Relations

Jan van Eijck

June 10, 2012

Abstract

We introduce relations in an abstract manner, and explain some fundamental relational notions.

Preview: Relations

Consider the type of actP in the database program in Chapter 4.

```
STAL> :t actP
actP :: ([Char],[Char]) -> Bool
```

This characterizes sets of pairs.

And the type of queries:

```
STAL> :t q2
q2 :: [([Char],[Char])]
```

This gives lists of pairs.

A relation is simply a set of pairs.

More precisely:

If A is a set, then a relation on A is a subset of A^2 .

Relations as Boolean Functions and as Sets of Pairs

A relation R on a set A can be viewed as a function of type $A \to A \to Bool$.

Example: < on \mathbb{N} . For every two numbers $n,m\in\mathbb{N}$, the statement n< m is either true or false. E.g., 3<5 is true, whereas 5<2 is false. In general: to a relation you can "input" a pair of objects, after which it "outputs" either *true* or *false*. depending on whether these objects are in the relationship given.

Alternative view: relation R on A as a set of pairs:

$$\{(a,b)\in A^2\mid Rab \text{ is true }\}.$$

$$<$$
 on $\mathbb{N} = \{(0,1), (0,2), (1,2), (0,3), (1,3), (2,3), \ldots\}$

Domain and Range

The set dom $(R) = \{x \mid \exists y (Rxy)\}$, the set of all first coordinates of pairs in R, is called the *domain* of R.

The set $ran(R) = \{y \mid \exists x \ (Rxy)\}$, the set of second coordinates of pairs in R, is called the *range* of R.

The relation R is a relation from A to B or between A and B, if $dom(R) \subseteq A$ and $ran(R) \subseteq B$.

A relation from A to A is called on A.

 $R = \{(1,4), (1,5), (2,5)\}$ is a relation from $\{1,2,3\}$ to $\{4,5,6\}$, and it also is a relation on $\{1,2,4,5,6\}$. Furthermore, dom $(R) = \{1,2\}$, ran $(R) = \{4,5\}$.

Identity and Inverse

 $\Delta_A = \{ (a,b) \in A^2 \mid a=b \} = \{ (a,a) \mid a \in A \}$ is a relation on A, the *identity on* A.

If R is a relation between A and B, then $R^{-1} = \{ (b, a) \mid aRb \}$, the *inverse* of R, is a relation between B and A.

The inverse of the relation 'parent of' is the relation 'child of'.

 $A \times B$ is the biggest relation from A to B.

 \emptyset is the smallest relation from A to B.

For the usual ordering < of \mathbb{R} , $<^{-1} = >$.

$$(R^{-1})^{-1} = R; \ \Delta_A^{-1} = \Delta_A; \ \emptyset^{-1} = \emptyset \ \text{and} \ (A \times B)^{-1} = B \times A.$$

Properties of Relations

A relation R is **reflexive** on A if for every $x \in A$: xRx.

A relation R on A is **irreflexive** if for no $x \in A$: xRx.

A relation R on A is **symmetric** if for all $x, y \in A$: if xRy then yRx.

Fact: A relation R is symmetric iff $R \subseteq R^{-1}$, iff $R = R^{-1}$.

A relation R on A is **asymmetric** if for all $x, y \in A$: if xRy then not yRx.

A relation R on A is **antisymmetric** if for all $x, y \in A$: if xRy and yRx then x = y.

A relation R on A is **linear** (or: has the comparison property) if for all $x, y \in A$: xRy or yRx or x = y.

A relation R on A is **transitive** if for all $x, y, z \in A$: if xRy and yRz then xRz.

A relation R on A is **intransitive** if for all $x, y, z \in A$: if xRy and yRz then not xRz.

Classifying Relations with Relational Properties

A relation R on A is a **pre-order** if R is transitive and reflexive.

A relation R on A is a **strict partial order** if R is transitive and irreflexive.

Fact: every strict partial order is asymmetric.

Fact: every transitive and asymmetric relation is a strict partial order.

A relation R on A is a **partial order** if R is transitive, reflexive and antisymmetric.

Fact: Every strict partial order R on A is contained in a partial order (given by $R \cup \Delta_A$).

A relation R on A is a **total order** if R is transitive, reflexive, antisymmetric and linear.

A relation R on A is an **equivalence relation** if R is reflexive, symmetric and transitive.

Closures of Relations

If \mathcal{O} is a set of properties of relations on a set A, then the \mathcal{O} -closure of a relation R is the smallest relation S that includes R and that has all the properties in \mathcal{O} .

The most important closures are the *reflexive closure*, the *symmetric closure*, the *transitive closure* and the *reflexive transitive closure* of a relation.

To show that R is the smallest relation S that has all the properties in \mathcal{O} , show the following:

- 1. R has all the properties in \mathcal{O} ,
- 2. If S has all the properties in \mathcal{O} , then $R \subseteq S$.

Fact: $R \cup \Delta_A$ is the reflexive closure of R.

Fact: $R \cup R^{-1}$ is the symmetric closure of R.

Composing Relations

Suppose that R and S are relations on A. The composition $R \circ S$ of R and S is the relation on A that is defined by

$$x(R \circ S)z :\equiv \exists y \in A(xRy \land ySz).$$

For $n \in \mathbb{N}$, $n \ge 1$ we define R^n by means of $R^1 := R$, $R^{n+1} := R^n \circ R$.

Fact: a relation R is transitive iff $R^2 \subseteq R$.

Fact: for any relation R on A, the relation $R^+ = \bigcup_{n \geq 1} R^n$ is the transitive closure of R.

Fact: for any relation R on A, the relation $R^+ \cup \Delta_A$ is the reflexive transitive closure of R. Abbreviation for the reflexive transitive closure of R: R^* .

Sets as Ordered Lists without Duplicates

```
insertList x = [x]
insertList x ys@(y:ys') = case compare x y of
                                 GT -> y : insertList x ys'
                                 EQ -> ys
                                 _ -> x : ys
deleteList x \Pi = \Pi
deleteList x ys@(y:ys') = case compare x y of
                                 GT -> y : deleteList x ys'
                                 EQ -> ys'
                                 _ -> ys
list2set :: Ord a => [a] -> Set a
```

list2set [] = Set []
list2set (x:xs) = insertSet x (list2set xs)

takeSet :: Eq a => Int -> Set a -> Set a
takeSet n (Set xs) = Set (take n xs)

infixl 9 !!!

(!!!) :: Eq a => Set a -> Int -> a (Set xs) !!! n = xs !! n

Implementing Relations as Sets of Pairs

```
type Rel a = Set (a,a)
domR gives the domain of a relation.
domR :: Ord a => Rel a -> Set a
domR (Set r) = list2set [x | (x,_) <- r]
ranR gives the range of a relation.
ranR :: Ord a => Rel a -> Set a
ranR (Set r) = list2set [ y \mid (_,y) < -r ]
idR creates the identity relation \Delta_A over a set A:
idR :: Ord a => Set a -> Rel a
```

idR (Set xs) = Set [(x,x) | x < - xs]

The total relation over a set is given by:

totalR :: Set a \rightarrow Rel a totalR (Set xs) = Set [(x,y) | x <- xs, y <- xs]

invR inverts a relation (i.e., the function maps R to R^{-1}).

invR :: Ord a => Rel a -> Rel a

invR (Set []) = (Set [])

invR (Set ((x,y):r)) = insertSet (y,x) (invR (Set r))

inR checks whether a pair is in a relation.

inR :: Ord a => Rel a -> (a,a) -> Bool inR r (x,y) = inSet (x,y) r

The complement of a relation $R \subseteq A \times A$ is the relation $A \times A - R$. The operation of relational complementation, relative to a set A, can be implemented as follows:

 A check for reflexivity of R on a set A can be implemented by testing whether $\Delta_A \subseteq R$:

reflR :: Ord a => Set a -> Rel a -> Bool reflR set r = subSet (idR set) r

A check for irreflexivity of R on A proceeds by testing whether $\Delta_A \cap R =$ \emptyset :

irreflR :: Ord a => Set a -> Rel a -> Bool irreflR (Set xs) r =

all (\pair \rightarrow not (inR r pair)) [(x,x) | x <- xs]

A check for symmetry of R proceeds by testing for each pair $(x,y) \in R$ whether $(y,x) \in R$:

&& symR (deleteSet (y,x) (Set pairs))

A check for transitivity of R tests for each couple of pairs $(x,y) \in R$, $(u,v) \in R$ whether $(x,v) \in R$ if y=u:

transR :: Ord a => Rel a -> Bool

transR (Set []) = True

transR (Set s) = and [trans pair (Set s) | pair <- s]

where

trans (x,y) (Set r) =

and [inSet (x,v) (Set r) | (u,v) <- r, u == y]

Now what about relation composition? This is a more difficult matter, for how do we implement $\exists z (Rxz \land Szy)$? The key to the implementation is the following procedure for composing a single pair of objects (x, y) with a relation S, simply by forming the relation $\{(x,z)\mid (y,z)\in S\}$. This is done by:

```
composePair :: Ord a => (a,a) -> Rel a -> Rel a
```

composePair (x,y) (Set []) = Set [] composePair (x,y) (Set ((u,v):s))

$$| y == u = insertSet(x,v) (composePair(x,y) (Set s))$$

| otherwise = composePair (x,y) (Set s)

For relation composition we need set union:

Relation composition is defined in terms of composePair and unionSet:

```
compR :: Ord a => Rel a -> Rel a -> Rel a
compR (Set []) _ = (Set [])
compR (Set ((x,y):s)) r =
  unionSet (composePair (x,y) r) (compR (Set s) r)
```

Composition of a relation with itself (R^n) :