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Abstract

Ordered pairs, products, from sets to lists, from lists to sets.
Next, we take a further look at lambda abstraction, explain the use of lambda abstraction
for database query, and demonstrate how lambda abstracts can be used in Haskell.



Ordered Pairs

The two sets {a, b} and {b, a} are equal: it follows from the extension-

ality principle that order of presentation does not count.

The ordered pair of objects a and b is denoted by

(a, b) .

Here, a is the first and b the second coordinate of (a, b).
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The two sets {a, b} and {b, a} are equal: it follows from the extension-

ality principle that order of presentation does not count.

The ordered pair of objects a and b is denoted by

(a, b) .

Here, a is the first and b the second coordinate of (a, b).

Ordered pairs behave according to the following rule:

(a, b) = (x, y) =⇒ a = x ∧ b = y.

Note that (a, b) = (b, a) only holds when a = b.
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Cartesian Products

The (Cartesian) product of the sets A and B is the set of all pairs

(a, b) where a ∈ A and b ∈ B. In symbols:

A×B = { (a, b) | a ∈ A ∧ b ∈ B }.

Instead of A× A one usually writes A2.

Here is an implementation of the list product operation in Haskell

listproduct :: [a] -> [b] -> [(a,b)]

listproduct xs ys = [ (x,y) | x <- xs, y <- ys ]



This gives:

Main> listproduct [1..4] [’A’..’C’]

[(1,’A’),(1,’B’),(1,’C’),(2,’A’),(2,’B’),(2,’C’),

(3,’A’),(3,’B’),(3,’C’),(4,’A’),(4,’B’),(4,’C’)]

Main> listproduct [1..4] [True, False]

[(1,True),(1,False),(2,True),(2,False),(3,True),

(3,False),(4,True),(4,False)]



Useful Product Laws

For arbitrary sets A,B,C,D the following hold:

1. (A×B) ∩ (C ×D) = (A×D) ∩ (C ×B),

2. (A∪B)×C = (A×C)∪(B×C); (A∩B)×C = (A×C)∩(B×C),

3. (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D),

4. (A∪B)× (C ∪D) = (A×C)∪ (A×D)∪ (B×C)∪ (B×D),

5. [(A− C)×B] ∪ [A× (B −D)] ⊆ (A×B)− (C ×D).



Example Proof

To be proved: (A ∪B)× C = (A× C) ∪ (B × C):
⊆:

Suppose that p ∈ (A ∪B)× C.

Then a ∈ A ∪B and c ∈ C exist such that p = (a, c).

Thus (i) a ∈ A or (ii) a ∈ B.

(i). In this case, p ∈ A× C, and hence p ∈ (A× C) ∪ (B × C).
(ii). Now p ∈ B × C, and hence again p ∈ (A× C) ∪ (B × C).

Thus p ∈ (A× C) ∪ (B × C).
Therefore, (A ∪B)× C ⊆ (A× C) ∪ (B × C).



Example Proof, continued

⊇:

Conversely, assume that p ∈ (A× C) ∪ (B × C).
Thus (i) p ∈ A× C or (ii) p ∈ B × C.

(i). In this case a ∈ A and c ∈ C exist such that p = (a, c);

a fortiori, a ∈ A ∪B and hence p ∈ (A ∪B)× C.

(ii). Now b ∈ B and c ∈ C exist such that p = (b, c);

a fortiori b ∈ A ∪B and hence, again, p ∈ (A ∪B)× C.

Thus p ∈ (A ∪B)× C.

Therefore, (A× C) ∪ (B × C) ⊆ (A ∪B)× C.

The required result follows using Extensionality.



Ordered n-tuples

Ordered n-tuples over some base set A, for every n ∈ N. Definition by

recursion.

1. A0 := {∅},

2. An+1 := A× An.

Note that ordered n-tuples are pairs.
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Ordered n-tuples over some base set A, for every n ∈ N. Definition by

recursion.

1. A0 := {∅},

2. An+1 := A× An.

Note that ordered n-tuples are pairs.

From Sets to Lists

Finally, let A∗ =
⋃
n∈NA

n. Then A∗ is the set of all finite lists over A.

Note that the list [a, b, c, d] gets represented as the pair (a, (b, (c, (d, ∅)))).
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Taking Lists as Basic

Definition of lists in Haskell:

• [] is a list.

• If x is an object and l is a list, then x : l is a list, provided that

the types agree.

The type of a list is derived from the type of its objects: if x :: a, then

lists of objects of that type have type [a].

Under the typing restrictions of Haskell, it is impossible to put objects

of different types together in one list.

The operation (:) has type a -> [a] -> [a].



Lists and List Equality

data [a] = [] | a : [a] deriving (Eq, Ord)

Prelude> :t (:)

(:) :: a -> [a] -> [a]

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x==y && xs==ys

_ == _ = False



List Ordering

instance Ord a => Ord [a] where

compare [] (_:_) = LT

compare [] [] = EQ

compare (_:_) [] = GT

compare (x:xs) (y:ys) =

primCompAux x y (compare xs ys)

primCompAux :: Ord a =>

a -> a -> Ordering -> Ordering

primCompAux x y o =

case compare x y of EQ -> o; LT -> LT; GT -> GT



List indexing

Consider the list indexing function (!!) :: [a] -> Int -> a that

does the following:

Prelude> [’a’..] !! 0

’a’

Prelude> [’a’..] !! 3

’d’

How would you implement this?



List indexing

Consider the list indexing function (!!) :: [a] -> Int -> a that

does the following:

Prelude> [’a’..] !! 0

’a’

Prelude> [’a’..] !! 3

’d’

How would you implement this?

(!!) :: [a] -> Int -> a

(x:_) !! 0 = x

(_:xs) !! n | n>0 = xs !! (n-1)

(_:_) !! _ = error "!!: negative index"

[] !! _ = error "!!: index too large"



Fundamental List Operations

head :: [a] -> a

head (x:_) = x

tail :: [a] -> [a]

tail (_:xs) = xs

last :: [a] -> a

last [x] = x

last (_:xs) = last xs

init :: [a] -> [a]

init [x] = []

init (x:xs) = x : init xs

null :: [a] -> Bool

null [] = True

null (_:_) = False



Lambda Abstraction

A very convenient notation for function construction is by means of

lambda abstraction. In this notation, λx.x+1 encodes the specification

x 7→ x+ 1. The lambda operator is a variable binder, so λx.x+ 1 and

λy.y + 1 denote the same function.
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Lambda Abstraction

A very convenient notation for function construction is by means of

lambda abstraction. In this notation, λx.x+1 encodes the specification

x 7→ x+ 1. The lambda operator is a variable binder, so λx.x+ 1 and

λy.y + 1 denote the same function.

In fact, every time we specify a function foo in Haskell by means of

foo x y z = t

we can also define foo by means of:

foo = \ x y z -> t

If the types of x, y, z, t are known, this also specifies a domain and

a range. For if x :: a, y :: b, z :: c, t :: d, then λxyz.t has

type a -> b -> c -> d.
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Lambda Abstraction (2)

Haskell allows construction of functions by means of lambda abstrac-

tion:

Prelude> (\x -> x + 1) 4

5

Prelude> (\s -> "hello, " ++ s) "dolly"

"hello, dolly"

Prelude> :t (\s -> "hello, " ++ s)

\s -> "hello, " ++ s :: [Char] -> [Char]

Prelude> (\x y -> x^y) 2 4

16
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Prelude> map (\x -> x + 3) [1..5]
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Lambda Abstraction (3)

Such functions can be passed as arguments:

Prelude> map (\x -> x + 3) [1..5]

[4,5,6,7,8]

Prelude> filter (\x -> x^2 < 20) [1..10]

[1,2,3,4]

Prelude> ((\x -> x + 1) . (\y -> y + 2)) 5

8



List Comprehension and Database Query

module DB
where

type WordList = [String]

type DB = [WordList]

db :: DB

db = [

["release", "Blade Runner", "1982"],

["release", "Alien", "1979"],

["release", "Titanic", "1997"],

["release", "Good Will Hunting", "1997"],

["release", "Pulp Fiction", "1994"],

["release", "Reservoir Dogs", "1992"],

["release", "Romeo and Juliet", "1996"],



["direct", "Brian De Palma", "The Untouchables"],
["direct", "James Cameron", "Titanic"],

["direct", "James Cameron", "Aliens"],

["direct", "Ridley Scott", "Alien"],

["direct", "Ridley Scott", "Blade Runner"],

["direct", "Ridley Scott", "Thelma and Louise"],

["direct", "Gus Van Sant", "Good Will Hunting"],

["direct", "Quentin Tarantino", "Pulp Fiction"],

{- ... -}



["play", "Leonardo DiCaprio",

"Romeo and Juliet", "Romeo"],

["play", "Leonardo DiCaprio",

"Titanic", "Jack Dawson"],

["play", "Robin Williams",
"Good Will Hunting", "Sean McGuire"],

["play", "John Travolta",

"Pulp Fiction", "Vincent Vega"],

["play", "Harvey Keitel",

"Reservoir Dogs", "Mr White"],

{- ... -}



The database can be used to define the following lists of database

objects, with list comprehension.

characters = nub [ x | ["play",_,_,x] <- db ]

movies = [ x | ["release",x,_] <- db ]

actors = nub [ x | ["play",x,_,_] <- db ]

directors = nub [ x | ["direct",x,_] <- db ]

dates = nub [ x | ["release",_,x] <- db ]

universe = nub (characters

++ actors

++ directors

++ movies

++ dates)



Next, define lists of tuples, again by list comprehension:

direct = [ (x,y) | ["direct",x,y] <- db ]

act = [ (x,y) | ["play",x,y,_] <- db ]

play = [ (x,y,z) | ["play",x,y,z] <- db ]

release = [ (x,y) | ["release",x,y] <- db ]



Finally, define one placed, two placed and three placed predicates by

means of lambda abstraction.

charP = \ x -> elem x characters

actorP = \ x -> elem x actors

movieP = \ x -> elem x movies

directorP = \ x -> elem x directors

dateP = \ x -> elem x dates

actP = \ (x,y) -> elem (x,y) act

releaseP = \ (x,y) -> elem (x,y) release

directP = \ (x,y) -> elem (x,y) direct

playP = \ (x,y,z) -> elem (x,y,z) play



Example Queries

‘Give me the actors that also are directors.’

q1 = [ x | x <- actors, directorP x ]



Example Queries

‘Give me the actors that also are directors.’

q1 = [ x | x <- actors, directorP x ]

‘Give me all actors that also are directors, together with the films in

which they were acting.’

q2 = [ (x,y) | (x,y) <- act, directorP x ]



’Give me all directors together with their films and their release dates.’

The following is wrong.

q3 = [ (x,y,z) | (x,y) <- direct, (y,z) <- release ]



’Give me all directors together with their films and their release dates.’

The following is wrong.

q3 = [ (x,y,z) | (x,y) <- direct, (y,z) <- release ]

The problem is that the two ys are unrelated. In fact, this query gener-

ates an infinite list. This can be remedied by using the equality predicate

as a link:

q4 = [ (x,y,z) | (x,y) <- direct,

(u,z) <- release,

y == u ]



A Datatype for Sets

module SetEq (Set,emptySet,isEmpty,inSet,subSet,
insertSet,deleteSet,powerSet,takeSet,

list2set,(!!!))

where

import List

newtype Set a = Set [a]

instance Eq a => Eq (Set a) where

set1 == set2 = subSet set1 set2

&& subSet set2 set1



subSet :: (Eq a) => Set a -> Set a -> Bool

subSet (Set []) _ = True

subSet (Set (x:xs)) set = (inSet x set)

&& subSet (Set xs) set

inSet :: (Eq a) => a -> Set a -> Bool

inSet x (Set s) = elem x s

This gives:

Main> Set [2,3,3,1,1,1] == Set [1,2,3]

True



instance (Show a) => Show (Set a) where

showsPrec _ (Set s) str = showSet s str

showSet [] str = showString "{}" str

showSet (x:xs) str =

showChar ’{’ (shows x (sh xs str))

where sh [] str = showChar ’}’ str

sh (x:xs) str = showChar ’,’

(shows x (sh xs str))

This gives:

SetEq> Set [1..10]

{1,2,3,4,5,6,7,8,9,10}



emptySet :: Set a

emptySet = Set []

isEmpty :: Set a -> Bool

isEmpty (Set []) = True

isEmpty _ = False



insertSet :: (Eq a) => a -> Set a -> Set a

insertSet x (Set ys) | inSet x (Set ys) = Set ys

| otherwise = Set (x:ys)

deleteSet :: Eq a => a -> Set a -> Set a

deleteSet x (Set xs) = Set (delete x xs)

list2set :: Eq a => [a] -> Set a
list2set [] = Set []

list2set (x:xs) = insertSet x (list2set xs)



powerSet :: Eq a => Set a -> Set (Set a)

powerSet (Set xs) = Set (map (\xs -> (Set xs))

(powerList xs))

takeSet :: Eq a => Int -> Set a -> Set a

takeSet n (Set xs) = Set (take n xs)

infixl 9 !!!

(!!!) :: Eq a => Set a -> Int -> a

(Set xs) !!! n = xs !! n



Five Levels From the Set Theoretic Universe

module Hierarchy where

import SetEq

data S = Void deriving (Eq,Show)

empty :: Set S

empty = Set []

v0 = empty

v1 = powerSet v0

v2 = powerSet v1

v3 = powerSet v2

v4 = powerSet v3

v5 = powerSet v4


