
Constraint Tableaux for Hybrid Logics

Draft

Jan van Eijck
CWI and ILLC, Amsterdam, Uil-OTS, Utrecht

February 6, 2002

Abstract

Hybrid logics are modal logics with names for worlds. Tableau systems for various hybrid
logics were proposed in [6, 7, 20]. We present an improved tableau system for hybrid logic
that handles equality for nominals by substitution and generation of inequality constraints.
This compiles out the equalities while storing the inequalities, thus allowing for efficient
equality reasoning. The proof procedure based on the tableau calculus —the constraint proof
engine — uses two other kinds of constraints: box constraints and inverse box constraints.
Completeness of the system follows in the usual way from fairness of the proof procedure,
together with a model generation argument.

Next, calculus and proof engine are extended to incorporate the universal modality.
Among other things, universal modalities allow us to tune the proof engine to specific frame
classes. This leads to a general completeness result for the calculus, for all frame classes that
can be described by a Aϕ formula. We also propose rules for minimal model generation, and
a compression algorithm for generating minimal models from complete open tableau nodes.
Finally, we focus on some fragments of hybrid logic that are decided by the constraint proof
engine.

A theorem prover for hybrid logic based on the constraint proof engine, HyLoTab, has
been implemented. A companion paper [11] contains the full code of of this implementation
in Haskell [15], in ‘literate programming’ style [16]. This documented code can be found at
http://www.cwi.nl/~jve/hylotab.

Keywords: Hybrid logic, tableau reasoning, equality reasoning, model generation, decision
methods.

MSC codes: 03B10, 03F03, 68N17, 68T15

1 Hybrid Logic: Syntax and Semantics

Our starting point is HL(@,̆ , ↓), a hybrid logic language [1, 2] with the following syntax. Assume
p ranges over a set of propositions {p0, p1, . . .}, c over a set of constant nominals {c0, c1, . . .}, x
over a set of variable nominals {x0, x1, . . .}, n over the sets of constant nominals {c0, c1, . . .} and

1

variable nominals {x0, x1, . . .}, and i over a set of relation indices {i0, i1, . . .}. Then HL(@,̆ , ↓)
is given by:

ϕ ::= > | ⊥ | p | c | x | ¬ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | ϕ→ ϕ′ | [i]ϕ | [i]˘ϕ | 〈 i 〉ϕ | 〈 i 〉˘ϕ | @nϕ |↓x.ϕ.

HL(@,̆) is the hybrid language that results from leaving out the binders ↓x.ϕ from HL(@,̆ , ↓),
and HL(@) is the hybrid language that results from leaving out the converse modalities [i]˘ϕ
and 〈 i 〉˘ϕ from HL(@,̆).

Models for HL(@,̆ , ↓) consist of a set of woirld W , a set R = {Ri | i ∈ I} of binary relations on
W , a valuation function V that maps proposition letters to subsets of W , and constant nominals
to singleton subsets of W . Let M = (M,R, V) be such a model, and let w be a world from M.
Let g be a valuation that maps variable nominals to members of W . Then the crucial clauses
of the semantics for HL(@,̆ , ↓) are given by:

M, g, w `̀ p iff w ∈ V (p)

M, g, w `̀ c iff {w} = V (c)

M, g, w `̀ x iff w = g(x)

M, g, w `̀ [i]ϕ iff for all w′ with wRiw
′ it holds that M, g, w′ `̀ ϕ

M, g, w `̀ 〈 i 〉ϕ iff for some w′ with wRiw
′ it holds that M, g, w′ `̀ ϕ

M, g, w `̀ [i]˘ϕ iff for all w′ with w′Riw it holds that M, g, w′ `̀ ϕ

M, g, w `̀ 〈 i 〉˘ϕ iff for some w′ with w′Riw it holds that M, g, w′ `̀ ϕ

M, g, w `̀ @nϕ iff M, g, w′ `̀ ϕ where {w′} = V (n)

M, g, w `̀ ↓x.ϕ iff M, gx
w, w `̀ ϕ.

Here gx
w is like g, except possibly for the fact that it maps x to w.

2 A Tableau Calculus for HL(@,̆ , ↓)

The tableau rules for HL(@,̆ , ↓) work on the labelled version of this language, with inequalities
and access statements added. The tableau rules use the following language (ϕ ∈ HL(@,̆ , ↓)):

ψ ::= m 6≈ n | mRn | @nϕ.

We assume a linear ordering < on the set of nominals. An inequality m 6≈ n generated by the
tableau rules will always satisfy m ≤ n. Inequalities m 6≈ m are written as ⊥.

As in [6, 7], the tableau rules are rules for labelled formulas. In fact, the tableau system of
this paper is a variation on these calculi, with a different approach to equality reasoning for
nominals.

The [i] and [i]˘ rules are the only rules that cannot be treated once and for all in the proof
procedure. They have the ‘standing order’ nature of the γ tableau rules in first order logic [19].
In the proof procedure based on the calculus they are translated into constraints (see Section
6).

2

Conjunctive rules (α rules)

@m(ϕ ∧ ψ)

@mϕ
@mψ

@m¬(ϕ ∨ ψ)

@m¬ϕ
@m¬ψ

@m¬(ϕ→ ψ)

@mϕ
@m¬ψ

Disjunctive rules (β rules)

@m(ϕ ∨ ψ)

@mϕ | @mψ

@m¬(ϕ ∧ ψ)

@m¬ϕ | @m¬ψ

@m(ϕ→ ψ)

@m¬ϕ | @mψ

Negation rule As this is a single-sided calculus, the only negation rule we need is the rule
for double negation.

@m¬¬ϕ

@mϕ

[i] rules Like the γ rules in FOL tableaux, these are ‘standing orders’.

@m[i]ϕ,mRin

@nϕ

@m¬〈 i 〉ϕ,mRin

@n¬ϕ

〈 i 〉 rules

@n〈 i 〉ϕ

nRim
@mϕ

ϕ not a nominal, m fresh
@n¬[i]ϕ

nRim
@m¬ϕ

ϕ not a negated nominal, m fresh

[i]˘ rules Like the γ rules in FOL tableaux, these are ‘standing orders’.

@m[i]˘ϕ, nRim

@nϕ

@m¬〈 i 〉˘ϕ, nRim

@n¬ϕ

〈 i 〉˘ rules

@n〈 i 〉˘ϕ

mRin
@mϕ

ϕ not a nominal, m fresh
@n¬[i]˘ϕ

mRin
@m¬ϕ

ϕ not a negated nominal, m fresh

3

Access rules Formulas of the forms 〈 i 〉n, ¬[i]¬n, 〈 i 〉˘n, ¬[i]˘¬n, are called access formulas.
They are treated by a separate rule.

@n〈 i 〉m

nRim

@n¬[i]¬m

nRim

@n〈 i 〉˘m

mRin

@n¬[i]˘¬m

mRin

Label rules
@m@nϕ

@nϕ

@m¬@nϕ

@n¬ϕ

Nominal substitution Here comes the new element, a substitution rule that makes use of
the fact that nominals are unique names. B

t
s is the result of substituting s for t everywhere in

tableau branch B. The rules make use of the linear order < on nominals.

B + @mm

B

B + @mn

B
t
s

s = min(m,n), t = max(m,n)

Inequality generation Write ⊥ for m 6≈ m.

@m¬m

⊥

@m¬n

s 6≈ t
s = min(m,n), t = max(m,n)

@mϕ,@m¬ϕ

⊥

@mϕ,@n¬ϕ

s 6≈ t
s = min(m,n), t = max(m,n)

The rule that derives an inequality constraint from @mϕ,@n¬ϕ is a so-called admissible rule.
It does not change the set of formulas that can be refuted or proved satisfiable, but admitting
it to the calculus may shorten some tableau proofs.

Binding rules
@m ↓x.ϕ

@mϕx
m

@m¬ ↓x.ϕ

@m¬ϕx
m

Here ϕx
m denotes the result of substituting m for all free occurrences of x in ϕ.

Tableau Closure A tableau branch is closed if it contains ⊥. A tableau is closed if all its
branches are closed. Note that nominal substitution can lead to branch closure.

3 Examples of Refutation Proofs, for HL(@)

Figure 1 gives a tableau refutation of (1), with the active formulas of the branch repeated at
each node. Figure 1 gives another version of this, without repetition of formulas, but with the
substitution instructions indicated along the branch.

4

@m(3(i ∧ p) ∧ 3(i ∧ q) ∧ 2(¬p ∨ ¬q))

@m3(i ∧ p),@m3(i ∧ q),@m2(¬p ∨ ¬q)

mRn,@n(i ∧ p),@m3(i ∧ q),@m2(¬p ∨ ¬q)

mRn,@ni,@np,@m3(i ∧ q),@m2(¬p ∨ ¬q)

mRi,@ip,@m3(i ∧ q),@m2(¬p ∨ ¬q)

mRi,@ip,mRk,@k(i ∧ q),@m2(¬p ∨ ¬q)

mRi,@ip,mRk,@ki,@kq,@m2(¬p ∨ ¬q)

mRi,@ip,@iq,@m2(¬p ∨ ¬q)

mRi,@ip,@iq,@m2(¬p ∨ ¬q),@i(¬p ∨ ¬q)

mRi,@ip,@iq,
@m2(¬p ∨ ¬q),@i¬p

⊥

mRi,@ip,@iq,
@m2(¬p ∨ ¬q),@i¬q

⊥

Figure 1: Tableau refutation for (1).

5

@m(3(i ∧ p) ∧ 3(i ∧ q) ∧ 2(¬p ∨ ¬q))

@m3(i ∧ p),@m3(i ∧ q),@m2(¬p ∨ ¬q)

mRn,@n(i ∧ p)

@ni,@np

n 7→ i

mRk,@k(i ∧ q)

@ki,@kq

k 7→ i

@i(¬p ∨ ¬q)

@i¬p

⊥

@i¬q

⊥

Figure 2: Tableau refutation for (1), without formula repetition.

6

@m(3(i ∧ p) ∧ 3(i ∧ q) ∧ 2(¬p ∨ ¬q)). (1)

The tableau refutation of (1) proves the validity of 3(i∧p)∧3(i∧q) → 3(p∧q), which expresses
that if from the current world i is accessible, and at i both p and q hold, then from the current
world a p ∧ q world is accessible.

@m¬((3p ∧ 3¬p) → (2(q → i) → 3¬q))

@m(3p ∧ 3¬p),@m¬(2(q → i) → 3¬q)

@m3p,@m3¬p,

@m2(q → i),@m¬3¬q

mRn,@np

mRk,@k¬p

@n(q → i),@nq

@k(q → i),@kq

@n¬q

⊥

@ni

n 7→ i

@k¬q

⊥

@ki

k 7→ i

⊥

Figure 3: Tableau refutation for @m¬((3p ∧ 3¬p) → (2(q → i) → 3¬q)) .

Figure 3 gives a tableau refutation of @m¬((3p ∧ 3¬p) → (2(q → i) → 3¬q)). The nominal
substitutions n 7→ i and k 7→ i act on the formulas @np and @k¬p to give @ip,@i¬p on the
branch, and therefore branch closure. The tableau refutation proves the validity of ((3p ∧
3¬p) → (2(q → i) → 3¬q)), a principle which expresses that if from the current world there
are at least two worlds accessible, and if i is the only accessible q world, then there has to be an

7

accessible ¬q world.

4 Examples of Model Generation, for HL(@)

@m(33m ∧ ¬3m)

@m33m,@m¬3m

mRn,@n3m

@n¬m

n 6≈ m

nRk,@km

m 7→ k

Figure 4: Open tableau for @m(33m ∧ ¬3m).

Figure 4 gives an open tableau for @m(33m∧¬3m). Since the formula contains no proposition
letters, it defines a frame property. The smallest frame with the property is • ↔ •.

Figure 5 gives an open tableau for @m(3i ∧ 3j ∧ 3k ∧ @i¬j ∧ @j¬k ∧ @i¬k).

Figure 6 shows that the formula 3(c ∧ 3c ∧ 23c) is satisfiable. Note that this formula causes
the first of the two tableau proof procedures in [20] to loop.

5 Examples of the treatment of ↓

Figure 7 gives a closed tableau for @m ↓ x.23x∧¬(32p→ p). The formula ↓ x.23x holds at
the point m if mRn implies nRm. The formula 32p→ p is true at points where R is symmetric.
Therefore, ↓ x.23x→ (32p→ p) is valid.

In HL(↓,@) it is easy to describe situations that only have infinite models. Figure 8 gives an
infinite tableau for (2).

@s(3>∧ 22 ↓ x.@s3x ∧ 2(3> ∧ ϕ)), (2)

8

@m(3i ∧ 3j ∧ 3k ∧ @i¬j ∧ @j¬k ∧ @i¬k)

@m3i,@m3j,@m3k,@m@i¬j,@m@j¬k,@m@i¬k

mRi,mRj,mRk

@i¬j,@j¬k,@i¬k

i 6≈ j, j 6≈ k, i 6≈ k

Figure 5: Open tableau for @m(3i ∧ 3j ∧ 3k ∧ @i¬j ∧ @j¬k ∧ @i¬k).

@m3(c ∧ 3c ∧ 23c)

mRn,@n(c ∧ 3c ∧ 23c)

@nc,@n3c,@n23c

n 7→ c

cRc,@c23c

@c3c

cRc

Figure 6: Open tableau for 3(c ∧ 3c ∧ 23c).

9

@m(↓ x.23x ∧ ¬(32p→ p))

@m ↓ x.23x,@m¬(32p→ p)

@m23m

@m32p,@m¬p

mRn,@n2p

@n3m

nRm

@mp

⊥

Figure 7: Closed tableau for @m ↓ x.23x ∧ ¬(32p→ p).

10

@s(3> ∧ 22 ↓ x.@s3x ∧ 2(3> ∧ ϕ))

@s3>,@s22 ↓ x.@s3x,@s2(3>∧ ϕ)

sRt

@t3>,@tϕ

tRt′

@t2 ↓ x.@s3x

@t′ ↓ x.@s3x

@t′@s3t′

@s3t′

sRt′

@t′3>,@t′ϕ

t′Rt′′

...

Figure 8: Infinite tableau for (2).

11

where ϕ is the formula

↓ x.2¬x∧ ↓ x.22¬x∧ ↓ x.22 ↓ y.@x3y.

The formula ↓ x.2¬x expresses irreflexivity, the formula ↓ x.22¬x asymmetry, the formula
↓ x.22 ↓ y.@x3y transitivity. Formula (2) expresses that from the spypoint s a serial, irreflexive,
asymmetric and transitive, hence infinite, relation is visible.

6 From Tableau Calculus to Proof Engine

A proof procedure (or proof engine) for ϕ is a systematic search for a Kripke model satisfying
ϕ, by means of a search tree starting out from a node start ϕ. Our proof engine for hybrid
logic based on the calculus given above is presented in Figure 9. The proof rules work on tuples
(U,A, I, P,N,C, F) consisting of a node universe (or node domain) U , a list of accessibilities A,
a list of inequality constraints I, a list of positive propositional attributions P , a list of negative
propositional attributions N , a list of box constraints and converse box constraints C, and a list
of pending formulas F . Write ϕ : F for the list with head ϕ and tail F , and F1 ++F2 for the
result of concatenating lists F1, F2. Write [] for the empty list, [ϕ] for the unit list with ϕ as its
element, and [ϕ1, . . . ϕn] for the list consisting of ϕ1 through ϕn. We will assume throughout that
the lists do not contain duplicates, i.e., that the lists behave as ordered sets. In particular, U s

t

means that s gets replaced by t in U , and the duplicate of t that this may generate is removed.

The table uses abbreviations ϕ ∈ α,ϕ ∈ β, ϕ ∈ [i], ϕ ∈ 〈 i 〉, ϕ ∈ [i]˘, ϕ ∈ 〈 i 〉˘ for “ϕ is an α
formula”, and so on. We do not count 〈 i 〉n or 〈 i 〉˘n or ¬[i]¬n or ¬[i]˘¬n as 〈 i 〉 or 〈 i 〉˘ formulas,
as these ‘access formulas’ are treated by a separate rule. If ϕ ∈ α ∪ β, the components of ϕ are
referred to as ϕ1, . . . , ϕn. If ϕ ∈ [i] ∪ 〈 i 〉 ∪ [i]˘∪ 〈 i 〉˘, its component is referred to as ϕ′.

The key to understanding the table is the following invariant of the rule applications: the
constraint store of the node contains only constraints that have been combined with all access
relations of the node. This invariant may get destroyed when a new access relation gets added,
when a new constraint gets added, or when a substitution is applied to a node. In all such cases,
the invariant is restored by applying the appropriate constraints, thus generating extra material
on the pending formula list.

Here is what has to happen in the case of applying a substitution to a node:

• If the substitution results in new access relations, these get combined with all box and
converse box constraints of the node.

• If the substitution results in new box constraints, these get combined with all access
relations of the node.

• If the substitution results in new converse box constraints, these get combined with all
access relations of the node.

In the substitution rule in the table, this procedure is abbreviated as ‘add stuff to restore the
invariant’.

12

start ϕ

[m], [], [], [], [], [], [@mϕ]
m fresh

U,A, I, P,N,C, F

closure
⊥ ∈ I ∨ P ∩N 6= ∅

U,A, I, P,N,C, []

success
⊥ /∈ I, P ∩N = ∅

U,A, I, P,N,C, (@mϕ : F)

U,A, I, P,N,C, [@mϕ1, . . . ,@mϕn] ++F
ϕ ∈ α

U,A, I, P,N,C, (@mϕ : F)

U,A, I, P,N,C, (@mϕ1 : F) | · · · | U,A, I, P,N,C, (@mϕn : F)
ϕ ∈ β

U,A, I, P,N,C, (@m¬¬ϕ : F)

U,A, I, P,N,C, (@mϕ : F)

U,A, I, P,N,C, (@mp : F)

U,A, I, (@mp : P), N, C, F

U,A, I, P,N,C, (@m¬p : F)

U,A, I, P, (@np : N), C, F

U,A, I, P,N,C, (@mn : F)

U t
s
, At

s
, It

s
, P t

s
, N t

s
, Ct

s
, F t

s
++F ′

s = min(m,n), t = max(m,n), F ′ = stuff to restore invariant

U,A, I, P,N,C, (@m¬n : F)

U,A, (s 6≈ t : I), P,N,C, F
s = min(m,n), t = max(m,n)

U,A, I, P,N,C, (@m@nϕ : F)

U,A, I, P,N,C, (@nϕ : F)

U,A, I, P,N,C, (@m¬@nϕ : F)

U,A, I, P,N,C, (@n¬ϕ : F)

U,A, I, P,N,C, (@mϕ : F)

U,A, I, P,N, (@mϕ : C), F ++ [@nϕ′ | mRin ∈ A]
ϕ ∈ [i]

U,A, I, P,N,C, (@m〈 i 〉n : F)

U, (mRin : A), I, P,N,C, F + ++ [@nψ | @m[i]ψ ∈ C] ++ [@mψ | @n[i]˘ψ ∈ C]

U,A, I, P,N,C, (@mϕ : F)

(n : U), (mRin : A), I, P,N,C, (@nϕ′ : F) ++ [@nψ | @m[i]ψ ∈ C]
ϕ ∈ 〈 i 〉, n fresh

U,A, I, P,N,C, (@mϕ : F)

U,A, I, P,N, (@mϕ : C), F ++ [@nϕ′ | nRim ∈ A]
ϕ ∈ [i]˘

U,A, I, P,N,C, (@m〈 i 〉˘n : F)

U, (nRim : A), I, P,N,C, F ++ [@mψ | @n[i]ψ ∈ C]F ++ [@nψ | @m[i]˘ψ ∈ C]

U,A, I, P,N,C, (@mϕ : F)

(n : U), (nRim : A), I, P,N,C, (@nϕ′ : F) ++ [@nψ | @m[i]˘ψ ∈ C]
ϕ ∈ 〈 i 〉˘, n fresh

U,A, I, P,N,C, (@m ↓ x.ϕ : F)

U,A, I, P,N,C, (@mϕx
m

: F)

U,A, I, P,N,C, (@m¬ ↓ x.ϕ : F)

U,A, I, P,N,C, (@m¬ϕx
m

: F)

Figure 9: Constraint Proof Engine for HL(@,̆ , ↓).

13

Closure, Success A node (U,A, I, P,N,C, F) is closed if either ⊥ ∈ I or P ∩N 6= ∅, otherwise
it is open. An open node (U,A, I, P,N,C, F) is a success node if it has F = []. A node is
incomplete if it is neither closed nor a success node.

Selection Rule To develop an incomplete node, use the table from Figure 9. Since an incom-
plete node contains a non-empty list of pending formulas, and the table has exactly one rule
that applies to the head ϕ of the pending formula list, this specifies the selection rule of the
proof engine.

Search Rule To select an incomplete leaf node to develop, use any breadth first search method
for tree traversal. This specifies a search rule for the proof engine.

Termination Condition The proof procedure ends when there are no more nodes to develop.
The proof procedure can be used both for satisfiablity checking and for refutation. For satisfi-
ability checking, the satisfiability procedure outputs true when a success node is encountered,
and outputs false if the proof procedure ends with closed nodes at all leaves. For refutation, the
refutation procedure outputs false when a success node is encountered, and outputs true if the
proof procedure ends with closed nodes at all leaves.

7 Soundness, Fairness of Proof Engine, Completeness

Theorem 1 The tableau calculus for HL(@,̆ , ↓) is sound.

Proof. By an easy inspection, all tableau rules are sound. Soundness of the calculus follows
from this by induction on tableau structure. 2

For completeness, we need a fair proof procedure P . Consider the (possibly infinite) set of
tableaux for formula ϕ, according to procedure P . Since P determines which rule (selection)
to apply to which node (search), this tableau set is ordered. The successor of a tableau T is
tableau T

′ computed from T according to P . Let T 0 be the initial tableau for ϕ. Then there is
a possibly infinite ascending chain T 0, . . . of tableaux for ϕ. By Zorn’s lemma, this chain has a
supremum T∞.

A proof procedure for hybrid logic is fair if the following hold for all open branches B in T ∞:

1. All formulas of type α ∪ β ∪ (¬¬) ∪ @ ∪ ↓ ∪ 〈 i 〉 ∪ 〈 i 〉˘ on B were used to expand B.

2. All formulas of type [i] or [i]˘ on B were combined with all mRin accessibilities on B to
expand B.

Theorem 2 The Constraint Proof Engine of Section 6 is fair.

Proof. Inspection of the table in Figure 9 makes clear that (1) is satisfied. That (2) is also
satisfied follows from an induction argument: it can be proved by induction on path length that

14

the constraint sets B and C at each node N consist of exactly the [i]∪ [i]˘ formulas at the node
that were used to expand all appropriate mRin accessibilities introduced on the path along B

from the root up to N . Finally, note that formulas resulting from combining an accessibility
relation mRin and a constraint @m[i]ϕ or @n[i]˘ϕ are appended to the list of pending formulas,
thus ensuring that every formula on the pending formula list will eventually get treated. 2

Call a tableau finished if it does not contain incomplete end nodes. It is easy to see that each
limit tableau T∞ is finished. Every open branch of a finished tableau for ϕ yields a Kripke

model for ϕ: take the nominals as worlds, put m
i

−→ n if a mRin relation occurs along the
branch, make all proposition letters p with @mp along the branch true at m, and all other
proposition letters false at m. From the facts that the tableau is finished and that the branch
is open it follows that this model is well-defined, and from the fact that the tableau rules are
truth preserving in both directions it follows that it is indeed a model for ϕ.

Theorem 3 The tableau calculus for HL(@,̆ , ↓) is complete.

Proof. Immediate from Theorem 2, plus the fact that every open branch of a finished tableau
for ϕ yields a Kripke model for ϕ. 2

8 Adding the Universal Modality

Let us now extend the language with the universal modality A and its dual E, with the following
intended meanings:

M, g, w `̀ Aϕ iff for all w′ ∈M it holds that M, g, w′ `̀ ϕ

M, g, w `̀ Eϕ iff for some w′ ∈M it holds that M, g, w′ `̀ ϕ

It is well known that binding together with universal modality makes it possible to express full
quantification. The definition of the quantifiers is as follows:

M, g, w `̀ ∀xϕ iff for all g′ with g
x
∼ g′ it holds that M, g′, w `̀ ϕ

M, g, w `̀ ∃xϕ iff for some g′ with g
x
∼ g′ it holds that M, g′, w `̀ ϕ

It is not hard to see that ∀xϕ can be taken as shorthand for ↓y.A ↓x.@yϕ, and ∃xϕ as shorthand
for ↓ y.E ↓x.@yϕ. So we have full quantification once we know how to deal with the modalities
A and E. Tableau rules for A and E can look like this:

@mAϕ

@nϕ
n on the branch

@m¬Eϕ

@n¬ϕ
n on the branch

@mEϕ

@nϕ
n fresh

@m¬Aϕ

@n¬ϕ
n fresh

Since the tableau rules forA andE are obviously sound, we get by induction on tableau structure:

Theorem 4 The tableau calculus for HL(@,̆ , ↓, A) is sound.

15

U,A, I, P,N,C, (@mϕ : F)

(n : U), A, I, P,N, C, (@nϕ′ : F) ++ [@nψ | Aψ ∈ C]
ϕ ∈ E, n fresh

U,A, I, P, N,C, (@mϕ : F)

U,A, I, P,N, (ϕ : C), F ++ [@nϕ′ | n ∈ U]
ϕ ∈ A

U,A, I, P,N,C, (@m〈 i 〉n : F)

U, (mRin : A), I, P,N, C, F ++ [@nψ | @m[i]ψ ∈ C] ++ [@mψ | @n[i]˘ψ ∈ C] ++ [@mψ | Aψ ∈ C]

U,A, I, P,N, C, (@mϕ : F)

(n : U), (mRin : A), I, P,N,C, (@nϕ′ : F) ++ [@nψ | @m[i]ψ ∈ C] ++ [@nψ | Aψ ∈ C]
ϕ ∈ 〈 i 〉, n fresh

U,A, I, P,N,C, (@m〈 i 〉˘n : F)

U, (nRim : A), I, P, N,C, F ++[@nψ | @m[i]˘ψ ∈ C] ++ [@nψ | Aψ ∈ C]

U,A, I, P,N,C, (@mϕ : F)

(n : U), (nRim : A), I, P, N,C, (@nϕ′ : F) ++ [@nψ | @m[i]˘ψ ∈ C] ++ [@nψ | Aψ ∈ C]
ϕ ∈ 〈 i 〉˘, n fresh

Figure 10: Modified Constraint Proof Engine for HL(@,̆ , ↓, A).

Figure 10 lists the modifications in the constraint proof engine that are necessary to accommo-
date the universal modality. The conditions ϕ ∈ A, ϕ ∈ E have the obvious meanings. A-type
formulas are of the forms Aψ, with component ψ, and ¬Eψ, with component ¬ψ. E-type for-
mulas are of the forms Eψ, with component ψ, and ¬Aψ, with component ¬ψ. The constraint
store C now also contains universal formulas Aψ, and the corresponding constraints have to be
imposed on all nominals that turn up at the branch.

The results about fairness and completeness extend to the new calculus and proof engine:

Theorem 5 The modified Constraint Proof Engine of Figure 10 is fair.

Theorem 6 The tableau calculus for HL(@,̆ , ↓, A) is complete.

9 Tuning the Engine: Proof Procedures for Frame Classes

The calculus and proof engine give a systematic search for Kripke models, without imposing
any constraint on the kind of Kripke model. In other words, it interprets ‘validity’ as ‘validity
in models based on the class of all Kripke frames’. It is straightforward to adapt our reasoning
engine for hybrid logic to other frame classes than the universal frame class. Since we have a
way of dealing with the universal modality, the only thing we have to do is modify the start rule,
by storing the appropriate constraint for the frame class we want. Here are some examples:

Irreflexive Frames for Ri Modify the start rule to:

start ϕ

[m], [], [], [], [], [A ↓ x.[i]¬x], [@mϕ]
m fresh

16

Reflexive Frames for Ri Modify the start rule to:

start ϕ

[m], [], [], [], [], [A ↓ x.〈 i 〉x], [@mϕ]
m fresh

Transitive Frames for Ri Modify the start rule to:

start ϕ

[m], [], [], [], [], [A ↓ x.[i][i]〈 i 〉˘x], [@mϕ]
m fresh

S4 Frames for Ri Modify the start rule to:

start ϕ

[m], [], [], [], [], [A ↓ x.(〈 i 〉x ∧ [i][i]〈 i 〉˘x)], [@mϕ]
m fresh

It is obvious that this can be done for any frame class that can be described (hence characterized)
by a formula in the first order correspondence language of hybrid logic. This is so since we have
the full power of quantification available now; see [10]. This gives the following:

Theorem 7 (General Completeness) The tableau calculus for HL(@,̆ , ↓, A) is complete for

any frame class that can be described in the first order correspondence language of HL(@,̆ , ↓, A).

10 Modifying the Calculus for Minimal Model Generation

A model M is minimal for ϕ if there are g, w with M, g, w `̀ ϕ, and for all N , h, w ′ with
N , h, w′ `̀ ϕ it holds that |N | ≥ |M |. E.g., the formula ¬c∧23> has minimal models of size 2.

To generate minimal models, replace the 〈 i 〉 and 〈 i 〉˘ rules by the following trial-and-error
versions:

〈 i 〉 rules, trial-and-error version

@n〈 i 〉ϕ

nRk1

@k1ϕ
| · · · |

nRks

@ksϕ
|
nRm
@mϕ

k1, . . . ks all nominals on the branch, m fresh

@n¬[i]ϕ

nRk1

@k1¬ϕ
| · · · |

nRks

@ks¬ϕ
|
nRm

@m¬ϕ

k1, . . . ks all nominals on the branch, m fresh

@n¬[i]ϕ

nRk1

@k1¬ϕ
| · · · |

nRks

@ks¬ϕ
|
nRm

@m¬ϕ

k1, . . . ks all nominals on the branch, m fresh

17

〈 i 〉˘ rules, trial-and-error version

@n〈 i 〉˘ϕ

k1Rn
@k1ϕ

| · · · |
RksRn
@ksϕ

|
mRn
@mϕ

k1, . . . ks all nominals on the branch, m fresh

@n¬[i]˘ϕ

k1Rn
@k1¬ϕ

| · · · |
ksRn

@ks¬ϕ
|
mRn

@m¬ϕ

k1, . . . ks all nominals on the branch, m fresh

Figure 11 gives an infinite tableau expansion for Formula (3).

@s3¬s∧ @s2 ↓ x.3(¬s ∧ ¬x) ∧ @s22 ↓ x.@s3x (3)

Still, the formula has finite models, and we can find finite models of minimal size by means of
(the proof engine based on) the trial-and-error version of the tableau system. See Figure 12.

Again, the new rules are obviously sound, so we get:

Theorem 8 The minimal model calculus for HL(@,̆ , ↓, A) is sound.

The rules lead to an obvious modification of the proof engine, which gives us a fair proof
procedure for minimal model generation. From this, by the same reasoning as above:

Theorem 9 The minimal model calculus for HL(@,̆ , ↓, A) is complete.

11 Generation of Minimal Models Through Node Compression

Open branches in finished tableaux in general correspond to partial models rather than full
models. E.g., in the propositional case, it does not matter what truth value one assigns to
proposition letters not mentioned along open branches [5]. The same phenomenon presents itself
in the case of hybrid logic. In general, an open tableau node of the form (U,A, I, P,N,C, []) for
ϕ can be used to generate a whole range of Kripke models for ϕ, including minimal models. The
following node compression algorithm accomplishes this.

18

@s3¬s,@s2 ↓ x.3(¬s ∧ ¬x),@s22 ↓ x.@s3x

sRt,@t¬s

t 6≈ s

@t ↓ x.3(¬s ∧ ¬x)

@t3(¬s ∧ ¬t)

tRt′, t′ 6≈ s, t′ 6≈ t

@t2 ↓ x.@s3x

@t′ ↓ x.@s3x

@t′@s3t′

@s3t′

sRt′

@t′ ↓ x.3(¬s ∧ ¬x)

@t′3(¬s ∧ ¬t′)

t′Rt′′, t′′ 6≈ s, t′′ 6≈ t′

...

Figure 11: Tableau for (3).

19

@s3¬s,@s2 ↓ x.3(¬s ∧ ¬x),@s22 ↓ x.@s3x

sRs,@s¬s

⊥

sRt,@t¬s

t 6≈ s

@t ↓ x.3(¬s ∧ ¬x)

@t3(¬s ∧ ¬t)

tRs,@s(¬s ∧ ¬t)

...
⊥

tRt,@s(¬s ∧ ¬t)

...
⊥

tRt′, t′ 6≈ s, t′ 6≈ t

@t2 ↓ x.@s3x

@t′ ↓ x.@s3x

@t′@s3t′

@s3t′

sRt′

@t′ ↓ x.3(¬s ∧ ¬x)

@t′3(¬s ∧ ¬t′)

t′Rs
...
⊥

t′Rt′

...
⊥

t′Rt
...

open

t′Rt′′

...

Figure 12: Trial-and-error tableau for (3).

20

Node Compression Algorithm

Let a finished open constraint tableau node (U,A, I, P,N,C, []) be given.

• If there are no pairs of nominals m,n with m preceding n and m 6≈ n /∈ I then return
the unit list [(U,A, I, P,N,C, [])].

• Otherwise, nondeterministically pick a pair of nominals m,n with m preceding n and
m 6≈ n /∈ I.

Compression Step Develop the tableau [(U n
m, A

n
m, I

n
m, P

n
m, N

n
m, [], C

n
m)].

– If this remains open, then compress the finished open nodes and collect the
results.

– If it closes, then compress (U,A, (m 6≈ n : I), P,N,C, []).

Theorem 10 (Soundness of Node Compression Algorithm) If the node compression al-

gorithm is applied to a finished open tableau node for ϕ, then all finished open tableau nodes that

result from the algorithm satisfy ϕ.

Proof. Induction on the number of nominal pairs m,n with m preceding n and m 6≈ n /∈ I
on a finished open tableau node for ϕ. 2

Theorem 11 (Completeness of Node Compression Algorithm) If the node compression

algorithm is applied to a finished open tableau node for ϕ it yields at least one open node

(U,A, I, P,N,C, [])

that corresponds to a minimal model for ϕ.

Proof. If the algorithm is called with a finite node, termination is ensured, for every step
either removes a pair m,n from the list of candidates for merging, or merges the pair. Also,
upon termination, there are open nodes, for if (U,A, I, P,N,C, []) is open then

(U,A, (m 6≈ n : I), P,N,C, [])

is open. Since the resulting open nodes cannot be compressed any further, at least one of them
is minimal. 2

To define the notion of a minimal model for a fragment of hybrid logic per se, we can use the
notion of a hybrid bisimulation [1, 2], with the obvious extension to take care of the converse
modalities. A Kripke model M is minimal for a hybrid language if for all models N , all sequences
m̄ ∈ kM and n̄ ∈ kN , any hybrid bisimulation (for that language)

ω
∼ with (M, m̄)

ω
∼ (N , n̄) and

m̄(i) = m̄(j) satisfies n̄(i) = n̄(j). Intuitively, M is minimal for some hybrid logic language if
no distinct worlds in M are ever identified by a hybrid bisimulation for that language. We leave
the investigation of this notion for a future occasion.

21

12 Deciding Some Fragments of HL(↓,̆ , @)

It is well known that HL(@) and HL(@,̆) are decidable. Theorem 12 states that the constraint
proof engine from Section 6 decides hybrid logic formulas without binders.

Theorem 12 The constraint proof engine for HL(@,̆ , ↓) decides satisfiability of HL(@,̆) for-

mulas.

Proof. The result follows from a modal depth argument. HL(@,̆) has a notion of finite
degree ([9], Ch. 7); in particular, modal depth for its formulas can be defined as follows:

d(p) = d(c) = d(x) = 0

d(ϕ ∗ ψ) = max(d(ϕ), d(ψ)), ∗ ∈ {∧,∨,→}

d(¬ϕ) = d(ϕ)

d(Mϕ) = d(ϕ) + 1,M ∈ {[i], 〈 i 〉, [i]˘, 〈 i 〉˘}

d(@mϕ) = d(ϕ)

Every non-literal formula ϕ /∈ {[i], [i]˘} gets decomposed by the rule that applies to it. Every
formula ϕ ∈ {[i], [i]˘} generates a constraint. When a constraint @m2ϕ is combined with an
mRn relation, it generates a new formula @nϕ on the list of pending formulas, but d(ϕ) =
d(2ϕ) − 1. Thus, the box formula @m2ϕ gets replaced by a finite number of @nϕ formulas,
and each of these is appended to the list of pending formulas, so fairness of the procedure is
preserved. 2

At first sight, there is something puzzling about the undecidability of HL(@,̆ , ↓), especially
since the so-called standard translation given in [1, 2] seems to suggest that hybrid sentences
(hybrid formulas without unbound world variables) are in the two-variable bounded fragment
of first order logic. In fact, the translation instruction has a flaw, as can be seen when we
use it to translate the transitivity sentence ↓ u.22 ↓ w.@u3w. Carrying out the instruction
starting out from STx(↓ u.22 ↓ w.@u3w), we end up with an injunction to substitute x for u
in ∀y(Rxy → ∀x(Ryx→ ∃y(Ruy ∧ y = x))), with capture of x by ∀x as a result. The standard
translation can be repaired by replacing the instructions for the modalities and the binders as
follows:

STx(〈 i 〉ϕ) := ∃y(Rixy ∧ STyϕ) with y a fresh variable,

STx(↓ w.ϕ) := (STyϕ)wy with y a fresh variable.

A fresh variable, of course, is a variable that has not been used before in the translation. This
makes clear that the translation does not ensure a bound on the number of variables that are
needed. E.g., the translation of the transitivity sentence needs as least three different variables.

We will now demonstrate that it is the presence of ↓ in the scope of box modalities that causes
undecidability of HL(@,̆ , ↓). Consider the version of HL(@,̆ , ↓) without [i], [i]˘,→ that can be
got by paraphrasing d with the help of [i]ϕ↔ ¬〈 i 〉¬ϕ, [i]˘ϕ↔ ¬〈 i 〉˘¬ϕ, and (ϕ→ ψ) ↔ ¬ϕ∨ψ.
A subformula ψ of ϕ is existential in ϕ if every 3 that outscopes ψ in ϕ is in the scope of an
even number of negation operators. Thus, ψ is existential in 3¬ψ and @m¬(3m ∧ ¬3ψ), but
not in ¬3ψ. Call a formula ϕ innocent if every binder subformula ↓ x.ψ of ϕ is existential in ϕ.

22

Theorem 13 The innocent fragment of HL(@,̆ ↓) is decidable.

Proof. Consider the following translation from (located formulas of) HL(@,̆ , ↓) to HL(@,̆).

(@mp)T := @mp

(@mn)T := @mn

(@m¬ϕ)T := ¬(@mϕ)T

(@mϕ ∧ ψ)T := (@mϕ)T ∧ (@mψ)T

(@mϕ ∨ ψ)T := (@mϕ)T ∨ (@mψ)T

(@m@nϕ)T := (@nϕ)T

(@m〈 i 〉ϕ)T := @m〈 i 〉(n ∧ (@nϕ)T), n a fresh nominal

(@m〈 i 〉˘ϕ)T := @m〈 i 〉˘(n ∧ (@nϕ)T), n a fresh nominal

(@m ↓ x.ϕ)T := (@mϕ[x := m])T

Check by induction on formula structure that this translation is truth-preserving for all formulas
in the innocent fragment. 2

Another way of seeing this is by observing that the tableaux for ϕ and ϕT are essentially the
same, which leads immediately to:

Theorem 14 The constraint proof engine for HL(@,̆ , ↓) decides the innocent fragment.

Consider the following fragment of existential formulas of HL(@,̆):

ψ ::= n | ¬n | ¬〈 i 〉n | ¬〈 i 〉˘n | ψ ∧ ψ′ | ψ ∨ ψ′ | 〈 i 〉ψ | 〈 i 〉˘ψ

Use this to define HL(@,̆ , ↓∃), by changing the definition of binder formulas from ↓ x.ϕ to ↓ x.ψ.
In other words, binding is only allowed over existential formulas. If, moreover, we only allow
one binding variable w, we get [17]:

Theorem 15 (M. Marx) The language HL(@,̆ , (↓ w)∃) is decidable in EXPTIME.

Proof. Using a standard translation we can map this language to the universal guarded
fragment (where universal quantifiers are guarded, but existential quantifiers need not be) in
three variables x, y, w. By a remark in [14], existential guards can be dispensed with, for the
sentence (∀x.α)∃yϕ(xy), with ∃y unguarded, is satisfiable if and only if the properly guarded
sentence (∀x.α)∃yRxy ∧(∀x.Rxy)ϕ(xy), with R a new relation symbol of the appropriate arity,
is satisfiable. Satisfiability of the universal guarded fragment in a bounded number of variables
is shown to be decidable in EXPTIME in [14]. 2

If we allow an unrestricted number of binding variables x1, . . . the fragment is still decidable,
but since there is no bound now on the number of variables employed in the translation, the
complexity is in 2EXPTIME [14].

Theorem 16 The constraint proof engine for HL(@,̆ , ↓) decides satisfiability of HL(@,̆ , ↓∃)
formulas.

23

Proof. Suppose the proof engine is invoked to check satisfiability of ϕ. We only need to be
concerned about formulas of the forms [i] ↓ x.ψ, 〈 i 〉¬ ↓ x.ψ, [i]˘↓ x.ψ 〈 i 〉˘¬ ↓ x.ψ that turn up
along a tableau branch during the processing of ϕ, for these are the formulas that cause binders
to appear in the [i] and [i]˘ constraints. Suppose @m2 ↓ x.ψ is in the box constraint store, and
gets combined with an mRn accessibility along the branch. Then @n ↓ x.ψ will get appended to
the pending formula list. When @n ↓ x.ψ gets decomposed, it gets replaced by ψx

n, and further
decomposition will not affect the constraint stores because ψ is existential. 2

13 Related Work

Comparison with other tableau systems Tableau calculi for hybrid logic are still in their
infancy. A prefixed tableau calculus along the lines of the prefixed tableau style theorem proving
of [13] is given in [20]. This does not yet make full use of the possibility to let the role of
prefixes be played by nominals. In [6] it is pointed out that nominals can play the role of labels
in labelled deduction style theorem proving, and a tableau calculus is proposed that handles
equality reasoning on nominals by means of rewrite rules that express reflexivity, symmetry
and transitivity of equality, and that allows substitution of equal nominals. However, since this
rewrite system is not normalizing, equality reasoning in the resulting calculus is awkward, and
proof engines based on it will spend too much effort on pointless rewrite steps for equality [8].

Comparison with resolution for hybrid logic The resolution approach to modal logic
dates back to at least [18, 12]. A prefixed resolution calculus for description and hybrid logic
was proposed in [3], and implemented in [4]. Detailed efficiency comparison with this is work in
progress.

Acknowledgement Many thanks to the Dynamo team (Wim Berkelmans, Balder ten Cate,
Juan Heguiabehere, Breanndán Ó Nualláin) and to Carlos Areces, Patrick Blackburn and
Maarten Marx, for useful comments and fruitful discussion. This work was carried out as part
of the INRIA funded partnership between CALG (Computational and Applied Logic Group,
University of Amsterdam) and LED (Langue et Dialogue, LORIA, Nancy).

References

[1] Areces, C. Logic Engineering: The Case of Description and Hybrid Logics. PhD thesis,
ILLC, Amsterdam, 2000.

[2] Areces, C., Blackburn, P., and Marx, M. Hybrid logics: Characterization, interpo-
lation and complexity. Journal of Symbolic Logic (2001).

[3] Areces, C., de Nivelle, H., and de Rijke, M. Resolution in modal, description and
hybrid logic. Journal of Logic and Computation 11, 5 (2001), 717–736. Special Issue on
Hybrid Logics. Areces, C. and Blackburn, P. (eds.).

24

[4] Areces, C., and Heguiabehere, J. Hylores: Direct resolution for hybrid logics. In
Proceedings of Methods for Modalities 2 (Amsterdam, The Netherlands, November 2001),
C. Areces and M. de Rijke, Eds.

[5] Benthem, J. v. Partiality and nonmonotonicity in classical logic. Logique et Analyse 29

(1986).

[6] Blackburn, P. Internalizing labelled deduction. Journal of Logic and Computation 10

(2000), 136–168.

[7] Blackburn, P. Representation, reasoning, and relational structures: a hybrid logic man-
ifesto. Logic Journal of the IGPL 8 (2000), 339–365.

[8] Blackburn, P., Burchard, A., and Walter, S. Hydra: a tableaux-based prover for
basic hybrid logic. In Proceedings of Methods for Modalities 2 (Amsterdam, The Nether-
lands, November 2001), C. Areces and M. de Rijke, Eds.

[9] Blackburn, P., de Rijke, M., and Venema, Y. Modal Logic. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

[10] Blackburn, P., and Seligman, J. What are hybrid languages? In Advances in Modal

Logic, M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, Eds., vol. 1. CSLI
Publications, Stanford University, 1998, pp. 41–62.

[11] Eijck, J. v. HyLoTab — Tableau-based theorem proving for hybrid logics. Manuscript,
CWI, Amsterdam, 2002.

[12] Enjalbert, P., and Fariñas del Cerro, F. Modal resolution in clausal form. Theo-

retical Computer Science 14 (1989), 1–33.

[13] Fitting, M. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht, 1983.

[14] Grädel, E. On the restraining power of guards. Journal of Symbolic Logic 64, 4 (1999),
1719–1742.

[15] Jones, S. P., Hughes, J., et al. Report on the programming language Haskell 98.
Available from the Haskell homepage: http://www.haskell.org, 1999.

[16] Knuth, D. Literate Programming. CSLI Lecture Notes, no. 27. CSLI, Stanford, 1992.

[17] Marx, M. Narcissists, stepmothers and spies. Manuscript, ILLC, 2002.

[18] Ohlbach, H. A resolution calculus for modal logics. In CADE’88 (1988), pp. 500–516.

[19] Smullyan, R. First-order logic. Springer, Berlin, 1968.

[20] Tzakova, M. Tableau calculi for hybrid logics. In Proceedings of the International Confer-

ence TABLEAUX’99 - Analytic Tableaux and Related Methods, June 7-11, 1999, Saratoga

Springs, NY USA (1999), N. V. Murray, Ed., vol. 1617 of LNAI, Springer.

25

