
Relations

Jan van Eijck

June 10, 2012

Abstract

We introduce relations in an abstract manner, and explain some fundamental relational
notions.

Preview: Relations

Consider the type of actP in the database program in Chapter 4.

STAL> :t actP

actP :: ([Char],[Char]) -> Bool

This characterizes sets of pairs.

And the type of queries:

STAL> :t q2

q2 :: [([Char],[Char])]

This gives lists of pairs.

A relation is simply a set of pairs.

More precisely:

If A is a set, then a relation on A is a subset of A2.

Relations as Boolean Functions and as Sets of Pairs

A relation R on a set A can be viewed as a function of type A→ A→
Bool.

Example: < on N. For every two numbers n,m ∈ N, the statement

n < m is either true or false. E.g., 3 < 5 is true, whereas 5 < 2 is

false. In general: to a relation you can “input” a pair of objects, after

which it “outputs” either true or false. depending on whether these

objects are in the relationship given.

Alternative view: relation R on A as a set of pairs:

{(a, b) ∈ A2 | Rab is true }.

< on N = {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), . . .}

Domain and Range

The set dom (R) = {x | ∃y (Rxy)}, the set of all first coordinates of

pairs in R, is called the domain of R.

The set ran(R) = {y | ∃x (Rxy)}, the set of second coordinates of

pairs in R, is called the range of R.

The relation R is a relation from A to B or between A and B, if

dom (R) ⊆ A and ran(R) ⊆ B.

A relation from A to A is called on A.

R = {(1, 4), (1, 5), (2, 5)} is a relation from {1, 2, 3} to {4, 5, 6}, and

it also is a relation on {1, 2, 4, 5, 6}. Furthermore, dom (R) = {1, 2},
ran(R) = {4, 5}.

Identity and Inverse

∆A = { (a, b) ∈ A2 | a = b } = { (a, a) | a ∈ A } is a relation on A,

the identity on A.

If R is a relation between A and B, then R−1 = { (b, a) | aRb }, the

inverse of R, is a relation between B and A.

The inverse of the relation ‘parent of’ is the relation ‘child of’.

A×B is the biggest relation from A to B.

∅ is the smallest relation from A to B.

For the usual ordering < of R, <−1 = >.

(R−1)−1 = R; ∆−1A = ∆A; ∅−1 = ∅ and (A×B)−1 = B × A.

Properties of Relations

A relation R is reflexive on A if for every x ∈ A: xRx.

A relation R on A is irreflexive if for no x ∈ A: xRx.

A relation R on A is symmetric if for all x, y ∈ A: if xRy then yRx.

Fact: A relation R is symmetric iff R ⊆ R−1, iff R = R−1.

A relation R on A is asymmetric if for all x, y ∈ A: if xRy then not

yRx.

A relation R on A is antisymmetric if for all x, y ∈ A: if xRy and

yRx then x = y.

A relation R on A is linear (or: has the comparison property) if for all

x, y ∈ A: xRy or yRx or x = y.

A relation R on A is transitive if for all x, y, z ∈ A: if xRy and yRz

then xRz.

A relation R on A is intransitive if for all x, y, z ∈ A: if xRy and

yRz then not xRz.

Classifying Relations with Relational Properties

A relation R on A is a pre-order if R is transitive and reflexive.

A relation R on A is a strict partial order if R is transitive and

irreflexive.

Fact: every strict partial order is asymmetric.

Fact: every transitive and asymmetric relation is a strict partial order.

A relation R on A is a partial order if R is transitive, reflexive and

antisymmetric.

Fact: Every strict partial order R on A is contained in a partial order

(given by R ∪∆A).

A relation R on A is a total order if R is transitive, reflexive, anti-

symmetric and linear.

A relation R on A is an equivalence relation if R is reflexive, sym-

metric and transitive.

Closures of Relations

If O is a set of properties of relations on a set A, then the O-closure

of a relation R is the smallest relation S that includes R and that has

all the properties in O.

The most important closures are the reflexive closure, the symmetric

closure, the transitive closure and the reflexive transitive closure of a

relation.

To show that R is the smallest relation S that has all the properties in

O, show the following:

1. R has all the properties in O,

2. If S has all the properties in O, then R ⊆ S.

Fact: R ∪∆A is the reflexive closure of R.

Fact: R ∪R−1 is the symmetric closure of R.

Composing Relations

Suppose that R and S are relations on A. The composition R ◦ S of

R and S is the relation on A that is defined by

x(R ◦ S)z :≡ ∃y ∈ A(xRy ∧ ySz).

For n ∈ N, n ≥ 1 we define Rn by means of R1 := R, Rn+1 := Rn◦R.

Fact: a relation R is transitive iff R2 ⊆ R.

Fact: for any relation R on A, the relation R+ =
⋃

n≥1R
n is the

transitive closure of R.

Fact: for any relation R on A, the relation R+ ∪ ∆A is the reflexive

transitive closure of R. Abbreviation for the reflexive transitive closure

of R: R∗.

Sets as Ordered Lists without Duplicates

insertList x [] = [x]

insertList x ys@(y:ys’) = case compare x y of

GT -> y : insertList x ys’

EQ -> ys

_ -> x : ys

deleteList x [] = []

deleteList x ys@(y:ys’) = case compare x y of

GT -> y : deleteList x ys’

EQ -> ys’

_ -> ys

list2set :: Ord a => [a] -> Set a

list2set [] = Set []
list2set (x:xs) = insertSet x (list2set xs)

powerSet :: Ord a => Set a -> Set (Set a)

powerSet (Set xs) =

Set (sort (map (\xs -> (list2set xs)) (powerList xs)))

powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) = (powerList xs)

++ (map (x:) (powerList xs))

takeSet :: Eq a => Int -> Set a -> Set a

takeSet n (Set xs) = Set (take n xs)

infixl 9 !!!

(!!!) :: Eq a => Set a -> Int -> a

(Set xs) !!! n = xs !! n

Implementing Relations as Sets of Pairs

type Rel a = Set (a,a)

domR gives the domain of a relation.

domR :: Ord a => Rel a -> Set a

domR (Set r) = list2set [x | (x,_) <- r]

ranR gives the range of a relation.

ranR :: Ord a => Rel a -> Set a

ranR (Set r) = list2set [y | (_,y) <- r]

idR creates the identity relation ∆A over a set A:

idR :: Ord a => Set a -> Rel a

idR (Set xs) = Set [(x,x) | x <- xs]

The total relation over a set is given by:

totalR :: Set a -> Rel a

totalR (Set xs) = Set [(x,y) | x <- xs, y <- xs]

invR inverts a relation (i.e., the function maps R to R−1).

invR :: Ord a => Rel a -> Rel a

invR (Set []) = (Set [])

invR (Set ((x,y):r)) = insertSet (y,x) (invR (Set r))

inR checks whether a pair is in a relation.

inR :: Ord a => Rel a -> (a,a) -> Bool

inR r (x,y) = inSet (x,y) r

The complement of a relation R ⊆ A×A is the relation A×A−R.

The operation of relational complementation, relative to a set A, can

be implemented as follows:

complR :: Ord a => Set a -> Rel a -> Rel a

complR (Set xs) r = Set [(x,y) | x <- xs, y <- xs,

not (inR r (x,y))]

A check for reflexivity of R on a set A can be implemented by testing

whether ∆A ⊆ R:

reflR :: Ord a => Set a -> Rel a -> Bool

reflR set r = subSet (idR set) r

A check for irreflexivity of R on A proceeds by testing whether ∆A∩R =

∅:

irreflR :: Ord a => Set a -> Rel a -> Bool

irreflR (Set xs) r =

all (\ pair -> not (inR r pair)) [(x,x) | x <- xs]

A check for symmetry of R proceeds by testing for each pair (x, y) ∈ R

whether (y, x) ∈ R:

symR :: Ord a => Rel a -> Bool

symR (Set []) = True

symR (Set ((x,y):pairs))

| x == y = symR (Set pairs)

| otherwise = inSet (y,x) (Set pairs)

&& symR (deleteSet (y,x) (Set pairs))

A check for transitivity of R tests for each couple of pairs (x, y) ∈
R, (u, v) ∈ R whether (x, v) ∈ R if y = u:

transR :: Ord a => Rel a -> Bool

transR (Set []) = True

transR (Set s) = and [trans pair (Set s) | pair <- s]

where

trans (x,y) (Set r) =

and [inSet (x,v) (Set r) | (u,v) <- r, u == y]

Now what about relation composition? This is a more difficult mat-

ter, for how do we implement ∃z(Rxz ∧ Szy)? The key to the im-

plementation is the following procedure for composing a single pair

of objects (x, y) with a relation S, simply by forming the relation

{(x, z) | (y, z) ∈ S}. This is done by:

composePair :: Ord a => (a,a) -> Rel a -> Rel a

composePair (x,y) (Set []) = Set []

composePair (x,y) (Set ((u,v):s))

| y == u = insertSet (x,v) (composePair (x,y) (Set s))

| otherwise = composePair (x,y) (Set s)

For relation composition we need set union:

unionSet :: (Ord a) => Set a -> Set a -> Set a

unionSet (Set []) set2 = set2

unionSet (Set (x:xs)) set2 =

insertSet x (unionSet (Set xs) (deleteSet x set2))

Relation composition is defined in terms of composePair and unionSet:

compR :: Ord a => Rel a -> Rel a -> Rel a

compR (Set []) _ = (Set [])

compR (Set ((x,y):s)) r =

unionSet (composePair (x,y) r) (compR (Set s) r)

Composition of a relation with itself (Rn):

repeatR :: Ord a => Rel a -> Int -> Rel a

repeatR r n | n < 1 = error "argument < 1"

| n == 1 = r

| otherwise = compR r (repeatR r (n-1))

