k] if k == 1

return [k] + run(k/2) if k.modulo(2) == 0

return [k] + run(3*k + 1)

end

print "Give positive whole number: "

n = gets.to_i

p (run n)



Sample Runs

lucht:~/courses/testing2007/notes jve$ ruby syracuse.rb

Give positive whole number: 7

[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,

4, 2, 1]

lucht:~/courses/testing2007/notes jve$ ruby syracuse.rb

Give positive whole number: 8

[8, 4, 2, 1]

lucht:~/courses/testing2007/notes jve$ ruby syracuse.rb

Give positive whole number: 11

[11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]



lucht:~/courses/testing2007/notes jve$ ruby syracuse.rb

Give positive whole number: 27

[27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322,

161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103,
310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395,

1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251,

754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958,

479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288,

3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,

4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976,

488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160,

80, 40, 20, 10, 5, 16, 8, 4, 2, 1]

Does this program always terminate? Can you test this?

What does the example tell us about the power of testing?



Aside: Syracuse Program in Haskell

run :: Integer -> [Integer]

run n | n < 1 = error "argument not positive"

| n == 1 = [1]

| even n = n: run (div n 2)

| odd n = n: run (3*n+1)



Three New Programming Languages

• Ruby: http://www.ruby-lang.org/en/

• Haskell: http://www.haskell.org/

• Ocaml: http://caml.inria.fr/

http://www.ruby-lang.org/en/
http://www.haskell.org/
http://caml.inria.fr/


Different Programming Styles for Quicksort

Quicksort sorts by employing a divide and conquer strategy to divide

a list into two sub-lists:

1. Pick an element, called a pivot, from the list.

2. Reorder the list so that all elements with values less than the pivot

come before the pivot, while all elements with values greater than

the pivot come after it (equal values can go either way). After

this partitioning, the pivot is in its final position. This is called

the partition operation.

3. Recursively sort the sub-list of lesser elements and the sub-list of

greater elements. The base case of the recursion are lists of size

zero or one, which never need to be sorted.

See Wikipedia: http://en.wikipedia.org/wiki/Quicksort.

http://en.wikipedia.org/wiki/Quicksort


Quicksort in C

// To sort array a[] of size n: qsort(a,0,n-1)

void qsort(int a[], int lo, int hi) {

{

int h, l, p, t;

if (lo < hi) {

l = lo;

h = hi;

p = a[hi];

do {

while ((l < h) && (a[l] <= p))

l = l+1;



while ((h > l) && (a[h] >= p))
h = h-1;

if (l < h) {

t = a[l];

a[l] = a[h];

a[h] = t;

}

} while (l < h);

a[hi] = a[l];

a[l] = p;

qsort( a, lo, l-1 );

qsort( a, l+1, hi );

}

}



Quicksort in Haskell

qsort [] = []

qsort (x:xs) = let (a,b) = part xs in

qsort a ++ x : qsort b

where

part [] = ([],[])

part (y:ys) | y < x = (y:a,b)

| otherwise = (a,y:b)

where (a,b) = part ys



Quicksort in Ruby

def qsort(list)

return [] if list.size == 0

x, *xs = *list

less, more = xs.partition{|y| y < x}

qsort(less) + [x] + qsort(more)

end



Quicksort in Ocaml

let rec quicksort = function

| (x::xs) ->

(quicksort (List.filter (fun i -> i < x) xs))

@ [x] @

(quicksort (List.filter (fun i -> i >= x) xs))

| [] -> []

;;



Propositional Logic: Language

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)

This looks simple, but is quite expressive.

Many problems in computer science can be phrased as satisfiability

problems for Boolean formulas.



Semantics

What do the Boolean formulas mean?

Better question (better, because more precise): when do Boolean for-

mulas have the same meanings?

Valuations: functions from proposition letters to boolean values.

Definition of set of proposition letters of a formula.

A valuation V satisfies a formula ϕ if giving the proposition letters

the values specified by V yields ‘true’ for the whole formula.

The ‘truth table method’ is a method for finding the satisfying valu-

ations.

Two formulas have the same meaning if they have the same satisfying

valuations.



Tautologies, Contradictions, Satisfiable Formulas

tautology a formula that is satisfied by every valuation.

contradiction a formula that is satisfied by no valuation.

satisfiable formula a formula that is satisfied by some valuation.

Note: if ϕ is a tautology, then ¬ϕ is a contradiction.

If ϕ is a contradiction, then ¬ϕ is a tautology.

If ϕ is not satisfiable, then ϕ is a contradiction.

If ϕ is not a contradiction, then ϕ is satisfiable.



Implication versus ‘if then else’

An implication is a formula of the form ϕ1 → ϕ2.

This is not the same as an ‘if then else’ in Java or Ruby.

The ‘if then else’ syntax is:

if <expression> then <statement> else <statement>,

where expression is indeed a Boolean expression, but statement is

a program instruction, which in general is not a Boolean expression.

ϕ1 → ϕ2 is a Boolean expression, and it is equivalent to ¬ϕ1 ∨ ϕ2,

and also to ¬(ϕ1 ∧ ¬ϕ2).



Logical Consequence

From ϕ1 it follows logically that ϕ2.

Defined as: every valuation that satisfies ϕ1 also satisfies ϕ2.

Note: ϕ1 has ϕ2 as logical consequence if and only if ϕ1 → ϕ2 is a

tautology.

Useful abbreviation for ‘if and only if’: iff.



Complexity

It is unknown how complex the satisfiability problem for Boolean

formulas is. The best known solution methods are in nondeterministic

polynomial time (NP). This is widely believed to be more complex

than polynomial time (P), but the proof of P 6= NP is an open problem.

Nobody believes it is possible to check the satisfiability of a proposi-

tional formula (Boolean formula) in polynomial time.

If ϕ has n proposition letters, there are 2n relevant valuations, so the

truth table for ϕ will have 2n lines. No general method is known that

works faster than checking possibilities one by one.

Given a candidate valuation for a Boolean formula, it can be checked

in polynomial time whether that valuation satisfies the formula.



Normal Forms

CNF or conjunctive normal forms are conjunctions of clauses, where a

clause is a disjunction of literals, where a literal is a proposition letter

or its negation.

Syntactic definition:

L ::= p | ¬p
D ::= L | L ∨D
C ::= D | D ∧ C

DNF or disjunctive normal form: similar definition, left to you.

Why is CNF useful? CNF formulas can easily be tested for validity.

How?



Translating into CNF, first step

First step: translate formulas into equivalent formulas that are arrow-

free: formulas without ↔ and → operators.

• Use the equivalence between p → q and ¬p ∨ q to get rid of →
symbols.

• Use the equivalence of p↔ q and (¬p ∨ q) ∧ (p ∨ ¬q), to get rid

of ↔ symbols.

Pseudo-code on next page:



Translating into CNF, first step in pseudocode

function ArrowFree (ϕ):

/* precondition: ϕ is a formula. */

/* postcondition: ArrowFree (ϕ) returns arrow free version of ϕ */

begin function

case

ϕ is a literal: return ϕ

ϕ is ¬ψ: return ¬ ArrowFree (ψ)

ϕ is ψ1 ∧ ψ2: return ArrowFree (ψ1) ∧ ArrowFree (ψ2)

ϕ is ψ1 ∨ ψ2: return ArrowFree (ψ1) ∨ ArrowFree (ψ2)

ϕ is ψ1 → ψ2: return ArrowFree (¬ψ1 ∨ ψ2)

ϕ is ψ1 ↔ ψ2: return ArrowFree ((¬ψ1 ∨ ψ2) ∧ (ψ1 ∨ ¬ψ2))

end case

end function



Translating into CNF, second step

function NNF (ϕ):

/* precondition: ϕ is arrow-free. */

/* postcondition: NNF (ϕ) returns NNF of ϕ */

begin function

case

ϕ is a literal: return ϕ

ϕ is ¬¬ψ: return NNF (ψ)

ϕ is ψ1 ∧ ψ2: return NNF (ψ1) ∧ NNF (ψ2)

ϕ is ψ1 ∨ ψ2: return NNF (ψ1) ∨ NNF (ψ2)

ϕ is ¬(ψ1 ∧ ψ2): return NNF (¬ψ1) ∨ NNF (¬ψ2)

ϕ is ¬(ψ1 ∨ ψ2): return NNF (¬ψ1) ∧ NNF (¬ψ2)

end case

end function



Translating into CNF, third step

function CNF (ϕ):

/* precondition: ϕ is arrow-free and in NNF. */

/* postcondition: CNF (ϕ) returns CNF of ϕ */

begin function

case

ϕ is a literal: return ϕ

ϕ is ψ1 ∧ ψ2: return CNF (ψ1) ∧ CNF (ψ2)

ϕ is ψ1 ∨ ψ2: return DIST (CNF (ψ1), CNF (ψ2))

end case

end function



Translating into CNF, auxiliary step

function DIST (ϕ1, ϕ2):

/* precondition: ϕ1, ϕ2 are in CNF. */

/* postcondition: DIST (ϕ1, ϕ2) returns CNF of ϕ1 ∨ ϕ2 */

begin function

case

ϕ1 is ψ11 ∧ ψ12: return DIST (ψ11,ϕ2) ∧ DIST (ψ12,ϕ2)

ϕ2 is ψ21 ∧ ψ22: return DIST (ϕ1,ψ21) ∧ DIST (ϕ1,ψ22)

otherwise: return ϕ1 ∨ ϕ2

end case

end function

First case uses equivalence of (p ∧ q) ∨ r and (p ∨ r) ∧ (q ∨ r).
Second case uses equivalence of p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r).



Importance for Testing

Conditions in programming languages use Boolean formulas.

Simplifying these conditions transforms programs into equivalent pro-

grams that are easier to understand.

Propositional logic is at the core of more expressive logics that are

used for specification.

LAI Chapter 5 has all the details. Also, see workshop for real life

examples.

SAT solvers use Boolean formulas in CNF. SAT solvers are important

for the implementation of test program for formal specifications. Much

more about this in the rest of the course.


