Public Announcements as Updates

Jan van Eijck
jve@cwi.nl

December 21, 2005

Abstract

Public announcement is a means to create common knowledge: if φ is publicly announced to a set of agents, then every agent knows φ, every agent knows that every agent knows that φ, and so on. We will first look at definitions, and then turn to implementation.
Public Announcement as an Update

Public announcements \([\varphi]\) change knowledge states, so their semantics can be given as a function from Kripke models to Kripke models:

\[M \mapsto M \mid \varphi \]

\(M \mid \varphi \) given by:

if \(M = (W, V, R) \) then \(M \mid \varphi = (W', V', R') \)

with

\[
\begin{align*}
W' &= \{ w \in W \mid M, w \models \varphi \} \\
V' &= V \upharpoonright W' \\
R' &= \{ w \xrightarrow{a} w' \mid w \xrightarrow{a} w' \in R, w, w' \in W' \}
\end{align*}
\]
Effect on Actual Worlds

A pointed Kripke model is a quadruple $M = (W, V, R, U)$ with (W, V, R) a Kripke model, and $U \subseteq W$ a set of points.

Intention: the actual world is among U.

Extension of the definition $M \models \varphi$ to pointed models:

$$(W, V, R, U) \models \varphi = (W', V', R', U')$$

where (W', V', R') is as above, and

$$U' = \{ u \in U \mid (W, V, R), u \models \varphi \}$$
Public Announcement with Falsehood

ϕ is a falsehood in pointed model $M = (W, V, R, U)$ if

$$(W, V, R), u \not\models \phi$$

for all $u \in U$.

The result of updating with a falsehood is an inconsistent pointed model, i.e., a pointed model of the form (W', V', R', \emptyset).
Learning that $p \lor q$ by public announcement

Initial model: a and b ignorant about p and q, and no possibility as yet ruled out:
Result of public announcement that $p \lor q$:
module LAI10

where
import List
import Char
import LAI9
Example Epistemic Model

```haskell
s5example :: EpistM Integer
s5example =
  Mo [0..3]
  [a..c]
  [(0,[]),(1,[P 0]),(2,[Q 0]),(3,[P 0, Q 0])]
  ([ (a,x,x) | x <- [0..3] ] ++
  [ (b,x,x) | x <- [0..3] ] ++
  [ (c,x,y) | x <- [0..3], y <- [0..3] ])
  [1]
```
Extracting the relations from an epistemic model

```
rel :: Agent -> EpistM a -> Rel a
rel a (Mo states agents val rels actual) =
    [(x,y) | (agent,x,y) <- rels, a == agent ]
```

This gives:

```
LAI9> rel a s5example
[(0,0),(1,1),(2,2),(3,3)]
LAI9> rel b s5example
[(0,0),(1,1),(2,2),(3,3)]
LAI9> rel c s5example
[(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),
  (2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)]
```
Displaying S5 Models

The function `list2partition` (your homework for this week) can be used to write a display function for S5 models that shows each accessibility relation as a partition, as follows.

```haskell
showS5 :: (Ord a, Show a) => EpistM a -> [String]
showS5 m@(Mo states agents val rels actual) =
  show states :
  show val :
  map show [ (a, (list2partition states) (rel a m)) |
                a <- agents ]
  ++
  [show actual]
```
Example Display

defplays5 :: (Ord a, Show a) => EpistM a -> IO()
defplays5 = putStrLn . unlines . shows5

LAI10> displayS5 s5example
[0,1,2,3]
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
(a,[[0],[1],[2],[3]])
(b,[[0],[1],[2],[3]])
(c,[[0,1,2,3]])
[1]
Blissful Ignorance

Blissful ignorance is the state where you don’t know anything, but you know also that there is no reason to worry, for you know that nobody knows anything.

A Kripke model where every agent from agent set A is in blissful ignorance about a (finite) set of propositions P, with $|P| = k$, looks as follows:

$$M = (W, V, R)$$

where

$$W = \{0, \ldots, 2^k - 1\}$$

$$V = \text{any surjection in } W \rightarrow \mathcal{P}(P)$$

$$R = \{x \rightarrow_a y \mid x, y \in W, a \in A\}.$$

Note that V is in fact a bijection, for $|\mathcal{P}(P)| = 2^k = |W|$.
Blissful Ignorance – Example

0
1: [p]
ab
2: [q]
ab
3: [p, q]
ab
ab
ab
ab
Generating Models for Blissful Ignorance

\[
\text{initM} :: \text{[Agent]} \rightarrow \text{[Prop]} \rightarrow \text{EpistM} \rightarrow \text{Integer}
\]
\[
\text{initM ags props} = (\text{Mo worlds ags val accs points})
\]
where
\[
\text{worlds} = [0..(2^k-1)]
\]
\[
k = \text{length props}
\]
\[
\text{val} = \text{zip worlds (sortL (powerList props))}
\]
\[
\text{accs} = [(ag,st1,st2) \mid ag \leftarrow ags, st1 \leftarrow \text{worlds}, st2 \leftarrow \text{worlds}]
\]
\[
\text{points} = \text{worlds}
\]

\text{sortL} and \text{powerList} are computer lab exercises for you.
zip

zip is a predefined function for zipping two lists together. Home-made version:

\[
\begin{align*}
\text{zip} & : [a] \rightarrow [b] \rightarrow [(a,b)] \\
\text{zip} & \text{ xs } [] = [] \\
\text{zip} & \text{ [] } \text{ ys } = [] \\
\text{zip} & (x:xs) (y:ys) = (x,y) : \text{ zip} \text{ xs } \text{ ys}
\end{align*}
\]

This gives:

\[
\text{LAI10> zip [0..2^3-1] (sortL (powerList [P 1,P 2, P 3]))} \\
[[0,[]),(1,[p1]),(2,[p2]),(3,[p3]),(4,[p1,p2]),
(5,[p1,p3]),(6,[p2,p3]),(7,[p1,p2,p3])]
\]
General Knowledge

The general knowledge accessibility relation of a set of agents C is given by

$$\bigcup_{c \in C} R_c.$$

Implementation:

```haskell
genK :: Ord state => [(Agent,state,state)] -> [Agent] -> Rel state
genK r ags = [(x,y) | (a,x,y) <- r, a `elem` ags]
```
Right Section of a Relation

If R is a binary relation on A, and $a \in A$, then aR is the set

$$\{ b \in A \mid aRb \}.$$

Implementation:

```haskell
rightS :: Ord a => Rel a -> a -> [a]
rightS r x = (sort . nub) [ z | (y,z) <- r, x == y ]
```
General Knowledge Alternatives

definition genAlts :: Ord state => [(Agent, state, state)]
 -> [Agent] -> state -> [state]
definition genAlts r ags s = rightS (genK r ags) s
Closures of Relations

If \mathcal{O} is a set of properties of relations on a set A, then the \mathcal{O} closure of a relation R on A is the smallest relation S that includes R and that has all the properties in \mathcal{O}.

The most important closures of relations:

- the reflexive closure,
- the symmetric closure,
- the transitive closure,
- the reflexive transitive closure.
Reflexive Transitive Closure

Let a set A be given. Let R be a binary relation on A. Let $I = \{(x, x) \mid x \in A\}$.

We define R^n for $n \geq 0$, as follows:

- $R^0 = I$.
- $R^{n+1} = R \circ R^n$.

Next, define R^* by means of:

$$R^* = \bigcup_{n \in \mathbb{N}} R^n.$$

In the lecture on common knowledge it was stated that R^* is the reflexive transitive closure of R. Here we are going to prove that fact.
R^* is the reflexive transitive closure of R

We have to show the following:

1. $R \subseteq R^*$,
2. R^* is reflexive and transitive,
3. R^* is the \textit{smallest} reflexive and transitive relation that includes R.

(1) To show that $R \subseteq R^*$, we show that $R^1 = R$.

$(x, y) \in R^1$ iff (definition of R^1) $(x, y) \in R \circ I$ iff (definition of \circ) \exists z \in A with $(x, z) \in R$ and $(z, y) \in I$ iff (definition of I) $(x, y) \in R$.

(2) Since $I \subseteq R^*$, R^* is reflexive. For transitivity, assume $(x, y) \in R^*$, $(y, z) \in R^*$. Then there are k, m with $(x, y) \in R^k$ and $(y, z) \in R^m$. It follows that $(x, z) \in R^k \circ R^m$, i.e., $(x, z) \in R^{k+m}$. This proves that $(x, z) \in R^*$, so R^* is transitive.
(3) To show that R^* is the smallest reflexive and transitive relation that
includes R, we first restate what is to be proved. Restatement: if S is
any reflexive and transitive relation on A with $R \subseteq S$, then $R^* \subseteq S$.
We prove this fact by induction on n, by showing that for every $n \in \mathbb{N}$,
$R^n \subseteq S$.

- **Base case:** If $(x, y) \in R^0$ then $x = y$. It follows by reflexivity of S
that $(x, y) \in S$.

- **Induction step:** Assume (ih) $R^n \subseteq S$. We have to show that if
$(x, y) \in R^{n+1}$ then $(x, y) \in S$.

So assume $(x, y) \in R^{n+1}$. Then $(x, y) \in R \circ R^n$, so for some
$z \in A$, $(x, z) \in R$ and $(z, y) \in R^n$. By the fact that $R \subseteq S$, $(x, z) \in S$. By induction hypothesis, $(z, y) \in S$. By transitivity of
S, $(x, y) \in S$. QED.
Computing Reflexive Transitive Closure

If A is finite, any R on A is finite as well. In particular, there will be k with $R^{k+1} = R^k$.

Thus, in the finite case reflexive transitive closure can be computed by successively computing $\bigcup_{n \in \{0, \ldots, k\}} R^n$ until $R^{k+1} = R^k$.

In other words: the reflexive transitive closure of a relation R can be computed from I by repeated application of the operation

$$\lambda S. (S \cup (R \circ S)),$$

until the operation reaches a fixpoint.
Least Fixpoint

A fixpoint of an operation f is an x for which $f(x) = x$.

Least fixpoint calculation:

```
lfp :: Eq a => (a -> a) -> a -> a
lfp f x | x == f x = x
         | otherwise = lfp f (f x)
```

Reflexive transitive closure:

```
rtc :: Ord a => [a] -> Rel a -> Rel a
rtc xs r = lfp (\ s -> (sort.nub) (s ++ (r@@s))) i
    where i = [(x,x) | x <- xs ]
```
Computing Transitive Closure

Same as computing reflexive transitive closure, but starting out from the relation R.

\[
\text{tc} :: \text{Ord } a \Rightarrow \text{Rel } a \rightarrow \text{Rel } a
\]
\[
\text{tc } r = \text{lfp } (\lambda s \rightarrow (\text{sort.nub}) (s ++ (r @@ s))) \ r
\]

Examples:

LAI10> tc [(1,2),(2,3),(3,4)]
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
LAI10> tc [(1,2),(2,3),(3,1)]
[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)]
LAI10> rtc [1,2,3] [(1,2),(2,3)]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
Common Knowledge

The common knowledge relation for group of agents C is the relation

$$\left(\bigcup_{c \in C} R_c \right)^*.$$

Given that the R_c are represented as a list of triples

$$[(\text{Agent}, \text{state}, \text{state})]$$

we can define a function that extracts the common knowledge relation:

```plaintext
commonK :: Ord state => [(Agent,state,state)]
         -> [Agent] -> [state] -> Rel state
commonK r ags xs = rtc xs (genK r ags)
```
Common Knowledge Alternatives

commonAlts :: Ord state => [(Agent, state, state)] -> [Agent] -> [state] -> state -> [state]
commonAlts r ags xs s = rightS (commonK r ags xs) s
Representing Formulas

data Form = Top
 | Prop Prop
 | Neg Form
 | Conj [Form]
 | Disj [Form]
 | K Agent Form
 | EK [Agent] Form
 | CK [Agent] Form

deriving (Eq,Ord)

EK is the operator for general knowledge.
CK is the operator for common knowledge.
Example formulas

$p = \text{Prop } (P \ 0)$
$q = \text{Prop } (Q \ 0)$

Note the following type difference:

LAI10> :t (P \ 0)
$P \ 0 :: \text{Prop}$
LAI10> :t p
$p :: \text{Form}$
instance Show Form where
 show Top = "T"
 show (Prop p) = show p
 show (Neg f) = '‐':(show f)
 show (Conj fs) = '∧': show fs
 show (Disj fs) = '∨': show fs
 show (K agent f) = '[':show agent++"']"++show f
 show (EK agents f) = 'E': show agents ++ show f
 show (CK agents f) = 'C': show agents ++ show f

This gives:

LAI10> CK [a..c] (Disj[p,K a (Neg p)])
C[a,b,c]v[p,[a]¬p]
Valuation Lookup

apply :: Eq a => [(a,b)] -> a -> b

Computer lab exercise for you.
This can be used to look up the valuation for a world in a model.
Evaluation

$$\text{isTrueAt :: Ord state =>}
\quad \text{EpistM state -> state -> Form -> Bool}$$

Your homework for the second week.
Evaluating the State of Bliss

test1 = isTrueAt
 (initM [a..c] [P 0]) 0
 (CK [a..c] (Neg (K a p)))
Truth in a Model

Use the function isTrueAt to implement a function that checks for truth at all the designated states of an epistemic model:

\[
\text{isTrue} :: \text{Ord state} \Rightarrow \text{EpistM state} \rightarrow \text{Form} \rightarrow \text{Bool}
\]

\[
isTrue \ m@(\text{Mo worlds agents val acc points}) \ f =
\text{and } [\ \text{isTrueAt} \ m \ s \ f \mid \ s \leftarrow \text{points}]
\]

Another test of initM

\[
\text{test2} = \text{isTrue} \\
(\text{initM} [a..c] [P\ 0]) \\
(\text{CK} [a..c] (\text{Neg} (\text{K}\ a\ p)))
\]
Public Announcement Update

\[\text{upd}_{\text{pa}} :: \text{Ord state} \Rightarrow \text{EpistM state} \rightarrow \text{Form} \rightarrow \text{EpistM state}\]
\[\text{upd}_{\text{pa}} m@(\text{Mo states agents val rels actual}) f = (\text{Mo states’ agents val’ rels’ actual’})\]

where
\[
\text{states’} = \left[s \mid s \leftarrow \text{states}, \text{isTrueAt m s f} \right]
\]
\[
\text{val’} = \left[(s,p) \mid (s,p) \leftarrow \text{val},
\text{ s ‘elem’ states’ } \right]
\]
\[
\text{rels’} = \left[(a,x,y) \mid (a,x,y) \leftarrow \text{rels},
\text{ x ‘elem’ states’,
\text{ y ‘elem’ states’ } \right]
\]
\[
\text{actual’} = \left[s \mid s \leftarrow \text{actual}, \text{isTrueAt m s f} \right]
\]
Examples

\[
m0 = \text{initM} [a..c] [P 0, Q 0]
\]

LAI10> displayS5 m0
[0, 1, 2, 3]
[(0, []), (1, [p]), (2, [q]), (3, [p, q])]
(a, [[0, 1, 2, 3]])
(b, [[0, 1, 2, 3]])
(c, [[0, 1, 2, 3]])
[0, 1, 2, 3]
LAI10> displayS5 (upd_pa m0 (Disj [p,q]))
[1,2,3]
[(1,[p]),(2,[q]),(3,[p,q])]
(a,[[1,2,3]])
(b,[[1,2,3]])
(c,[[1,2,3]])
[1,2,3]
Conversion of States to Integers

Convert any type of state list to \([0..]\):

\[
\text{convert} :: \text{Eq state} \Rightarrow \\
\text{EpistM state} \rightarrow \text{EpistM Integer}
\]

Implementation left for you as a computer lab exercise.
LAI10> (displayS5.convert) (upd_pa m0 (Disj [p,q]))
[0,1,2]
[(0,[p]),(1,[q]),(2,[p,q])]
(a,[[0,1,2]])
(b,[[0,1,2]])
(c,[[0,1,2]])
[0,1,2]
Next Time

Bisimulations