Relations

Jan van Eijck

June 10, 2012

Abstract

We introduce relations in an abstract manner, and explain some fundamental relational
notions.

Consider the type of actP in the database program in Chapter 4.

STAL> :t actP
actP :: ([Char], [Char]) -> Bool

This characterizes sets of pairs.
And the type of queries:

STAL> :t g2
q2 :: [([Char], [Char])]

This gives lists of pairs.
A relation is simply a set of pairs.
More precisely:

If A is a set, then a relation on A is a subset of A2

A relation R on a set A can be viewed as a function of type A — A —
Bool.

Example: < on N. For every two numbers n,m € N, the statement
n < m is either true or false. E.g., 3 < 5 is true, whereas 5 < 2 is
false. In general: to a relation you can “input” a pair of objects, after
which it “outputs” either true or false. depending on whether these
objects are in the relationship given.

Alternative view: relation R on A as a set of pairs:

{(a,b) € A* | Rab is true }.

<on N={(0,1),(0,2),(1,2),(0,3), (1,3),(2,3), ...}

The set dom (R) = {x | Iy (Rxy)}, the set of all first coordinates of
pairs in R, is called the domain of R.

The set ran(R) = {y | 3z (Rxy)}, the set of second coordinates of
pairs in R, is called the range of R.

The relation R is a relation from A to B or between A and B, if
dom (R) C A and ran(R) C B.

A relation from A to A is called on A.

R ={(1,4),(1,5),(2,5)} is a relation from {1,2,3} to {4,5,6}, and
it also is a relation on {1,2,4,5,6}. Furthermore, dom (R) = {1,2},
ran(R) = {4,5}.

Ay={(a,b) € A>|a=0b}={(a,a) | ac A} is a relation on A,
the identity on A.

If R is a relation between A and B, then R~! = { (b,a) | aRD }, the
inverse of R, is a relation between B and A.

The inverse of the relation ‘parent of ' is the relation ‘child of".
A X B is the biggest relation from A to B.

() is the smallest relation from A to B.

For the usual ordering < of R, < l=1>,

(RYH) =R, A=A 01=0and (Ax B)"! =B x A.

A relation R is reflexive on A if for every x € A: zRx.

A relation R on A is irreflexive if for no z € A: xRx.

A relation R on A is symmetric if for all x,y € A: if xRy then yRux.
Fact: A relation R is symmetric iff R C R~! iff R= R~

A relation R on A is asymmetric if for all z,y € A: if xRy then not
yRx.

A relation R on A is antisymmetric if for all z,y € A: if xRy and
yRx then z = y.

A relation R on A is linear (or: has the comparison property) if for all
x,y € A: xRy or yRx or x = y.

A relation R on A is transitive if for all z,y, 2z € A: if xRy and yRz
then zRz.

A relation R on A is intransitive if for all z,y,z € A: if xRy and
yRz then not zRz.

A relation R on A is a pre-order if R is transitive and reflexive.

A relation R on A is a strict partial order if R is transitive and
irreflexive.

Fact: every strict partial order is asymmetric.

Fact: every transitive and asymmetric relation is a strict partial order.

A relation R on A is a partial order if R is transitive, reflexive and
antisymmetric.

Fact: Every strict partial order R on A is contained in a partial order
(given by R U Ay).

A relation R on A is a total order if R is transitive, reflexive, anti-
symmetric and linear.

A relation R on A is an equivalence relation if R is reflexive, sym-
metric and transitive.

If O is a set of properties of relations on a set A, then the O-closure
of a relation R is the smallest relation S' that includes R and that has
all the properties in O.

The most important closures are the reflexive closure, the symmetric
closure, the transitive closure and the reflexive transitive closure of a
relation.

To show that R is the smallest relation S that has all the properties in
O, show the following:

1. R has all the properties in O,
2. If S has all the properties in O, then R C S.

Fact: R U Ay4 is the reflexive closure of R.
Fact: RU R™! is the symmetric closure of R.

Suppose that R and S are relations on A. The composition R o S of
R and S is the relation on A that is defined by

r(RoS)z := Jy € A(xRy NyS=z).

Forn € N,n > 1 we define R" by means of R! .= R, R"™! := R"oR.
Fact: a relation R is transitive iff R? C R.

Fact: for any relation R on A, the relation R™ = (J ., R" is the
transitive closure of R.

Fact: for any relation R on A, the relation R™ U A4 is the reflexive
transitive closure of K. Abbreviation for the reflexive transitive closure

of R: R*.

insertlist x [] = [x]

insertlist x ys@(y:ys’) = case compare x y of
GT -> y : insertlist x ys’
EQ -> ys
_ > X : ys

deleteList x [1 = []

deletelist x ys@(y:ys’) = case compare x y of
GT -> y : deletelist x ys’
EQ —> ys’
_ > ys

list2set :: Ord a => [a] -> Set a

list2set E] = Set []
list2set (x:xs) = insertSet x (list2set xs)

powerSet :: Ord a => Set a -> Set (Set a)
powerSet (Set xs) =

Set (sort (map (\xs -> (list2set xs)) (powerList xs)))

powerList :: [a] -> [[al]
powerList []1 = [[]]
powerList (x:xs) = (powerList xs)

++ (map (x:) (powerList xs))

takeSet :: Eq a => Int -> Set a -> Set a
takeSet n (Set xs) = Set (take n xs)

infixl 9 I'!!

(111) :: Eqg a => Set a -> Int -> a
(Set xs) !l n=xs !l n

type Rel a = Set (a,a)

domR gives the domain of a relation.

domR :: Ord a => Rel a -> Set a

domR (Set r) = list2set [x | (x,_) <- r]
ranR gives the range of a relation.

ranR :: Ord a => Rel a -> Set a

ranR (Set r) = list2set [y | (_,y) <- r]
idR creates the identity relation A4 over a set A:

idR :: Ord a => Set a -> Rel a
idR (Set xs) = Set [(x,x) | x <- xs]

The total relation over a set is given by:
totalR :: Set a -> Rel a
totalR (Set xs) = Set [(x,y) | x <- xs, y <~ x8]

invR inverts a relation (i.e., the function maps R to R™1).

invR :: Ord a => Rel a -> Rel a
invR (Set []1) = (Set [1)
invR (Set ((x,y):r)) = insertSet (y,x) (invR (Set r))

inR checks whether a pair is in a relation.

inR :: Ord a => Rel a -> (a,a) —> Bool
inR r (x,y) = inSet (x,y) r

The complement of a relation R C A x A is the relation A x A — R.
The operation of relational complementation, relative to a set A, can
be implemented as follows:

complR :: Ord a => Set a -> Rel a -> Rel a
complR (Set xs) r = Set [(x,y) | x <- xs, y <- xs,
not (inR r (x,y))]

A check for reflexivity of R on a set A can be implemented by testing
whether A4 C R:

reflR :: Ord a => Set a -> Rel a -> Bool
reflR set r = subSet (idR set) r

A check for irreflexivity of R on A proceeds by testing whether A yNR =
0:

irreflR :: Ord a => Set a -> Rel a -> Bool
irreflR (Set xs) r =
all (\ pair -> not (inR r pair)) [(x,x) | x <- xs]

A check for symmetry of R proceeds by testing for each pair (z,y) € R
whether (y, z) € R:

symR :: Ord a => Rel a -> Bool
symR (Set []) = True
symR (Set ((x,y):pairs))
| x ==y = symR (Set pairs)
| otherwise = inSet (y,x) (Set pairs)
&& symR (deleteSet (y,x) (Set pairs))

A check for transitivity of R tests for each couple of pairs (x,y) €
R, (u,v) € R whether (z,v) € R if y = u:

transR :: Ord a => Rel a -> Bool
transR (Set []) = True
transR (Set s) = and [trans pair (Set s) | pair <- s]
where
trans (x,y) (Set r) =
and [inSet (x,v) (Set r) | (u,v) <~ r, u ==y]

Now what about relation composition? This is a more difficult mat-
ter, for how do we implement Jz(Rxz A Szy)? The key to the im-
plementation is the following procedure for composing a single pair
of objects (z,y) with a relation S, simply by forming the relation
{(z,2) | (y,2) € S}. This is done by:

composePair :: Ord a => (a,a) -> Rel a -> Rel a

composePair (x,y) (Set []) = Set []

composePair (x,y) (Set ((u,v):s))
| y == u = insertSet (x,v) (composePair (x,y) (Set s))
| otherwise = composePair (x,y) (Set s)

For relation composition we need set union:

unionSet :: (0Ord a) => Set a -> Set a -> Set a
unionSet (Set []) set2 = set2
unionSet (Set (x:xs)) set2 =

insertSet x (unionSet (Set xs) (deleteSet x set2))

Relation composition is defined in terms of composePair and unionSet:

compR :: Ord a => Rel a -> Rel a —> Rel a
compR (Set [1) _ = (Set [1)
compR (Set ((x,y):s)) r =
unionSet (composePair (x,y) r) (compR (Set s) r)

Composition of a relation with itself (R"):

repeatR :: Ord a => Rel a -> Int -> Rel a
repeatR rn | n < 1 = error "argument < 1"
| n == =T
| otherwise = compR r (repeatR r (n-1))

