
Propositional Logic

Jan van Eijck

Haskell ILLC Project, June 6, 2012

Literate Programming, Again

module PropLogic

where

import Data.List

A Datatype for Formulas

type Name = Int

data Form = Prop Name

| Neg Form

| Cnj [Form]

| Dsj [Form]

| Impl Form Form

| Equiv Form Form

deriving Eq

Displaying Formulas

instance Show Form where
show (Prop x) = show x

show (Neg f) = ’-’ : show f

show (Cnj fs) = "*(" ++ showLst fs ++ ")"

show (Dsj fs) = "+(" ++ showLst fs ++ ")"

show (Impl f1 f2) = "(" ++ show f1 ++ "==>"

++ show f2 ++ ")"

show (Equiv f1 f2) = "(" ++ show f1 ++ "<=>"

++ show f2 ++ ")"

showLst,showRest :: [Form] -> String

showLst [] = ""

showLst (f:fs) = show f ++ showRest fs

showRest [] = ""

showRest (f:fs) = ’ ’: show f ++ showRest fs

Example Formulas

p = Prop 1

q = Prop 2

r = Prop 3

form1 = Equiv (Impl p q) (Impl (Neg q) (Neg p))

form2 = Equiv (Impl p q) (Impl (Neg p) (Neg q))

form3 = Impl (Cnj [Impl p q, Impl q r]) (Impl p r)

Proposition Letters Occurring in a Formula

propNames :: Form -> [Name]

propNames = sort.nub.pnames where

pnames (Prop name) = [name]

pnames (Neg f) = pnames f

pnames (Cnj fs) = concat (map pnames fs)

pnames (Dsj fs) = concat (map pnames fs)

pnames (Impl f1 f2) = concat (map pnames [f1,f2])

pnames (Equiv f1 f2) = concat (map pnames [f1,f2])

Valuations

type Valuation = [(Name,Bool)]

-- all possible valuations for a list of prop letters

genVals :: [Name] -> [Valuation]

genVals [] = [[]]

genVals (name:names) =

map ((name,True) :) (genVals names)

++ map ((name,False):) (genVals names)

-- generate all possible valuations for a formula

allVals :: Form -> [Valuation]

allVals = genVals . propNames

Evaluation of Formulas

eval :: Valuation -> Form -> Bool

eval [] (Prop c) =

error ("no info about " ++ show c)

eval ((i,b):xs) (Prop c)

| c == i = b

| otherwise = eval xs (Prop c)

eval xs (Neg f) = not (eval xs f)

eval xs (Cnj fs) = all (eval xs) fs

eval xs (Dsj fs) = any (eval xs) fs

eval xs (Impl f1 f2) = not (eval xs f1) || eval xs f2

eval xs (Equiv f1 f2) = eval xs f1 == eval xs f2

Satisfiability, Logical Entailment, Equivalence

-- f is satisfiable if some valuation makes f true
satisfiable :: Form -> Bool

satisfiable f = any (\ v -> eval v f) (allVals f)

contradiction :: Form -> Bool

contradiction = not . satisfiable

-- logical entailment

entails :: Form -> Form -> Bool

entails f1 f2 = contradiction (Cnj [f1, Neg f2])

-- logical equivalence

equiv :: Form -> Form -> Bool

equiv f1 f2 = entails f1 f2 && entails f2 f1

Arrow Free Form

-- no precondition: should work for any formula.

arrowfree :: Form -> Form

arrowfree (Prop x) = Prop x

arrowfree (Neg f) = Neg (arrowfree f)

arrowfree (Cnj fs) = Cnj (map arrowfree fs)

arrowfree (Dsj fs) = Dsj (map arrowfree fs)

arrowfree (Impl f1 f2) =

Dsj [Neg (arrowfree f1), arrowfree f2]

arrowfree (Equiv f1 f2) =

Dsj [Cnj [f1’, f2’], Cnj [Neg f1’, Neg f2’]]

where f1’ = arrowfree f1

f2’ = arrowfree f2

