Languages and Grammars

Jan van Eijck

CWI, Amsterdam and Uil-OTS, Utrecht

jve@cwi.nl

May 26, 2009

Abstract

We give formal definitions of languages and grammars, and look at examples.
module LAG

where
import List
import Char
Alphabets

An alphabet Σ is a finite set of symbols.

Examples:

- $\Sigma_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. The ten-element set of the decimal symbols.
- $\Sigma_2 = \{a, b, c, \ldots, x, y, z\}$. The 26-element set of all lowercase letters of English (or Dutch).

A non-example:

- $\mathbb{N} = \{0, 1, 2, \ldots\}$. The set of all natural numbers is not an alphabet, for this set is infinite.
All strings over an alphabet

If Σ is an alphabet, we use Σ^* of the set of all finite strings over Σ. Let Σ^n be the set of all n-tuples of elements of Σ. Then $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$.

```
listsOfLength :: Int -> [Char] -> [String]
listsOfLength 0 alphabet = [[]]
listsOfLength n alphabet = 
    [ x:xs | x <- alphabet, 
        xs <- listsOfLength (n-1) alphabet ]

star :: [Char] -> [String]
star alphabet = 
    concat [ listsOfLength n alphabet | n <- [0..] ]
```
A more general version:

\[
\text{listsOfLength} :: \text{Int} \to [a] \to [[[a]]] \\
\text{listsOfLength} 0 \text{ alphabet} = [[]] \\
\text{listsOfLength} n \text{ alphabet} = \\
\quad [x:xs \mid x \gets \text{alphabet}, \\
\quad \quad \quad xs \gets \text{listsOfLength} (n-1) \text{ alphabet}]
\]

\[
\text{star} :: [a] \to [[[a]]] \\
\text{star} \text{ alphabet} = \\
\quad \text{concat} [\text{listsOfLength} n \text{ alphabet} \mid n \gets \text{[0..]}]
\]
This gives:

LAG> listsOfLength 3 "ab"
["aaa","aab","aba","abb","baa","bab","bba","bbb"]
LAG> take 10 (star "ab")
["","a","b","aa","ab","ba","bb","aaa","aab","aba"]
Notation

If x is a symbol, then use x^n for a string of n x’s. Haskell implementation:

```
copies :: a -> Int -> [a]
copies x 0 = []
copies x n = x : copies x (n-1)
```
Strings, Empty String, String Reversal

The empty string is often denoted ϵ. Note that \emptyset and $\{\epsilon\}$ are different. If w is a string, w^R is the reversal of string w.

Recursive definition of this operation:

- $\epsilon^R = \epsilon$
- $(xw)^R = w^Rx$ (where x is a single element, and w a string).

Haskell:

```haskell
reversal :: [a] -> [a]
reversal [] = []
reversal (x:xs) = reversal xs ++ [x]
```
Languages over an Alphabet

A language over an alphabet Σ is a subset of Σ^*.

Examples:

- The set $\{\text{martijn, jan}\}$. This language has only two elements.
- The set $\{a, \ldots, z\}^*$ of all strings over the lower-case alphabet $\{a, \ldots, z\}$.
- The set consisting of the union of $\{0\}$ and the set of all non-empty strings over $\{0, \ldots, 9\}$ that do not start with 0.
- If $\Sigma = \{0, 1\}$, then $L = \{0^m1^n \mid m, n \in \mathbb{N}\}$ is a language over Σ. L is the set of all strings consisting of a number of 0's followed by a (possibly different) number of 1's.
A non-example:

- The singleton set containing the sequence \(0.14285714285714\ldots\) (the decimal expansion of \(\frac{1}{7}\)). This sequence is infinite.
Important facts

• There are uncountably many languages over Σ, even if Σ is finite.
• \emptyset is a language over Σ.
• $\{\epsilon\} = \Sigma^0$ is a language over Σ.
• $\Sigma = \Sigma^1$ is a language over Σ.
• For every n, Σ^n is a language over Σ.
• Σ^* is a language over Σ.
More Example Languages

If $\Sigma = \{0, 1\}$, then $L = \{0^n1^n \mid n \in \mathbb{N}\}$ is a language over Σ. L is the set of all strings consisting of a number of 0’s followed by an equal number of 1’s.

If $\Sigma = \{0, 1\}$, then $L = \{ww^R \mid w \in \Sigma^*\}$ is a language over Σ. L is the set of all even palindromes over Σ.

If $\Sigma = \{0, 1\}$, then $L = \{wxw^R \mid x \in \Sigma, w \in \Sigma^*\}$ is a language over Σ. L is the set of all odd palindromes over Σ.
Operations on Languages

Because languages are sets, the usual set operations are defined on them: we can take unions, intersections and differences.

If L_1 is the set of even palindromes over $\{0, 1\}$ and L_2 is the set of odd palindromes over $\{0, 1\}$, then $L_1 \cup L_2$ is the language of all palindromes over $\{0, 1\}$.

We use \overline{L} for the complement of L with respect to Σ^*, that is to say $\overline{L} = \Sigma^* - L$.

The concatenation of the languages L_1 and L_2, notation L_1L_2, is the set of strings $\{uw \mid u \in L_1 \text{ and } w \in L_2\}$.

Note the following:

- $\{\epsilon\}L = L\{\epsilon\} = L$.
- $\emptyset L = L\emptyset = \emptyset$.
The n-fold product of a language is defined in terms of the concatenation operation on languages.

If L is a language over Σ, then the n-fold product of L, notation L^n, is given by the following clauses:

- $L^0 = \{\epsilon\}$.
- $L^n = LL^{n-1}$ \hspace{1cm} (n \geq 1).

Thus, L^n consists of all strings $w_1 \cdots w_n$ with $w_1 \in L, \ldots, w_n \in L$.
Closure of a language

The closure or Kleene star of a language L, notation L^*, is the following set:

$$\bigcup_{n \geq 0} L^n.$$

Note the following:

- $\emptyset^* = \{\epsilon\}$
- If $L = \Sigma$, then $L^* = \Sigma^*$.
Examples

The language \(\{1\}\{0, 1\}^* \) is the set of all strings over \(\{0, 1\} \) that start with 1. The language \(\{0\} \cup \{1\}\{0, 1\}^* \) can be taken as a representation of the natural numbers in binary notation: the representation of every number except 0 starts with the symbol 1.

The language \(\{1\}\{00\}^* \) is the set of all strings over \(\{0, 1\} \) that consist of 1 followed by an even number of 0’s.
Positive Closure

The positive closure of a language L, notation L^+, is the following set:

$$\bigcup_{n \geq 1} L^n.$$

Note the following:

- $L^+ = LL^* = L^*L$.
- $L^* = L^+ \cup \{\epsilon\}$.
- If $\epsilon \in L$, then $L^+ = L^*$.
Reversal

The reversal of a language L, notation L^R, is the set

$$\{ w^R \mid w \in L \}.$$

Note the following:

- $\Sigma^R = \Sigma$, for any alphabet Σ.
- $(L^R)^R = L$.
- $\Sigma^*^R = \Sigma^{R*} = \Sigma^*$.

Generators and Recognizers for Languages

The notion of a language over an alphabet is very general and coarse-grained. It does make sense to look at ways of finitely representing members of the set $\mathcal{P}(\Sigma^*)$. There are basically two main ways of doing this:

1. Specify a generator for L, that is to say an effective procedure for enumerating the members of L (in some arbitrary order).

2. Specify a recognizer for L, that is to say a device that takes strings over Σ as its input and that accepts every member of L and rejects every member of \overline{L}.
‘Most’ languages cannot be recognized or generated

If Σ is finite, Σ^* is denumerable. We have already seen a recipe, in Haskell: \texttt{star sigma}.

By Cantor’s theorem, $\mathcal{P}(\Sigma^*)$, the set of all languages over Σ, is \textbf{not} denumerable. There are uncountably many languages over Σ.

Generators and recognizers are finite objects, which means that they themselves can be described by means of finite strings of symbols over some alphabet Δ. It follows that the number of generators and recognizers is countable. Because the set $\mathcal{P}(\Sigma^*)$ is uncountable, there are languages over Σ for which there is neither a generator nor a recognizer.

We will concentrate on languages that can be finitely represented.
Grammars

A grammar G is a quadruple (V, Σ, R, S), where V is a finite set of symbols, $\Sigma \subseteq V$, $R \subseteq V^*(V - \Sigma)V^* \times V^*$, R finite and $S \in V - \Sigma$. Note that $V^*(V - \Sigma)V^*$ is the set of strings over V that contain at least one member of $V - \Sigma$.

If $G = (V, \Sigma, R, S)$ is a grammar, then the members of Σ are called the terminal symbols of G, the members of $V - \Sigma$ are the nonterminal symbols of G, the members of R are the rules or productions of G and the symbol S is the start symbol of G.

It is usual to write $x \rightarrow y$ or $x ::= y$ for $(x, y) \in R$. If $x \rightarrow y$ is a rule of a grammar, then x is called the lefthand side of the rule and y the righthand side. A convention is that (strings of) capital letters are used for nonterminal symbols and (strings of) lower-case letters for terminal symbols. A grammar can be presented as a finite set of rules.
Example Grammar

The following set of grammar rules has \(\{S, N, P, D, C, V\} \) as its set of nonterminal symbols and

\[
\{ \text{john, mary, talked, walked, every, the, man, woman, admired, despised} \}
\]

as its set of terminal symbols.
1. $S \rightarrow NP$
2. $N \rightarrow DC$
3. $P \rightarrow VN$
4. $N \rightarrow john$
5. $N \rightarrow mary$
6. $P \rightarrow talked$
7. $P \rightarrow walked$
8. $D \rightarrow every$
9. $D \rightarrow the$
10. $C \rightarrow man$
11. $C \rightarrow woman$
12. $V \rightarrow admired$
13. $V \rightarrow despised$
Another convention: use | for choice between righthand sides:

\[
\begin{align*}
S & \longrightarrow N \ P \\
N & \longrightarrow D \ C \ | \ \text{john} \ | \ \text{mary} \\
P & \longrightarrow V \ N \ | \ \text{talked} \ | \ \text{walked} \\
D & \longrightarrow \text{every} \ | \ \text{the} \\
C & \longrightarrow \text{man} \ | \ \text{woman} \\
V & \longrightarrow \text{admired} \ | \ \text{despised}
\end{align*}
\]
Immediate yield, immediate derivation

If \(G = (V, \Sigma, R, S) \) is a grammar, then \(x \in V^* \) immediately yields \(y \in V^* \) in \(G \), notation

\[x \Rightarrow_G y, \]

if there are \(w, z \in V^* \) such that

\[(u, v) \in R, x = wuz \text{ and } y = wvz. \]

If \(x \Rightarrow_G y \), then \(y \) is called an immediate derivation from \(x \).

For example:

- \(S \Rightarrow_G N P \)
- \(N P \Rightarrow_G N \text{ talked} \)
- \(D \text{ man} \Rightarrow_G \text{ the man} \)
We can string immediate derivations together, as follows:

\[
S \Rightarrow_G N P \\
\Rightarrow_G \text{john } P \\
\Rightarrow_G \text{john } V \ N \\
\Rightarrow_G \text{john } V \ D \ C \\
\Rightarrow_G \text{john } V \ \text{every } C \\
\Rightarrow_G \text{john } V \ \text{every woman} \\
\Rightarrow_G \text{john admired every woman}
\]
If $G = (V, \Sigma, R, S)$ is a grammar, then

$$x \text{ yields } y \text{ in } G$$

if

$$x \Rightarrow^*_G y.$$

The string y is derived in G from x.

In other words: the derivation relation is the reflexive transitive closure of the relation of immediate derivation. The names of the relations \Rightarrow and \Rightarrow^* emphasize the close link between the theory of grammars and the theory of deductive systems.
Examples

- $S \Rightarrow_G^* S$
- $S \Rightarrow_G^* \text{john admired every woman}$
- $N \Rightarrow_G^* \text{every C}$
- $N \ P \Rightarrow_G^* \text{every woman P}$
Language generated by a grammar

If $G = (V, \Sigma, R, S)$ is a grammar, then the language generated by G, notation $L(G)$, is the set

$$\{ x | x \in \Sigma^* \text{ and } S \Rightarrow^* x \}$$

In other words: the language generated by G is the set of all terminal strings that the start symbol yields in G.

Note that there may be several different ways of generating a given string:

- $S \Rightarrow N P \Rightarrow john P \Rightarrow john \text{ walked}$.
- $S \Rightarrow N P \Rightarrow N \text{ walked} \Rightarrow john \text{ walked}$.
Recursion in grammars

Grammar \(G = (V, \Sigma, R, S) \) is recursive if \(G \) has a rule with lefthand side \(y \) and there are \(x, z \in \Sigma^* \) such that

\[y \Rightarrow_G \cdots \Rightarrow_G xyz. \]

Only recursive grammars can generate infinite languages. More precisely: grammar \(G \) generates an infinite language iff (if and only if) the following hold:

- \(y \Rightarrow_G \cdots \Rightarrow_G xyz \), with \(x, z \in \Sigma^* \) and \(x \neq \epsilon \) or \(z \neq \epsilon \);
- \(S \Rightarrow^*_G y \);
- \(y \) yields a terminal string.
Examples

The recursive grammar given by the following rules generates the (infinite) language of binary representations of the whole numbers.

1. $S \rightarrow 0$
2. $S \rightarrow 1A$
3. $S \rightarrow −1A$
4. $A \rightarrow 0A$
5. $A \rightarrow 1A$
6. $A \rightarrow \epsilon$

The infinite language of propositional logic:

\[
S \quad \rightarrow \quad P \mid \neg S \mid (S \land S) \mid (S \lor S) \mid (S \rightarrow S) \mid (S \leftrightarrow S)
\]

\[
P \quad \rightarrow \quad p \mid q \mid r \mid P'
\]
Weak Equivalence

Grammars G_1 and G_2 are **weakly equivalent** if $L(G_1) = L(G_2)$.

The following grammars are weakly equivalent:

1. $S \rightarrow 0 | 1A | -1A$
 $A \rightarrow 0A | 1A | \epsilon$

2. $S \rightarrow 0 | 1 | -1 | 1A | -1A$
 $A \rightarrow 0 | 1 | 0A | 1A$
Right-Linear Grammars

Grammar $G = (V, \Sigma, R, S)$ is a right-linear grammar if every member of $\text{dom} (R)$ is an element of $V - \Sigma$ and every member of $\text{rng} (R)$ is either an element of Σ^* or an element of $\Sigma^* (V - \Sigma)$.

Example:

$$S \longrightarrow 0S \mid 1S \mid \epsilon$$

Problem: give a right-linear grammar for the set of strings over $\{0, 1\}$ that have equal numbers of zeros and ones.
Recognizers for Right-linear Grammars

Haskell example:

```haskell
binaryWhole :: [Char] -> Bool
binaryWhole ['0'] = True
binaryWhole ('1':xs) = binaryWholeA xs
binaryWhole ('-':'1':xs) = binaryWholeA xs
binaryWhole _ = False

binaryWholeA :: [Char] -> Bool
binaryWholeA [] = True
binaryWholeA ('0':xs) = binaryWholeA xs
binaryWholeA ('1':xs) = binaryWholeA xs
binaryWholeA _ = False
```
Generating Right Linear Languages

Use a recognizer as a filter:

```haskell
genWholes :: [String]
genWholes = filter binaryWhole (star "-01")
```

This gives:

```
LAG> take 10 genWholes
["0","1","-1","10","11","-10","-11","100","101","110"]
```
Context Free Grammars

Grammar $G = (V, \Sigma, R, S)$ is a context-free grammar or CF grammar if every member of $\text{dom} (R)$ is an element of $V - \Sigma$.

A language that can be generated by a context-free grammar is called a context-free language.
Recognizing with Context Free grammars

Many techniques, but here is a simple approach in Haskell:
split2 :: [a] -> [[a],[a]]
split2 [] = [[[]],[[]]]
split2 (x:xs) = [[],(x:xs)]:
 (map (\ (ys,zs) -> ((x:ys),zs)) (split2 xs))

split3 :: [a] -> [[[a],[a],[a]]
split3 xs = [[(ys,zs,us) | (ys,ws) <- split2 xs, (zs,us) <- split2 ws]

split4 :: [a] -> [[[a],[a],[a],[a]]
split4 xs = [[(ys,zs,us,vs) | (ys,ws) <- split2 xs, (zs,us,vs) <- split3 ws]

Etc, depending on the maximum length of rhs in the rules.
Take as example:

\[A \rightarrow \varepsilon | aAb \]

```haskell
recognizeA :: [Char] -> Bool
recognizeA [] = True
recognizeA ('a':xs) =
    or [ recognizeA ys | (ys,zs) <- split2 xs, zs == ['b'] ]
recognizeA _ = False
```
genA :: [String]
genA = filter recognizeA (star "ab")

This gives:

LAG> take 6 genA
Another example

\[
S \rightarrow AC \\
A \rightarrow aAb \mid \epsilon \\
C' \rightarrow cC \mid \epsilon.
\]

It is convenient to define:

```haskell
recliteral :: Eq a => a -> [a] -> Bool
recliteral x xs = xs == [x]
```
recS :: [Char] -> Bool
recS xs = or [recA ys && recC zs |
 (ys,zs) <- split2 xs]
recA [] = True
recA xs = or [recliteral 'a' ys && recA zs && recliteral 'b' ws |
 (ys,zs,ws) <- split3 xs]
recC [] = True
recC xs = or [recliteral 'c' ys && recC zs |
 (ys,zs) <- split2 xs]
genS :: [String]
genS = filter recS (star "abc")

This gives:

LAG> take 10 genS
["","c","ab","cc","abc","ccc","aabb","abcc","cccc","aabbc"]]
ϵ free-ness

A grammar G is ϵ-free if either

1. G does not have ϵ-productions, or

2. the only ϵ-production of G is $S \rightarrow \epsilon$, and no production of G has S in its righthand side.

Proposition: For every CF grammar G there is a weakly equivalent ϵ-free CF grammar G'.
Context-sensitive grammars

Grammar $G = (V, \Sigma, R, S)$ is a context-sensitive grammar or CS grammar if the following holds:

- G is ϵ-free;
- every member of R that is not equal to $S \rightarrow \epsilon$ has the form $xAz \rightarrow xyz$, with $A \in V - \Sigma$, $x \in V^*$, $z \in V^*$ and $y \in V^+$.

Note that all productions of a context-sensitive grammar except the production $S \rightarrow \epsilon$ (if this production is present) have their righthand side length \geq their lefthand side length. It is clear that not every CF grammar is a CS grammar, because CF grammars need not be ϵ-free. On the other hand, every ϵ-free CF grammar is a CS grammar.
Example

The following CS grammar is not context-free.

1. $S \rightarrow 0SAB$
2. $S \rightarrow 01B$
3. $BA \rightarrow AB$
4. $1A \rightarrow 11$
5. $1B \rightarrow 12$
6. $2B \rightarrow 22$

This grammar generates the following language:

$$\{0^n1^n2^n \mid n \geq 1\}.$$

Can you see why?
The Chomsky Hierarchy

The following definitions give the so-called Chomsky-hierarchy of languages:

- Language L is unrestricted or type-0 if $L = L(G)$ for some grammar G, but L is not generated by any context-sensitive grammar.
- Language L is context-sensitive or type-1 if $L = L(G)$ for some context-sensitive grammar G, but L is not generated by any context-free grammar.
- Language L is context-free or type-2 if $L = L(G)$ for some context-free grammar G, but L is not generated by any right-linear grammar.
- Language L is right-linear or regular or type-3 if $L = L(G)$ for some right-linear grammar G.
Chomsky suggested that natural languages are context-sensitive.
Relations between grammar types, and between languages

The following relations hold between grammar-types:

• every right-linear grammar is a CF grammar;
• every CF grammar has a weakly equivalent ϵ-free CF grammar;
• every ϵ-free CF grammar is a CS grammar;
• every CS grammar is a grammar.

These facts allow us to make the following statement about the Chomsky-hierarchy (we use \mathcal{L}_i for the class of all type-i languages):

$$\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0.$$
Strictness of the Chomsky hierarchy

In order to show that the \subseteq relations can be replaced by \subsetneq relations, we need to establish negative results:

“$L \notin \mathcal{L}_i$ because no type-i grammar generates L”.

This is possible, and it yields:

\[\mathcal{L}_3 \subsetneq \mathcal{L}_2 \subsetneq \mathcal{L}_1 \subsetneq \mathcal{L}_0. \]