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Abstract

We introduce relations in an abstract manner, and explain some fundamental relational
notions.



Consider the type of actP in the database program in Chapter 4.

STAL> :t actP
actP :: ([Char], [Char]) -> Bool

This characterizes sets of pairs.
And the type of queries:

STAL> :t g2
q2 :: [([Char], [Char])]

This gives lists of pairs.
A relation is simply a set of pairs.
More precisely:

If A is a set, then a relation on A is a subset of A2



A relation R on a set A can be viewed as a function of type A — A —
Bool.

Example: < on N. For every two numbers n,m € N, the statement
n < m is either true or false. E.g., 3 < 5 is true, whereas 5 < 2 is
false. In general: to a relation you can “input” a pair of objects, after
which it “outputs” either true or false. depending on whether these
objects are in the relationship given.

Alternative view: relation R on A as a set of pairs:

{(a,b) € A* | Rab is true }.

<on N={(0,1),(0,2),(1,2),(0,3), (1,3),(2,3), ...}



The set dom (R) = {x | Iy ( Rxy )}, the set of all first coordinates of
pairs in R, is called the domain of R.

The set ran(R) = {y | 3z ( Rxy )}, the set of second coordinates of
pairs in R, is called the range of R.

The relation R is a relation from A to B or between A and B, if
dom (R) C A and ran(R) C B.

A relation from A to A is called on A.

R ={(1,4),(1,5),(2,5)} is a relation from {1,2,3} to {4,5,6}, and
it also is a relation on {1,2,4,5,6}. Furthermore, dom (R) = {1,2},
ran(R) = {4,5}.



Ay={(a,b) € A>|a=0b}={(a,a) | ac A} is a relation on A,
the identity on A.

If R is a relation between A and B, then R~! = { (b,a) | aRD }, the
inverse of R, is a relation between B and A.

The inverse of the relation ‘parent of ' is the relation ‘child of".
A X B is the biggest relation from A to B.

() is the smallest relation from A to B.

For the usual ordering < of R, < l=1>,

(RYH) =R, A=A 01=0and (Ax B)"! =B x A.



A relation R is reflexive on A if for every x € A: zRx.

A relation R on A is irreflexive if for no z € A: xRx.

A relation R on A is symmetric if for all x,y € A: if xRy then yRux.
Fact: A relation R is symmetric iff R C R~! iff R= R~

A relation R on A is asymmetric if for all z,y € A: if xRy then not
yRx.

A relation R on A is antisymmetric if for all z,y € A: if xRy and
yRx then z = y.



A relation R on A is linear (or: has the comparison property) if for all
x,y € A: xRy or yRx or x = y.

A relation R on A is transitive if for all z,y, 2z € A: if xRy and yRz
then zRz.

A relation R on A is intransitive if for all z,y,z € A: if xRy and
yRz then not zRz.



A relation R on A is a pre-order if R is transitive and reflexive.

A relation R on A is a strict partial order if R is transitive and
irreflexive.

Fact: every strict partial order is asymmetric.

Fact: every transitive and asymmetric relation is a strict partial order.



A relation R on A is a partial order if R is transitive, reflexive and
antisymmetric.

Fact: Every strict partial order R on A is contained in a partial order
(given by R U Ay).

A relation R on A is a total order if R is transitive, reflexive, anti-
symmetric and linear.

A relation R on A is an equivalence relation if R is reflexive, sym-
metric and transitive.



If O is a set of properties of relations on a set A, then the O-closure
of a relation R is the smallest relation S' that includes R and that has
all the properties in O.

The most important closures are the reflexive closure, the symmetric
closure, the transitive closure and the reflexive transitive closure of a
relation.

To show that R is the smallest relation S that has all the properties in
O, show the following:

1. R has all the properties in O,
2. If S has all the properties in O, then R C S.

Fact: R U Ay4 is the reflexive closure of R.
Fact: RU R™! is the symmetric closure of R.



Suppose that R and S are relations on A. The composition R o S of
R and S is the relation on A that is defined by

r(RoS)z := Jy € A(xRy NyS=z).

Forn € N,n > 1 we define R" by means of R! .= R, R"™! := R"oR.
Fact: a relation R is transitive iff R? C R.

Fact: for any relation R on A, the relation R™ = (J ., R" is the
transitive closure of R.

Fact: for any relation R on A, the relation R™ U A4 is the reflexive
transitive closure of K. Abbreviation for the reflexive transitive closure

of R: R*.



insertlist x [] = [x]

insertlist x ys@(y:ys’) = case compare x y of
GT -> y : insertlist x ys’
EQ -> ys
_ > X : ys

deleteList x [1 = []

deletelist x ys@(y:ys’) = case compare x y of
GT -> y : deletelist x ys’
EQ —> ys’
_ > ys

list2set :: Ord a => [a] -> Set a

list2set E] = Set []
list2set (x:xs) = insertSet x (list2set xs)



powerSet :: Ord a => Set a -> Set (Set a)
powerSet (Set xs) =

Set (sort (map (\xs -> (list2set xs)) (powerList xs)))

powerList :: [a] -> [[al]
powerList []1 = [[]]
powerList (x:xs) = (powerList xs)

++ (map (x:) (powerList xs))

takeSet :: Eq a => Int -> Set a -> Set a
takeSet n (Set xs) = Set (take n xs)

infixl 9 I'!!

(111) :: Eqg a => Set a -> Int -> a
(Set xs) !l n=xs !l n



type Rel a = Set (a,a)

domR gives the domain of a relation.

domR :: Ord a => Rel a -> Set a

domR (Set r) = list2set [ x | (x,_) <- r ]
ranR gives the range of a relation.

ranR :: Ord a => Rel a -> Set a

ranR (Set r) = list2set [y | (_,y) <- r ]
idR creates the identity relation A4 over a set A:

idR :: Ord a => Set a -> Rel a
idR (Set xs) = Set [(x,x) | x <- xs]



The total relation over a set is given by:
totalR :: Set a -> Rel a
totalR (Set xs) = Set [(x,y) | x <- xs, y <~ x8 ]

invR inverts a relation (i.e., the function maps R to R™1).

invR :: Ord a => Rel a -> Rel a
invR (Set []1) = (Set [1)
invR (Set ((x,y):r)) = insertSet (y,x) (invR (Set r))



inR checks whether a pair is in a relation.

inR :: Ord a => Rel a -> (a,a) —> Bool
inR r (x,y) = inSet (x,y) r

The complement of a relation R C A x A is the relation A x A — R.
The operation of relational complementation, relative to a set A, can
be implemented as follows:

complR :: Ord a => Set a -> Rel a -> Rel a
complR (Set xs) r = Set [(x,y) | x <- xs, y <- xs,
not (inR r (x,y))]



A check for reflexivity of R on a set A can be implemented by testing
whether A4 C R:

reflR :: Ord a => Set a -> Rel a -> Bool
reflR set r = subSet (idR set) r

A check for irreflexivity of R on A proceeds by testing whether A yNR =
0:

irreflR :: Ord a => Set a -> Rel a -> Bool
irreflR (Set xs) r =
all (\ pair -> not (inR r pair)) [(x,x) | x <- xs]



A check for symmetry of R proceeds by testing for each pair (z,y) € R
whether (y, z) € R:

symR :: Ord a => Rel a -> Bool
symR (Set []) = True
symR (Set ((x,y):pairs))
| x ==y = symR (Set pairs)
| otherwise = inSet (y,x) (Set pairs)
&& symR (deleteSet (y,x) (Set pairs))



A check for transitivity of R tests for each couple of pairs (x,y) €
R, (u,v) € R whether (z,v) € R if y = u:

transR :: Ord a => Rel a -> Bool
transR (Set []) = True
transR (Set s) = and [ trans pair (Set s) | pair <- s ]
where
trans (x,y) (Set r) =
and [ inSet (x,v) (Set r) | (u,v) <~ r, u ==y ]



Now what about relation composition? This is a more difficult mat-
ter, for how do we implement Jz(Rxz A Szy)? The key to the im-
plementation is the following procedure for composing a single pair
of objects (z,y) with a relation S, simply by forming the relation
{(z,2) | (y,2) € S}. This is done by:

composePair :: Ord a => (a,a) -> Rel a -> Rel a

composePair (x,y) (Set []) = Set []

composePair (x,y) (Set ((u,v):s))
| y == u = insertSet (x,v) (composePair (x,y) (Set s))
| otherwise = composePair (x,y) (Set s)



For relation composition we need set union:

unionSet :: (0Ord a) => Set a -> Set a -> Set a
unionSet (Set []) set2 = set2
unionSet (Set (x:xs)) set2 =

insertSet x (unionSet (Set xs) (deleteSet x set2))

Relation composition is defined in terms of composePair and unionSet:

compR :: Ord a => Rel a -> Rel a —> Rel a
compR (Set [1) _ = (Set [1)
compR (Set ((x,y):s)) r =
unionSet (composePair (x,y) r) (compR (Set s) r)



Composition of a relation with itself (R"):

repeatR :: Ord a => Rel a -> Int -> Rel a
repeatR rn | n < 1 = error "argument < 1"
| n == =T
| otherwise = compR r (repeatR r (n-1))



