
Ordered Pairs, Products, Sets versus Lists,
Lambda Abstraction, Database Query

Jan van Eijck

June 10, 2012

Abstract

Ordered pairs, products, from sets to lists, from lists to sets.
Next, we take a further look at lambda abstraction, explain the use of lambda abstraction
for database query, and demonstrate how lambda abstracts can be used in Haskell.

Ordered Pairs

The two sets {a, b} and {b, a} are equal: it follows from the extension-

ality principle that order of presentation does not count.

The ordered pair of objects a and b is denoted by

(a, b) .

Here, a is the first and b the second coordinate of (a, b).

Ordered Pairs

The two sets {a, b} and {b, a} are equal: it follows from the extension-

ality principle that order of presentation does not count.

The ordered pair of objects a and b is denoted by

(a, b) .

Here, a is the first and b the second coordinate of (a, b).

Ordered pairs behave according to the following rule:

(a, b) = (x, y) =⇒ a = x ∧ b = y.

Ordered Pairs

The two sets {a, b} and {b, a} are equal: it follows from the extension-

ality principle that order of presentation does not count.

The ordered pair of objects a and b is denoted by

(a, b) .

Here, a is the first and b the second coordinate of (a, b).

Ordered pairs behave according to the following rule:

(a, b) = (x, y) =⇒ a = x ∧ b = y.

Note that (a, b) = (b, a) only holds when a = b.

Cartesian Products

The (Cartesian) product of the sets A and B is the set of all pairs

(a, b) where a ∈ A and b ∈ B. In symbols:

A×B = { (a, b) | a ∈ A ∧ b ∈ B }.

Cartesian Products

The (Cartesian) product of the sets A and B is the set of all pairs

(a, b) where a ∈ A and b ∈ B. In symbols:

A×B = { (a, b) | a ∈ A ∧ b ∈ B }.

Instead of A× A one usually writes A2.

Cartesian Products

The (Cartesian) product of the sets A and B is the set of all pairs

(a, b) where a ∈ A and b ∈ B. In symbols:

A×B = { (a, b) | a ∈ A ∧ b ∈ B }.

Instead of A× A one usually writes A2.

Here is an implementation of the list product operation in Haskell

listproduct :: [a] -> [b] -> [(a,b)]

listproduct xs ys = [(x,y) | x <- xs, y <- ys]

This gives:

Main> listproduct [1..4] [’A’..’C’]

[(1,’A’),(1,’B’),(1,’C’),(2,’A’),(2,’B’),(2,’C’),

(3,’A’),(3,’B’),(3,’C’),(4,’A’),(4,’B’),(4,’C’)]

Main> listproduct [1..4] [True, False]

[(1,True),(1,False),(2,True),(2,False),(3,True),

(3,False),(4,True),(4,False)]

Useful Product Laws

For arbitrary sets A,B,C,D the following hold:

1. (A×B) ∩ (C ×D) = (A×D) ∩ (C ×B),

2. (A∪B)×C = (A×C)∪(B×C); (A∩B)×C = (A×C)∩(B×C),

3. (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D),

4. (A∪B)× (C ∪D) = (A×C)∪ (A×D)∪ (B×C)∪ (B×D),

5. [(A− C)×B] ∪ [A× (B −D)] ⊆ (A×B)− (C ×D).

Example Proof

To be proved: (A ∪B)× C = (A× C) ∪ (B × C):
⊆:

Suppose that p ∈ (A ∪B)× C.

Then a ∈ A ∪B and c ∈ C exist such that p = (a, c).

Thus (i) a ∈ A or (ii) a ∈ B.

(i). In this case, p ∈ A× C, and hence p ∈ (A× C) ∪ (B × C).
(ii). Now p ∈ B × C, and hence again p ∈ (A× C) ∪ (B × C).

Thus p ∈ (A× C) ∪ (B × C).
Therefore, (A ∪B)× C ⊆ (A× C) ∪ (B × C).

Example Proof, continued

⊇:

Conversely, assume that p ∈ (A× C) ∪ (B × C).
Thus (i) p ∈ A× C or (ii) p ∈ B × C.

(i). In this case a ∈ A and c ∈ C exist such that p = (a, c);

a fortiori, a ∈ A ∪B and hence p ∈ (A ∪B)× C.

(ii). Now b ∈ B and c ∈ C exist such that p = (b, c);

a fortiori b ∈ A ∪B and hence, again, p ∈ (A ∪B)× C.

Thus p ∈ (A ∪B)× C.

Therefore, (A× C) ∪ (B × C) ⊆ (A ∪B)× C.

The required result follows using Extensionality.

Ordered n-tuples

Ordered n-tuples over some base set A, for every n ∈ N. Definition by

recursion.

1. A0 := {∅},

2. An+1 := A× An.

Note that ordered n-tuples are pairs.

Ordered n-tuples

Ordered n-tuples over some base set A, for every n ∈ N. Definition by

recursion.

1. A0 := {∅},

2. An+1 := A× An.

Note that ordered n-tuples are pairs.

From Sets to Lists

Finally, let A∗ =
⋃
n∈NA

n. Then A∗ is the set of all finite lists over A.

Note that the list [a, b, c, d] gets represented as the pair (a, (b, (c, (d, ∅)))).

Taking Lists as Basic

Definition of lists in Haskell:

• [] is a list.

• If x is an object and l is a list, then x : l is a list, provided that

the types agree.

Taking Lists as Basic

Definition of lists in Haskell:

• [] is a list.

• If x is an object and l is a list, then x : l is a list, provided that

the types agree.

The type of a list is derived from the type of its objects: if x :: a, then

lists of objects of that type have type [a].

Taking Lists as Basic

Definition of lists in Haskell:

• [] is a list.

• If x is an object and l is a list, then x : l is a list, provided that

the types agree.

The type of a list is derived from the type of its objects: if x :: a, then

lists of objects of that type have type [a].

Under the typing restrictions of Haskell, it is impossible to put objects

of different types together in one list.

Taking Lists as Basic

Definition of lists in Haskell:

• [] is a list.

• If x is an object and l is a list, then x : l is a list, provided that

the types agree.

The type of a list is derived from the type of its objects: if x :: a, then

lists of objects of that type have type [a].

Under the typing restrictions of Haskell, it is impossible to put objects

of different types together in one list.

The operation (:) has type a -> [a] -> [a].

Lists and List Equality

data [a] = [] | a : [a] deriving (Eq, Ord)

Prelude> :t (:)

(:) :: a -> [a] -> [a]

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x==y && xs==ys

_ == _ = False

List Ordering

instance Ord a => Ord [a] where

compare [] (_:_) = LT

compare [] [] = EQ

compare (_:_) [] = GT

compare (x:xs) (y:ys) =

primCompAux x y (compare xs ys)

primCompAux :: Ord a =>

a -> a -> Ordering -> Ordering

primCompAux x y o =

case compare x y of EQ -> o; LT -> LT; GT -> GT

List indexing

Consider the list indexing function (!!) :: [a] -> Int -> a that

does the following:

Prelude> [’a’..] !! 0

’a’

Prelude> [’a’..] !! 3

’d’

How would you implement this?

List indexing

Consider the list indexing function (!!) :: [a] -> Int -> a that

does the following:

Prelude> [’a’..] !! 0

’a’

Prelude> [’a’..] !! 3

’d’

How would you implement this?

(!!) :: [a] -> Int -> a

(x:_) !! 0 = x

(_:xs) !! n | n>0 = xs !! (n-1)

(_:_) !! _ = error "!!: negative index"

[] !! _ = error "!!: index too large"

Fundamental List Operations

head :: [a] -> a

head (x:_) = x

tail :: [a] -> [a]

tail (_:xs) = xs

last :: [a] -> a

last [x] = x

last (_:xs) = last xs

init :: [a] -> [a]

init [x] = []

init (x:xs) = x : init xs

null :: [a] -> Bool

null [] = True

null (_:_) = False

Lambda Abstraction

A very convenient notation for function construction is by means of

lambda abstraction. In this notation, λx.x+1 encodes the specification

x 7→ x+ 1. The lambda operator is a variable binder, so λx.x+ 1 and

λy.y + 1 denote the same function.

Lambda Abstraction

A very convenient notation for function construction is by means of

lambda abstraction. In this notation, λx.x+1 encodes the specification

x 7→ x+ 1. The lambda operator is a variable binder, so λx.x+ 1 and

λy.y + 1 denote the same function.

In fact, every time we specify a function foo in Haskell by means of

foo x y z = t

we can also define foo by means of:

foo = \ x y z -> t

Lambda Abstraction

A very convenient notation for function construction is by means of

lambda abstraction. In this notation, λx.x+1 encodes the specification

x 7→ x+ 1. The lambda operator is a variable binder, so λx.x+ 1 and

λy.y + 1 denote the same function.

In fact, every time we specify a function foo in Haskell by means of

foo x y z = t

we can also define foo by means of:

foo = \ x y z -> t

If the types of x, y, z, t are known, this also specifies a domain and

a range. For if x :: a, y :: b, z :: c, t :: d, then λxyz.t has

type a -> b -> c -> d.

Lambda Abstraction (2)

Haskell allows construction of functions by means of lambda abstrac-

tion:

Prelude> (\x -> x + 1) 4

5

Lambda Abstraction (2)

Haskell allows construction of functions by means of lambda abstrac-

tion:

Prelude> (\x -> x + 1) 4

5

Prelude> (\s -> "hello, " ++ s) "dolly"

"hello, dolly"

Lambda Abstraction (2)

Haskell allows construction of functions by means of lambda abstrac-

tion:

Prelude> (\x -> x + 1) 4

5

Prelude> (\s -> "hello, " ++ s) "dolly"

"hello, dolly"

Prelude> :t (\s -> "hello, " ++ s)

\s -> "hello, " ++ s :: [Char] -> [Char]

Lambda Abstraction (2)

Haskell allows construction of functions by means of lambda abstrac-

tion:

Prelude> (\x -> x + 1) 4

5

Prelude> (\s -> "hello, " ++ s) "dolly"

"hello, dolly"

Prelude> :t (\s -> "hello, " ++ s)

\s -> "hello, " ++ s :: [Char] -> [Char]

Prelude> (\x y -> x^y) 2 4

16

Lambda Abstraction (3)

Such functions can be passed as arguments:

Prelude> map (\x -> x + 3) [1..5]

[4,5,6,7,8]

Lambda Abstraction (3)

Such functions can be passed as arguments:

Prelude> map (\x -> x + 3) [1..5]

[4,5,6,7,8]

Prelude> filter (\x -> x^2 < 20) [1..10]

[1,2,3,4]

Lambda Abstraction (3)

Such functions can be passed as arguments:

Prelude> map (\x -> x + 3) [1..5]

[4,5,6,7,8]

Prelude> filter (\x -> x^2 < 20) [1..10]

[1,2,3,4]

Prelude> ((\x -> x + 1) . (\y -> y + 2)) 5

8

List Comprehension and Database Query

module DB
where

type WordList = [String]

type DB = [WordList]

db :: DB

db = [

["release", "Blade Runner", "1982"],

["release", "Alien", "1979"],

["release", "Titanic", "1997"],

["release", "Good Will Hunting", "1997"],

["release", "Pulp Fiction", "1994"],

["release", "Reservoir Dogs", "1992"],

["release", "Romeo and Juliet", "1996"],

["direct", "Brian De Palma", "The Untouchables"],
["direct", "James Cameron", "Titanic"],

["direct", "James Cameron", "Aliens"],

["direct", "Ridley Scott", "Alien"],

["direct", "Ridley Scott", "Blade Runner"],

["direct", "Ridley Scott", "Thelma and Louise"],

["direct", "Gus Van Sant", "Good Will Hunting"],

["direct", "Quentin Tarantino", "Pulp Fiction"],

{- ... -}

["play", "Leonardo DiCaprio",

"Romeo and Juliet", "Romeo"],

["play", "Leonardo DiCaprio",

"Titanic", "Jack Dawson"],

["play", "Robin Williams",
"Good Will Hunting", "Sean McGuire"],

["play", "John Travolta",

"Pulp Fiction", "Vincent Vega"],

["play", "Harvey Keitel",

"Reservoir Dogs", "Mr White"],

{- ... -}

The database can be used to define the following lists of database

objects, with list comprehension.

characters = nub [x | ["play",_,_,x] <- db]

movies = [x | ["release",x,_] <- db]

actors = nub [x | ["play",x,_,_] <- db]

directors = nub [x | ["direct",x,_] <- db]

dates = nub [x | ["release",_,x] <- db]

universe = nub (characters

++ actors

++ directors

++ movies

++ dates)

Next, define lists of tuples, again by list comprehension:

direct = [(x,y) | ["direct",x,y] <- db]

act = [(x,y) | ["play",x,y,_] <- db]

play = [(x,y,z) | ["play",x,y,z] <- db]

release = [(x,y) | ["release",x,y] <- db]

Finally, define one placed, two placed and three placed predicates by

means of lambda abstraction.

charP = \ x -> elem x characters

actorP = \ x -> elem x actors

movieP = \ x -> elem x movies

directorP = \ x -> elem x directors

dateP = \ x -> elem x dates

actP = \ (x,y) -> elem (x,y) act

releaseP = \ (x,y) -> elem (x,y) release

directP = \ (x,y) -> elem (x,y) direct

playP = \ (x,y,z) -> elem (x,y,z) play

Example Queries

‘Give me the actors that also are directors.’

q1 = [x | x <- actors, directorP x]

Example Queries

‘Give me the actors that also are directors.’

q1 = [x | x <- actors, directorP x]

‘Give me all actors that also are directors, together with the films in

which they were acting.’

q2 = [(x,y) | (x,y) <- act, directorP x]

’Give me all directors together with their films and their release dates.’

The following is wrong.

q3 = [(x,y,z) | (x,y) <- direct, (y,z) <- release]

’Give me all directors together with their films and their release dates.’

The following is wrong.

q3 = [(x,y,z) | (x,y) <- direct, (y,z) <- release]

The problem is that the two ys are unrelated. In fact, this query gener-

ates an infinite list. This can be remedied by using the equality predicate

as a link:

q4 = [(x,y,z) | (x,y) <- direct,

(u,z) <- release,

y == u]

A Datatype for Sets

module SetEq (Set,emptySet,isEmpty,inSet,subSet,
insertSet,deleteSet,powerSet,takeSet,

list2set,(!!!))

where

import List

newtype Set a = Set [a]

instance Eq a => Eq (Set a) where

set1 == set2 = subSet set1 set2

&& subSet set2 set1

subSet :: (Eq a) => Set a -> Set a -> Bool

subSet (Set []) _ = True

subSet (Set (x:xs)) set = (inSet x set)

&& subSet (Set xs) set

inSet :: (Eq a) => a -> Set a -> Bool

inSet x (Set s) = elem x s

This gives:

Main> Set [2,3,3,1,1,1] == Set [1,2,3]

True

instance (Show a) => Show (Set a) where

showsPrec _ (Set s) str = showSet s str

showSet [] str = showString "{}" str

showSet (x:xs) str =

showChar ’{’ (shows x (sh xs str))

where sh [] str = showChar ’}’ str

sh (x:xs) str = showChar ’,’

(shows x (sh xs str))

This gives:

SetEq> Set [1..10]

{1,2,3,4,5,6,7,8,9,10}

emptySet :: Set a

emptySet = Set []

isEmpty :: Set a -> Bool

isEmpty (Set []) = True

isEmpty _ = False

insertSet :: (Eq a) => a -> Set a -> Set a

insertSet x (Set ys) | inSet x (Set ys) = Set ys

| otherwise = Set (x:ys)

deleteSet :: Eq a => a -> Set a -> Set a

deleteSet x (Set xs) = Set (delete x xs)

list2set :: Eq a => [a] -> Set a
list2set [] = Set []

list2set (x:xs) = insertSet x (list2set xs)

powerSet :: Eq a => Set a -> Set (Set a)

powerSet (Set xs) = Set (map (\xs -> (Set xs))

(powerList xs))

takeSet :: Eq a => Int -> Set a -> Set a

takeSet n (Set xs) = Set (take n xs)

infixl 9 !!!

(!!!) :: Eq a => Set a -> Int -> a

(Set xs) !!! n = xs !! n

Five Levels From the Set Theoretic Universe

module Hierarchy where

import SetEq

data S = Void deriving (Eq,Show)

empty :: Set S

empty = Set []

v0 = empty

v1 = powerSet v0

v2 = powerSet v1

v3 = powerSet v2

v4 = powerSet v3

v5 = powerSet v4

