
Sets, Types and Lists

Jan van Eijck

June 7, 2012

Abstract

Topics of today: Lazy list processing, operations on sets, set theoretic reasoning, set
theory and paradoxes, the use of types to avoid paradoxes, how sets relate to types and
to lists, operations on lists.

Lazy list processing. . . The Sieve of Eratosthenes

Start with the list of all natural numbers ≥ 2:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, . . .

Lazy list processing. . . The Sieve of Eratosthenes

Start with the list of all natural numbers ≥ 2:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, . . .

In the first round, mark 2 (the first number in the list) as prime,

and mark all multiples of 2 for removal in the remainder of the list

(marking for removal indicated by overlining):

2 , 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, . . .

In the second round, mark 3 as prime, and mark all multiples of 3 for

removal in the remainder of the list:

2 , 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, . . .

. . .

In the second round, mark 3 as prime, and mark all multiples of 3 for

removal in the remainder of the list:

2 , 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, . . .

. . .

In the third round, mark 5 as prime, and mark all multiples of 5 for

removal in the remainder of the list:

2 , 3 , 4, 5 , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, . . .

And so on.

In the Haskell implementation we mark numbers in the sequence

[2..] for removal by replacing them with 0. When generating the

sieve, these zeros are skipped.

sieve :: [Integer] -> [Integer]

sieve (0 : xs) = sieve xs

sieve (n : xs) = n : sieve (mark (xs, n-1, n-1))

where

mark (x : xs, 0, m) = 0 : mark (xs, m, m)

mark (x : xs, n, m) = x : mark (xs, n-1, m)

primes :: [Integer]

primes = sieve [2..]

Extensionality and Subsets

A set is a collection into a whole of definite, distinct objects of our

intuition or of our thought. The objects are called the elements (mem-

bers) of the set.

Extensionality and Subsets

A set is a collection into a whole of definite, distinct objects of our

intuition or of our thought. The objects are called the elements (mem-

bers) of the set.

Sets that have the same elements are equal.

For all sets A and B, it holds that:

∀x(x ∈ A⇐⇒ x ∈ B) =⇒ A = B.

This is called the principle of extensionality.

Extensionality and Subsets

A set is a collection into a whole of definite, distinct objects of our

intuition or of our thought. The objects are called the elements (mem-

bers) of the set.

Sets that have the same elements are equal.

For all sets A and B, it holds that:

∀x(x ∈ A⇐⇒ x ∈ B) =⇒ A = B.

This is called the principle of extensionality.

The set A is a subset of the set B, and B a superset of A; notations:

A ⊆ B, and B ⊇ A, if every member of A is also a member of B.

∀x (x ∈ A =⇒ x ∈ B).

If A ⊆ B and A 6= B, then A is a proper subset of B.

Proving that two sets are different

Note that A = B iff A ⊆ B and B ⊆ A. To show that A 6= B we

therefore either have to find an object c with c ∈ A, c /∈ B (in this

case c is a witness of A 6⊆ B), or an object c with c /∈ A, c ∈ B (in

this case c is a witness of B 6⊆ A).

Proving that two sets are different

Note that A = B iff A ⊆ B and B ⊆ A. To show that A 6= B we

therefore either have to find an object c with c ∈ A, c /∈ B (in this

case c is a witness of A 6⊆ B), or an object c with c /∈ A, c ∈ B (in

this case c is a witness of B 6⊆ A).

Proving that two sets are equal

To show A = B we have to prove both A ⊆ B and B ⊆ A.

Given: . . .

To be proved: A = B.

Proof:

⊆: Let x be an arbitrary object in A.

To be proved: x ∈ B.

Proof:

. . .

Thus x ∈ B.

⊇: Let x be an arbitrary object in B.

To be proved: x ∈ A.

Proof:

. . .

Thus x ∈ A.

Thus A = B.

Set Enumeration

A set that has only few elements a1, . . . , an can be denoted as

{a1, . . . , an}.

Extensionality ensures that this denotes exactly one set, for by ex-

tensionality the set is uniquely determined by the fact that it has

a1, . . . , an as its members.

Note that x ∈ {a1, . . . , an} iff x = a1 ∨ · · · ∨ x = an.

List Enumeration in Haskell

An analogue to the enumeration notation is available in Haskell, where

[n..m] can be used for generating a list of items from n to m. This

presupposes that n and m are of the same type, and that enumeration

makes sense for that type.

List Enumeration in Haskell

An analogue to the enumeration notation is available in Haskell, where

[n..m] can be used for generating a list of items from n to m. This

presupposes that n and m are of the same type, and that enumeration

makes sense for that type.

Another possibility is enumeration from a given element: [’A’..].

This may create infinite lists: [0..].

Set Comprehension

Given a universe of objects U , select the elements from U that satisfy

the predicate E:

{x | x ∈ U,E(x)}

Set Comprehension

Given a universe of objects U , select the elements from U that satisfy

the predicate E:

{x | x ∈ U,E(x)}

Example: A = {n | n ∈ N, even(n)}.

List Comprehension in Haskell

As an analogue, we have list comprehension in Haskell.

Assume list :: [a] and property :: a -> Bool. Then a new

list can be defined with:

[x | x <- list, property x]

List Comprehension in Haskell

As an analogue, we have list comprehension in Haskell.

Assume list :: [a] and property :: a -> Bool. Then a new

list can be defined with:

[x | x <- list, property x]

Example:

evens1 = [n | n <- [0..], even n]

List Comprehension in Haskell

As an analogue, we have list comprehension in Haskell.

Assume list :: [a] and property :: a -> Bool. Then a new

list can be defined with:

[x | x <- list, property x]

Example:

evens1 = [n | n <- [0..], even n]

This can also be done with filter:

evens2 = filter even [0..]

Notation

If f is an operation, then

{ f (x) | P (x) }

denotes the set of things of the form f (x) where the object x has the

property P . For instance,

{ 2n | n ∈ N }

is another notation for the set of even natural numbers.

Notation

If f is an operation, then

{ f (x) | P (x) }

denotes the set of things of the form f (x) where the object x has the

property P . For instance,

{ 2n | n ∈ N }

is another notation for the set of even natural numbers.

Haskell counterpart for lists:

evens3 = [2*n | n <- [0..]]

But note the difference:

naturals = [0..]

small_squares1 = [n^2 | n <- [0..999]]

small_squares2 = [n^2 | n <- naturals , n < 1000]

The Russell Paradox

Define ‘ordinary sets’ with R = { x | x 6∈ x }. Question: is R itself

ordinary . . . ?

The Russell Paradox

Define ‘ordinary sets’ with R = { x | x 6∈ x }. Question: is R itself

ordinary . . . ?

If R is an ordinary set, then R ∈ R. Applying the definition of

‘ordinary’, this gives R ∈ { x | x 6∈ x }. In other words, R /∈ R, i.e.,

R is not ordinary. Contradiction.

The Russell Paradox

Define ‘ordinary sets’ with R = { x | x 6∈ x }. Question: is R itself

ordinary . . . ?

If R is an ordinary set, then R ∈ R. Applying the definition of

‘ordinary’, this gives R ∈ { x | x 6∈ x }. In other words, R /∈ R, i.e.,

R is not ordinary. Contradiction.

If R is not an ordinary set, then R /∈ R. Applying the definition of

‘ordinary’, this gives R /∈ {x|x 6∈ x}. In other words, R ∈ {x|x ∈ x}.
But then R ∈ R, i.e., R is ordinary. Contradiction.

The Russell Paradox

Define ‘ordinary sets’ with R = { x | x 6∈ x }. Question: is R itself

ordinary . . . ?

If R is an ordinary set, then R ∈ R. Applying the definition of

‘ordinary’, this gives R ∈ { x | x 6∈ x }. In other words, R /∈ R, i.e.,

R is not ordinary. Contradiction.

If R is not an ordinary set, then R /∈ R. Applying the definition of

‘ordinary’, this gives R /∈ {x|x 6∈ x}. In other words, R ∈ {x|x ∈ x}.
But then R ∈ R, i.e., R is ordinary. Contradiction.

Both the assumption R ∈ R and the assumption R /∈ R lead to a con-

tradiction. Conclusion: there is something wrong with the definition

of ‘ordinary set’.

The Halting Problem

Suppose there is a function halt :: String -> String -> Bool

that checks whether a function (a program in some language, given by

a string) is defined on a given input (also given by a string). Consider:

funny x | halts x x = undefined -- Caution: this

| otherwise = True -- will not work

The Halting Problem

Suppose there is a function halt :: String -> String -> Bool

that checks whether a function (a program in some language, given by

a string) is defined on a given input (also given by a string). Consider:

funny x | halts x x = undefined -- Caution: this

| otherwise = True -- will not work

undefined is predefined in the Haskell prelude, as follows:

undefined :: a

undefined | False = undefined

The Halting Problem

Suppose there is a function halt :: String -> String -> Bool

that checks whether a function (a program in some language, given by

a string) is defined on a given input (also given by a string). Consider:

funny x | halts x x = undefined -- Caution: this

| otherwise = True -- will not work

undefined is predefined in the Haskell prelude, as follows:

undefined :: a

undefined | False = undefined

Now what about funny funny?

There can be no universal halts predicate . . .

Suppose funny funny does not halt. Then by the definition of

funny, we are in the first case. This is the case where the argument

of funny, when applied to itself, halts. But the argument of funny is

funny. Therefore, funny funny does halt, and contradiction.

There can be no universal halts predicate . . .

Suppose funny funny does not halt. Then by the definition of

funny, we are in the first case. This is the case where the argument

of funny, when applied to itself, halts. But the argument of funny is

funny. Therefore, funny funny does halt, and contradiction.

Suppose funny funny does halt. Then by the definition of funny, we

are in the second case. This is the case where the argument of funny,

when applied to itself, does not halt. But the argument of funny is

funny. Therefore, funny funny does not halt, and contradiction.

There can be no universal halts predicate . . .

Suppose funny funny does not halt. Then by the definition of

funny, we are in the first case. This is the case where the argument

of funny, when applied to itself, halts. But the argument of funny is

funny. Therefore, funny funny does halt, and contradiction.

Suppose funny funny does halt. Then by the definition of funny, we

are in the second case. This is the case where the argument of funny,

when applied to itself, does not halt. But the argument of funny is

funny. Therefore, funny funny does not halt, and contradiction.

Thus, there is something wrong with the definition of funny. The

only peculiarity of the definition is the use of the halts predicate.

This shows that such a halts predicate cannot be implemented.

Test for Equality of Functions

Such a test would solve the halting problem:

halts f x = f /= g

where g y | y == x = undefined

| otherwise = f y

Conclusion: functions cannot be in the class Eq.

Types

Types can be viewed as a regulation of the language to rule out para-

doxes.

Types

Types can be viewed as a regulation of the language to rule out para-

doxes.

A list counterpart to the Russell set R = {x | x /∈ x} cannot be de-

fined in Haskell, for the function notElem has type Eq a => a -> [a] -> Bool.

Types

Types can be viewed as a regulation of the language to rule out para-

doxes.

A list counterpart to the Russell set R = {x | x /∈ x} cannot be de-

fined in Haskell, for the function notElem has type Eq a => a -> [a] -> Bool.

Type Classes

Type classes are sets of types for which certain common functions are

defined. Eq is the class for which == and /= are defined. Show is the

class for which show is defined. Ord is the class for which compare

is defined. Bounded is the class for which minBound and maxBound

are defined. Num is the class for which numerical operations like (+),

(-), (*) are defined, and so on.

Empty Set, Singletons

A set A is empty if it has no elements. By extensionality, there is just

one empty set, so we may give it a name: ∅.
A set A that has just one member d is called a singleton. The singleton

whose only element is d is {d}. Do not confuse d with {d}.

Empty Set, Singletons

A set A is empty if it has no elements. By extensionality, there is just

one empty set, so we may give it a name: ∅.
A set A that has just one member d is called a singleton. The singleton

whose only element is d is {d}. Do not confuse d with {d}.

Empty List, Unit Lists

Empty list: []. Unit list: [d].

If d :: a then [d] :: [a].

Operations on Sets

Intersection: A ∩B = { x | x ∈ A ∧ x ∈ B }
Union: A ∪B = { x | x ∈ A ∨ x ∈ B }.
Difference: A−B = { x | x ∈ A ∧ x 6∈ B }.

Operations on Sets

Intersection: A ∩B = { x | x ∈ A ∧ x ∈ B }
Union: A ∪B = { x | x ∈ A ∨ x ∈ B }.
Difference: A−B = { x | x ∈ A ∧ x 6∈ B }.

Properties

A ∩ ∅ = ∅, A ∪ ∅ = A

A ∩ A = A, A ∪ A = A (idempotence)

A ∩B = B ∩ A, A ∪B = B ∪ A (commutativity)

A∩(B∩C) = (A∩B)∩C, A∪(B∪C) = (A∪B)∪C (associativity)

A∩ (B∪C) = (A∩B)∪ (A∩C), A∪ (B∩C) = (A∪B)∩ (A∪C)

Powerset

The powerset of the set X is the set P(X) = { A | A ⊆ X }.
We have: ∅ ∈ P(X) and X ∈ P(X).

Powerset

The powerset of the set X is the set P(X) = { A | A ⊆ X }.
We have: ∅ ∈ P(X) and X ∈ P(X).

The power set of {1, 2, 3} :
{1, 2, 3}

{1, 2} {2, 3} {1, 3}
{1} {2} {3}

∅



Generalized Union and Intersection

Suppose that a set Ai has been given for every element i of a set I .

1. The union of the sets Ai is the set {x | ∃i∈I(x ∈ Ai)}.
Notation:

⋃
i∈I Ai.

Generalized Union and Intersection

Suppose that a set Ai has been given for every element i of a set I .

1. The union of the sets Ai is the set {x | ∃i∈I(x ∈ Ai)}.
Notation:

⋃
i∈I Ai.

2. The intersection of the sets Ai is the set {x | ∀i∈I(x ∈ Ai)}.
Notation:

⋂
i∈I Ai

Generalized Union and Intersection

Suppose that a set Ai has been given for every element i of a set I .

1. The union of the sets Ai is the set {x | ∃i∈I(x ∈ Ai)}.
Notation:

⋃
i∈I Ai.

2. The intersection of the sets Ai is the set {x | ∀i∈I(x ∈ Ai)}.
Notation:

⋂
i∈I Ai

Example: for p ∈ N, let Ap = {mp | m ∈ N,m ≥ 1}. Then Ap is

the set of all natural numbers that have p as a factor.

Generalized Union and Intersection

Suppose that a set Ai has been given for every element i of a set I .

1. The union of the sets Ai is the set {x | ∃i∈I(x ∈ Ai)}.
Notation:

⋃
i∈I Ai.

2. The intersection of the sets Ai is the set {x | ∀i∈I(x ∈ Ai)}.
Notation:

⋂
i∈I Ai

Example: for p ∈ N, let Ap = {mp | m ∈ N,m ≥ 1}. Then Ap is

the set of all natural numbers that have p as a factor.

What is
⋃

i∈{2,3,5,7}Ai?

Generalized Union and Intersection

Suppose that a set Ai has been given for every element i of a set I .

1. The union of the sets Ai is the set {x | ∃i∈I(x ∈ Ai)}.
Notation:

⋃
i∈I Ai.

2. The intersection of the sets Ai is the set {x | ∀i∈I(x ∈ Ai)}.
Notation:

⋂
i∈I Ai

Example: for p ∈ N, let Ap = {mp | m ∈ N,m ≥ 1}. Then Ap is

the set of all natural numbers that have p as a factor.

What is
⋃

i∈{2,3,5,7}Ai?

What is
⋂

i∈{2,3,5,7}Ai?

The ‘take’ function

Consider the function take :: Int -> [a] -> [a] that does the

following:

Prelude> take 10 [0..]

[0,1,2,3,4,5,6,7,8,9]

How would you implement this?

The ‘take’ function

Consider the function take :: Int -> [a] -> [a] that does the

following:

Prelude> take 10 [0..]

[0,1,2,3,4,5,6,7,8,9]

How would you implement this?

take :: Int -> [a] -> [a]

take n _ | n <= 0 = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

Representing Sets with Lists

Instead of taking sets as basic, and defining lists in terms of sets, we

may also proceed the other way around, by representing sets as a

special kind of lists.

Representing Sets with Lists

Instead of taking sets as basic, and defining lists in terms of sets, we

may also proceed the other way around, by representing sets as a

special kind of lists.

Removing duplicates with nub:

nub :: (Eq a) => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (remove x xs)

where

remove y [] = []

remove y (z:zs) | y == z = remove y zs

| otherwise = z : remove y zs

Deleting Elements, Finding Elements

delete :: Eq a => a -> [a] -> [a]

delete x [] = []

delete x (y:ys) | x == y = ys

| otherwise = y: delete x ys

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) | x == y = True

| otherwise = elem x ys

List Union and Intersection

union :: Eq a => [a] -> [a] -> [a]

union [] ys = ys

union (x:xs) ys = x : union xs (delete x ys)

intersect :: Eq a => [a] -> [a] -> [a]

intersect [] s = []

intersect (x:xs) s | elem x s = x : intersect xs s

| otherwise = intersect xs s

Sublists: the Power List Operation

powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) = (powerList xs)

++ (map (x:) (powerList xs))

Main> powerList [1,2,3]

[[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]]

