
Logic

Jan van Eijck

CWI, Amsterdam and Uil-OTS, Utrecht

jve@cwi.nl

LOT Summer School, June 15, 2009

Abstract

We look at some key concepts from propositional logic: valuation, satisfaction, tautology,
contradiction, logical consequence.
Next, we turn to predicate logic, and study and implement the truth definition for predicate
logical formulas.

Module Declaration

module Logic

where

import List

import Char

import FormContent

We import FormContent because we want to be able to refer to our

example implementation of a model for predicate logic.

Propositions

data Form = Prop String

| Not Form

| Conj [Form]

| Disj [Form]

deriving (Eq,Ord)

Some Examples

p1 = Prop "p1" ; p2 = Prop "p2" ; p3 = Prop "p3"

q1 = Prop "q1" ; q2 = Prop "q2" ; q3 = Prop "q3"

r1 = Prop "r1" ; r2 = Prop "r2" ; r3 = Prop "r3"

frm1 = Disj [p1, Not p1]

frm2 = Conj [p1, Not p1]

Showing Propositions

instance Show Form where

show (Prop name) = name

show (Not f) = ’~’ : ’(’ : show f ++ ")"

show (Conj fs) = ’&’ : show fs

show (Disj fs) = ’v’ : show fs

Collecting the Variables from a Formula

This was part of your homework:

collectVars :: Form -> [String]

collectVars (Prop name) = [name]

collectVars (Not f) = collectVars f

collectVars (Conj fs) =

(nub.concat) (map collectVars fs)

collectVars (Disj fs) =

(nub.concat) (map collectVars fs)

Valuations

A valuation for a propositional formula is a map from its variable names

to the booleans.

The list of all valuations for a propositional formula:

allVals :: Form -> [[(String,Bool)]]

allVals f = cv (collectVars f)

where

cv [] = [[]]

cv (v:vs) = map ((v,True):) (cv vs)

++

map ((v,False):) (cv vs)

Evaluation of Propositional Formulas

What is a reasonable convention for the truth of Conj []?

A conjunction is true if all its conjuncts are true. This requirement is

trivially fulfilled in case there are no conjuncts. So Conj [] is always

true.

What is a reasonable convention for the truth of Disj []?

A disjunction is true if at least one disjunct is true. This requirement

is never fulfilled in case there are no disjuncts. So Disj [] is always

false.

In the implementation we can use all for conjunctions and any for

disjunctions.

eval :: [(String,Bool)] -> Form -> Bool

eval [] (Prop c) = error ("no info about " ++ c)

eval ((x,b):xs) (Prop c)
| c == x = b

| otherwise = eval xs (Prop c)

eval xs (Not f) = not (eval xs f)

eval xs (Conj fs) = all (eval xs) fs

eval xs (Disj fs) = any (eval xs) fs

Tautologies, Contradictions

Tautologies are formulas that evaluate to True for every valuation:

tautology :: Form -> Bool

tautology f =

all (\ v -> eval v f) (allVals f)

Contradictions are formulas that evaluate to True for no valuation:

contradiction :: Form -> Bool

contradiction f =

not (any (\ v -> eval v f) (allVals f))

Propositional Satisfiability

A propositional formula is called satisfiable if there is a propositional

valuation that makes the formula true.

Clearly, a formula is satisfiable if it is not a contradiction.

Or we can give a direct implementation:

satisfiable :: Form -> Bool

satisfiable f =

any (\ v -> eval v f) (allVals f)

Propositional Consequence

A propositional formula F1 implies another formula F2 if every valuation

that satisfies F1 also satisfies F2.

From this definition:

F1 implies F2 iff F1 ∧ ¬F2 is a contradiction.

Implementation:

implies :: Form -> Form -> Bool

implies f1 f2 = contradiction (Conj [f1, Not f2])

Predicate Logic

Predicate logic is an extension of propositional logic with structured
basic propositions and quantifications.

• A structured basic proposition consists of an n-ary predicate fol-

lowed by n proper names or variables.

• A universally quantified formula consists of the symbol ∀ followed

by a variable followed by a formula.

• An existentially quantified formula consists of the symbol ∃ followed

by a variable followed by a formula.

• Other ingredients as in propositional logic.

Other names for predicate logic are first order logic or first order predi-

cate logic. ‘First order’ indicates that the quantification is over entities

(objects of the first order).

Formal Syntax for Predicate Logic

d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
n ::= d | dn

var ::= vn

const ::= cn

term ::= var | const

F ::= Pn(term, . . . , term) | ¬F | (F ∧ F) | (F ∨ F) | ∀varF | ∃varF

Reformulation Using Lists

d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
n ::= d | dn

var ::= vn

const ::= cn

term ::= var | const

F ::= Pn[term] | ¬F | ∧[F] | ∨[F] | ∀varF | ∃varF

A Datatype for Predicate Logical Formulas

For convenience, we leave out the constants.

type Name = String

data Var = Var Name deriving (Eq,Ord)

Showing variables:

instance Show Var where

show (Var name) = name

Example variables:

x, y, z :: Var

x = Var "x"

y = Var "y"

z = Var "z"

Formulas

data Frm = Pred String [Var]

| Eql Var Var

| Neg Frm

| Impl Frm Frm

| Equiv Frm Frm

| Cnj [Frm]

| Dsj [Frm]

| Forall Var Frm

| Exists Var Frm

deriving (Eq,Ord)

Showing Formulas

instance Show Frm where
show (Pred str []) = str

show (Pred str vs) = str ++ concat [show vs]

show (Eql v1 v2) = show v1 ++ "==" ++ show v2

show (Neg form) = ’~’: (show form)

show (Impl f1 f2) =

"(" ++ show f1 ++ "==>" ++ show f2 ++ ")"

show (Equiv f1 f2) =

"(" ++ show f1 ++ "<=>" ++ show f2 ++ ")"

show (Cnj []) = "true"

show (Cnj fs) = "conj" ++ concat [show fs]

show (Dsj []) = "false"

show (Dsj fs) = "disj" ++ concat [show fs]

show (Forall v f) =
"A" ++ show v ++ (’ ’ : show f)

show (Exists v f) =

"E" ++ show v ++ (’ ’ : show f)

form0 = Pred "R" [x,y]

form1 = Pred "R" [x,x]

form2 = Exists x form1

reflF = Forall x form1

symmF = Forall x

(Forall y

(Impl (Pred "R" [x,y])

(Pred "R" [y,x])))

transF = Forall x

(Forall y

(Forall z

(Impl (Cnj [Pred "R" [x,y],

Pred "R" [y,z]])

(Pred "R" [x,z]))))

Logic> form0

R[x,y]

Logic> form1

R[x,x]

Logic> form2

Ex R[x,x]

Logic> reflF

Ax R[x,x]

Logic> symmF

Ax Ay (R[x,y]==>R[y,x])

Logic> transF

Ax Ay Az (conj[R[x,y],R[y,z]]==>R[x,z])

Evaluation in a Model

Ingredients: interpretations and variable maps.

• An interpretation is a function from predicate names to appropriate

relations in the model.

• A variable map is a function from variables to entities in the model.

Because predicates take lists of variables, we need interpretation func-

tions of type String -> [Entity] -> Bool.

Semantics of Predicate Logic

A structure M = (D, I) consisting of a non-empty domain D with

an interpretation function for the predicate symbols of the language is

called a model for the language.

Let s : V → D be a valuation function for the variables V of the

language.

We use s(v|d) for the valuation that is like s except for the fact that v

gets value d (where s might have assigned a different value).

Example: Let D = {0, 1, 2, 3}, and let V = {v0, v1, v2, v3}.
Let s be given by s(v0) = 0, s(v1) = 0, s(v2) = 2, s(v3) = 3.

What is s(v1|1)?

M |=s F

State the cases where model M = (D, I) and valuation s satisfy a

formula F .

We use the notation M |=s F for this notion.

M |=s Pv if s(v) ∈ I(P)

M |=s R(v1, v2) if (s(v1), s(v2)) ∈ I(R)

M |=s S(v1, v2, v3) if (s(v1), s(v2), s(v3)) ∈ I(S)

M |=s v1 = v2 if s(v1) = s(v2)

M |=s ¬F if it is not the case that M |=s F.

M |=s (F1 ∧ F2) if M |=s F1 and M |=s F2

M |=s (F1 ∨ F2) if M |=s F1 or M |=s F2

M |=s ∀vF if for all d ∈ D it holds that M |=s(v|d) F

M |=s ∃vF if for at least one d ∈ D it holds that M |=s(v|d) F

Reformulation using Lists

M |=s P [v1, . . . , vn] if [s(v1), . . . , s(vn)] ∈ I(P)

M |=s v1 = v2 if s(v1) = s(v2)

M |=s ¬F if it is not the case that M |=s F.

M |=s ∧[F1, . . . , Fn] if M |=s F1 and . . . and M |=s Fn

M |=s ∨[F1, . . . , Fn] if M |=s F1 or . . . or M |=s Fn

M |=s ∀vF if for all d ∈ D it holds that M |=s(v|d) F

M |=s ∃vF if for at least one d ∈ D it holds that M |=s(v|d) F

Implementation

Straightforward, once we have captured the notion s(v|d).

change :: (Var -> a) -> Var -> a -> Var -> a

change s x d = \ v -> if x == v then d else s v

Now change s x d is the implementation of s(x|d).

As an example, here is a definition of the assignment that maps every

variable to object A.

ass0 :: Var -> Entity

ass0 = \ v -> A

The function that is like ass0, except for the fact that y gets mapped

to B, is given by:

ass1 :: Var -> Entity

ass1 = change ass0 y B

Assumptions about the domain of evaluation

• We will assume that tests for equality are possible on the domain.

In Haskell terminology: the type a of our domain should in the

class Eq.

• We will assume that the domain can be enumerated, and we will use

the enumerated domain as an argument to the evaluation function.

Note that our example domain of entities Entity satisfies these re-

quirements.

The domain of non-negative integers satisfies the requirements as well.

The requirements are not enough to guarantee termination of the eval-

uation function for all possible arguments.

Type of predicate logical evaluation function

evl :: Eq a =>

[a] -- domain of discourse

-> (String -> [a] -> Bool) -- interpretation

-> (Var -> a) -- valuation

-> Frm -- formula

-> Bool -- outcome

evl dom i s (Pred str vs) = i str (map s vs)

evl dom i s (Eql v1 v2) = (s v1) == (s v2)

evl dom i s (Neg f) = not (evl dom i s f)

evl dom i s (Impl f1 f2) =

not ((evl dom i s f1) && not (evl dom i s f2))

evl dom i s (Equiv f1 f2) =
(evl dom i s f1) == (evl dom i s f2)

evl dom i s (Cnj fs) = all (evl dom i s) fs

evl dom i s (Dsj fs) = any (evl dom i s) fs

evl dom i s (Forall v f) =

all (\d -> evl dom i (change s v d) f) dom

evl dom i s (Exists v f) =

any (\d -> evl dom i (change s v d) f) dom

Example Interpretation Function

int0 :: String -> [Entity] -> Bool

int0 "P" = \ [x] -> laugh x

int0 "Q" = \ [x] -> smile x

int0 "R" = \ [x,y] -> love (x,y)

int0 "S" = \ [x,y] -> hate (x,y)

Note the use of lambda abstraction to convert types Entity -> Bool

and (Entity,Entity) -> Bool to [Entity] -> Bool.

We can check the claim that various formulas make about the Entity

domain, when R gets interpreted as the love relation, as follows:

Logic> filter love [(x,y) | x <- entities, y <- entities]

[(A,J),(B,J),(B,M),(J,J),(J,M),(M,J)]

Logic> map ass1 [x,y,z]

[A,B,A]

Logic> evl entities int0 ass1 form0

False

Logic> evl entities int0 ass1 form1

False

Logic> evl entities int0 ass1 form2

True

Logic> evl entities int0 ass1 reflF

False

Other interpretations

Let the domain of discourse be the integers, and let int1 be the fol-

lowing interpretation for the predicates "P", "Q", "R" and "S".

int1 :: String -> [Integer] -> Bool

int1 "P" = \ [x] -> even x

int1 "Q" = \ [x] -> x > 0

int1 "R" = \ [x,y] -> x < y

int1 "S" = \ [x,y] -> x <= y

ass2 :: Var -> Integer

ass2 v = if v == x then 1

else if v == y then 2 else 0

What do the following queries express?
Logic> evl [0..] int1 ass2 form0

True

Logic> evl [0..] int1 ass2 form1

False

Logic> evl [0..] int1 ass2 form2

{Interrupted!}

Logic> evl [0..] int1 ass2 reflF

False

Logic> evl [0..] int1 ass2 symmF

False

Logic> evl [0..] int1 ass2 transF

{Interrupted!}

Decidability Questions

A yes/no question is decidable if there exists a method that tells us in

a finite amount of time whether the answer to that question is ‘yes’ or

‘no’.

“Is propositional formula F satisfiable” (is there a propositional valu-

ation that makes F true) is a decidable question, for arbitrary formu-

las F . The truth table method is a decision method. The function

satisfiable defined above always terminates.

“Is predicate logical formula F satisfiable” (are there a model and a

variable assignment that make F true) is not a decidable question.

There is no analogue to the truth table method for predicate logic.

A crucial difference between propositional logic and predicate logic is

the number of relevant situations.

The number of relevant valuations for a propositional formula is always

finite: if n is the number of different proposition letters that occur in F ,

then the truth table for F will have 2n rows, for there are 2n different

ways of evaluating n variables, and each valuation corresponds to a row

in the truth table.

In the case of predicate logic, the number of possible models for a

formula is infinite. There is no analogue to the truth table method for

predicate logic.

There is the semantic tableau method (a systematic hunt for a coun-

terexample to the validity of a formula), but this is not a decision

method: there are formulas for which the method does not terminate.

Next time: Parsing

