
Working With Lists

Jan van Eijck

CWI, Amsterdam and Uil-OTS, Utrecht

jve@cwi.nl

May 14, 2008

Abstract

In programming, sets are represented as lists. This lecture explains how to work with them.
We also comment on the differences between sets and lists, and on how to represent sets as
lists.

Module Declaration

module WWL

where

import List

import Char

Type Declarations and Function Definitions

The truth values true and false are rendered in Haskell as True and

False, respectively. The type of a truth value is called Bool.

All function definitions are typed: in a type declaration we indicate

the type of the argument or arguments and the type of the value. A

function foo that takes an integer as its first argument, and an integer

as its second argument and yields a truth value has type

Integer -> Integer -> Bool.

Here is a type declaration for such a function, together with the actual

definition:

divides :: Integer -> Integer -> Bool

divides m n = rem n m == 0

The type Integer -> Integer -> Bool should be read as

Integer -> (Integer -> Bool).

A type of the form a -> b classifies a procedure that takes an argument

of type a to produce a result of type b.

Thus, divides takes an argument of type Integer and produces a

result of type Integer -> Bool.

Note that the result of applying divides to 5 is a function.

The function divides 5 yields True for arguments of type Integer

that are divisible by 5, and False for all other Integer arguments.

The result of applying divides to an integer is a function that takes

an argument of type Integer, and produces a result of type Bool.

WWL> :t divides 5

divides 5 :: Integer -> Bool

WWL> :t divides 5 7

divides 5 7 :: Bool

WWL> divides 5 7

False

WWL> divides 5

ERROR - Cannot find "show" function for:

*** Expression : divides 5

*** Of type : Integer -> Bool

Lambda Abstraction

Take the statement Diana loves Charles. By means of abstraction, we

can get all kinds of properties and relations from this statement:

• ‘loving Charles’

• ‘being loved by Diana’

• ‘loving’

• ‘being loved by’

This works as follows. We replace the element that we abstract over by

a variable, and we bind that variable by means of a lambda operator.

Lambda Abstraction – 2

Like this:

• ‘λx. x loves Charles’ expresses ‘loving Charles’.

• ‘λx. Diana loves x’ expresses ‘being loved by Diana’.

• ‘λy. x loves y’ expresses ‘being loved by x’.

• ‘λxλy. x loves y’ expresses ‘loving’.

• ‘λyλx. x loves y’ expresses ‘being loved by’.

Lambda Abstraction – 3

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int

sqr = \ x -> x * x

The intention is that variabele x stands proxy for a number of type

Int. The result, the squared number, also has type Int. The function

sqr is a function that, when combined with an argument of type Int,

yields a value of type Int. This is precisely what the type-indication

Int -> Int expresses.

String Functions in Haskell

Hugs.Base> (\ x -> x ++ " emeritus") "professor"

"professor emeritus"

This combines lambda abstraction and concatenation. More on

this below.

The types:

Hugs.Base> :t (\ x -> x ++ " emeritus")

\x -> x ++ " emeritus" :: [Char] -> [Char]

Hugs.Base> :t "professor"

"professor" :: String

Hugs.Base> :t (\ x -> x ++ " emeritus") "professor"

(\x -> x ++ " emeritus") "professor" :: [Char]

Concatenation

The type of the concatenation function:

WWL> :t (++)

(++) :: [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works

for lists in general.

More String Functions in Haskell

Hugs.Base> (\ x -> "nice " ++ x) "guy"

"nice guy"

Hugs.Base> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"

"very nice guy"

The types:

Hugs.Base> :t "guy"

"guy" :: String

Hugs.Base> :t (\ x -> "nice " ++ x)

\x -> "nice " ++ x :: [Char] -> [Char]

Hugs.Base> :t (\ f -> \ x -> "very " ++ (f x))

\f -> \x -> "very " ++ f x :: (a -> [Char]) -> a -> [Char]

Properties of Things, Characteristic Functions

The property ‘being divisible by three’ can be represented as a function

from numbers to truth values. The numbers

. . . ,−9,−6,−3, 0, 3, 6, 9, . . .

get mapped to True by that function, all other numbers get mapped

to False.

Programmers call a truth value a Boolean, in honour of the British

logician George Boole (1815–1864).

As the type of threefold we can therefore take Int -> Bool.

Here is a definition of the property of being a threefold with lambda

abstraction. This uses the predefined function rem. rem x y gives the

remainder when x gets divided by y.

threefold :: Int -> Bool

threefold = \ x -> rem x 3 == 0

WWL> threefold 5

False

WWL> threefold 12

True

Less than and less than or equal are examples of relations on the

integers, and on various other number domains, in fact.

Less than is predefined in Haskell as (<), less than or equal as (<=).

Other examples of relations are equality and inequality, predefined as

(==) and (/=).

These characteristic functions have the following types (Ord a and

Eq a are constraints on the type of a):

WWL> :t (<)

(<) :: Ord a => a -> a -> Bool

WWL> :t (<=)

(<=) :: Ord a => a -> a -> Bool

WWL> :t (==)

(==) :: Eq a => a -> a -> Bool

WWL> :t (/=)

(/=) :: Eq a => a -> a -> Bool

Characters and Strings

The Haskell type of characters is Char. Strings of characters have type

[Char]. Similarly, lists of integers have type [Int]. The empty string

(or the empty list) is []. The type [Char] is abbreviated as String.

Examples of characters are ’a’, ’b’ (note the single quotes) examples

of strings are "Montague" and "Chomsky" (note the double quotes).

In fact, "Chomsky" can be seen as an abbreviation of the following

character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Properties of Strings

If strings have type [Char] (or String), properties of strings have

type [Char] -> Bool. Here is a simple property:

aword :: [Char] -> Bool

aword [] = False

aword (x:xs) = (x == ’a’) || (aword xs)

This definition uses pattern matching: (x:xs) is the prototypical non-

empty list. The head of (x:xs) is x, the tail is xs. The head and tail

are glued together by means of the operation :, of type a -> [a] -> [a].

The operation combines an object of type a with a list of objects of the

same type to a new list of objects, again of the same type.

List Patterns

It is common Haskell practice to refer to non-empty lists as x:xs, y:ys,

and so on, as a useful reminder of the facts that x is an element of a

list of x’s and that xs is a list.

Note that the function aword is called again from the body of its own

definition. We will encounter such recursive function definitions again

and again in the course of this book.

What the definition of aword says is that the empty string is not an

aword, and a non-empty string is an aword if either the head of the

string is the character a, or the tail of the sring is an aword. As you

can see, characters are indicated in Haskell with single quotes.

The following calls to the definition show that strings are indicated with

double quotes:

WWL> aword "Diana"

True

WWL> aword "loves"

False

More on List processing in Haskell

Integer is the type of arbitrary precision integers, Int the type of

fixed precision integers.

[Integer] is the type of lists of Integers, [Int] the type of lists of

Ints.

Here is a function that gives the minimum of a list of integers:

mnmInt :: [Int] -> Int

mnmInt [] = error "empty list"

mnmInt [x] = x

mnmInt (x:xs) = min x (mnmInt xs)

This uses a predefined function min for the minimum of two integers.

Pattern matching for lists

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

Haskell Types

The basic Haskell types are:

• Int and Integer, to represent integers. Elements of Integer

are unbounded.

• Float and Double represent floating point numbers. The elements

of Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For

these, a, b, . . . , are used.

New types can be formed in several ways:

• By list-formation: if a is a type, [a] is the type of lists over a.

Examples: [Int] is the type of lists of integers; [Char] is the

type of lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is

the type of pairs with an object of type a as their first component,

and an object of type b as their second component. If a, b and

c are types, then (a,b,c) is the type of triples with an object of

type a as their first component, an object of type b as their second

component, and an object of type c as their third component . . .

• By function definition: a -> b is the type of a function that takes

arguments of type a and returns values of type b.

• By defining your own datatype from scratch, with a data type

declaration. More about this in due course.

Working with Lists: The map and filter Functions

If you use the Hugs command :t to find the types of the function map,

you get the following:

Prelude> :t map

map :: (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing

the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then

map f xs will return a list of type [b]. E.g., map (^2) [1..9] will

produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Sections

In general, if op is an infix operator, (op x) is the operation resulting

from applying op to its righthand side argument, (x op) is the operation

resulting from applying op to its lefthand side argument, and (op) is

the prefix version of the operator. Thus (2^) is the operation that

computes powers of 2, and map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

Similarly, (>3) denotes the property of being greater than 3, and (3>)

the property of being smaller than 3.

map

If p is a property (an operation of type a -> Bool) and l is a list of

type [a], then map p l will produce a list of type Bool (a list of

truth values), like this:

Prelude> map (>3) [1..6]

[False, False, False, True, True, True]

Prelude>

map is predefined in Haskell.

Home-made definition:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : (map f xs)

filter

Another useful function is filter, for filtering out the elements from

a list that satisfy a given property. This is predefined, but here is a

home-made version:

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Here is an example of its use:

WWL> filter (>3) [1..10]

[4,5,6,7,8,9,10]

List comprehension

List comprehension is defining lists by the following method:

[x | x <- xs, property x]

This defines the sublist of xs of all items satisfying property. It is

equivalent to:

filter property xs

someEvens = [x | x <- [1..1000], even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..], even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

sort

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) | x <= y = x:y:ys

| otherwise = y: insert x ys

nub

nub removes duplicates, as follows:

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs)

Contained in

A ⊆ B :≡ ∀x ∈ A : x ∈ B.

containedIn :: Eq a => [a] -> [a] -> Bool

containedIn xs ys = all (\ x -> elem x ys) xs

elem, all, and

elem and all and and are predefined.

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool

all p = and . map p

Definition of and: do it yourself.

Note the use of (.) for function composition (predefined).

Function Composition

The composition of two functions f and g, pronounced ‘f after g’ is

the function that results from first applying g and next f .

Here is the Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

f . g = \ x -> f (g x)

Expressing Set Equality

Two sets A and B are equal if all elements of A are elements of B

and vice versa. This allows us to define a set equality predicate for sets

represented as lists, as follows:

sameSet :: Eq a => [a] -> [a] -> Bool

sameSet xs ys =

containedIn xs ys && containedIn ys xs

WWL> sameSet [1,2] [2,1,1]

True

WWL> sameSet [1,2] [1,1,1]

False

WWL> sameSet (map (2*) [1..10]) (filter even [1..20])

True

WWL> (==) (map (2*) [1..10]) (filter even [1..20])

True

WWL> sameSet (map (2*) [1..]) (filter even [1..])

{Interrupted!}

WWL> (==) (map (2*) [1..]) (filter even [1..])

{Interrupted!}

WWL> sameSet (map (2*) [1..]) (filter even [0..])

{Interrupted!}

WWL> (==) (map (2*) [1..]) (filter even [0..])

False

Using Lists as Sets

There are several possibilities for this. One useful convention is to use

represent sets as ¡b¿ordered lists without duplicates¡/b¿.

For a full implementation of sets as lists, one has to implement all the

set operations as list operations, in such a way that the fundamental

properties of order and non-multiplicity are preserved by each operation.

One says: order and non-multiplicity have to be invariants of each

operation that involves sets.

How to achieve this? The computer lab exercises of this week will make

this clear.

Representing Relations

Various options:

• Lists of pairs, type [(a,a)].

• Characteristic functions, type a -> a -> Bool

• Characteristic functions of pairs, type (a,a) -> Bool

• Range functions, type a -> [a]

• Sets of pairs (using some suitable representation of sets . . .)

Relations as Lists of Pairs

type Rel a = [(a,a)]

Example relations:

r1 = [(1,2),(2,1)]

r2 = [(1,2),(2,1),(2,1)]

These relations have the same pairs, so they are in fact equal.

Test for equality of relations

sameR :: Ord a => Rel a -> Rel a -> Bool

sameR r s = sort (nub r) == sort (nub s)

But the following is also possible:

sameR’ :: Eq a => Rel a -> Rel a -> Bool

sameR’ r s = sameSet r s

Operations on relations: converse

Relational converse Rˇ is given by:

Rˇ = {(y, x) | (x, y) ∈ R}

Implementation

cnv :: Rel a -> Rel a

cnv r = [(y,x) | (x,y) <- r]

Operations on relations: composition

The relational composition of two relations R and S on a set A:

R ◦ S = {(x, z) | ∃y ∈ A(xRy ∧ ySz)}

For the implementation, it is useful to declare a new infix operator for

relational composition.

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s =

nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Note that (@@) is the prefix version of @@.

Back and Forth Between Various Representations

See computer lab exercises for this week.

Next Time

Languages and Grammars . . .

