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Abstract

In [11] it is shown how propositional dynamic logic (PDL) can be interpreted
as a logic of belief revision that extends the logic of communication and change
(LCC) given in [7]. This new version of epistemic/doxastic PDL does not impose
any constraints on the basic relations and because of this it does not suffer from
the drawback of LCC that these constraints may get lost under updates that are
admitted by the system. Here, we will impose one constraint, namely that the
agent’s plausibility relations are linked. Linkedness is a natural extension of local
connectedness to the multi-agent case and it assures that we know the agent’s
preferences between all relevant alternatives. Since the belief updates that are
used in [11] may not preserve linkedness, we limit ourselves to a particular kind
of belief change that does preserve it.

Our framework has obvious connections to coalition logic [17] and social
choice theory [19]. We show how we can use it to model consensus seeking
in plenary Dutch meetings. In Dutch meetings, a belief update is done for
all agents in the meeting if a majority beliefs the proposition that is under
discussion. A special case of these meetings is judgement aggregation, and we
apply our framework to the discursive dilemma in this field [15].

1 Introduction

In [15] a problem in judgement aggregation is considered. This problem is the case
of three judges a, b, c with a, b agreeing that p, and b, c agreeing that q, so that both
p and q command a majority, but p ∧ q does not. The example shows that majority
judgement is not closed under logical consequence. To see the relevance of the example
for the practice of law, assume that p expresses that the defendant has done action X,
and q expresses that the defendant is under a legal obligation not to do X. Then p∧q
expresses that the defendant has broken his contract not to do X. This is a standard
paradox in judgement aggregation called the discursive dilemma or doctrinal paradox.

The discursive dilemma is an example of a situation where multiple agents have
different beliefs. We will present an epistemic/doxastic framework that can be used
to model such situations, and present a way to update these frameworks with new
beliefs. In the above example, this gives a protocol for judgement aggregation.
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The relations in our framework can be seen as relations modeling the beliefs of
the agents as is the case in the above example. But ofcourse we could also see them
as preference relations to connect the framework to the area of social choice theory.

2 Belief Revision Without Constraints

A preference model M for set of agents Ag and set of basic propositions Prop is a
tuple (W,P, V ) where W is a non-empty set of worlds, P is a function that maps each
agent a to a relation Pa (the plausibility or preference relation for a), and V is a map
from W to P(Prop) (a map that assigns to each world a Prop-valuation). The tuple
(W,P ) is called the frame of the model. There are no conditions at all on the Pa.
Appropriate conditions will be imposed by constructing the operators for belief and
knowledge by means of PDL operations.

We fix a PDL style language for talking about preference (or: plausibility). As-
sume p ranges over a set of basic propositions Prop and a over a set of agents Ag.
Then the language of epistemic/doxastic PDL is given by:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ
π ::= a | ǎ |?φ | π1;π2 | π1 ∪ π2 | π∗

We use PROG for the set of program expressions (expressions of the form π) of this
language.

This is to be interpreted in the usual PDL manner, with [[[π]]]M giving the relation
that interprets relational expression π in M = (W,V, P ). [π]φ is true in world w of
M if for all v with (w, v) ∈ [[[π]]]M it holds that φ is true in v. We adopt the usual
abbreviations of ⊥, φ1 ∨ φ2, φ1 → φ2, φ1 ↔ φ2 and 〈π〉φ. The following additional
abbreviations allow us to express knowledge, strong belief, conditional belief and plain
belief:

knowledge ∼a abbreviates (a ∪ ǎ )∗.

strong belief ≥a abbreviates a∗.

conditional belief [→φ
a ]ψ abbreviates 〈∼a〉φ→ 〈∼a〉(φ ∧ [≥a](φ→ ψ)).

plain belief [→a]ψ abbreviates [→>
a ]ψ.

Note that it follows from these conventions that [→a]φ is equivalent to 〈∼a〉[≥a]φ.
The definition of →φ

a (conditional belief for a, with condition φ) is from Boutillier
[9] This definition, also used in [4], states that conditional to φ, a believes in ψ if
either there are no accessible φ worlds, or there is an accessible φ world in which the
belief in φ → ψ is safe. The definition of →φ

a matches the well-known accessibility
relations →P

a for each subset P of the domain, given by:

→P
a := {(x, y) | x∼ay ∧ y ∈ MIN≤aP},

where MIN≤aP , the set of minimal elements of P under ≤a, is defined as

{s ∈ P : ∀s′ ∈ P (s′ ≤a s⇒ s ≤a s
′)}.
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This logic is completely axiomatized by the standard PDL rules and axioms ([18;
14]) plus the following axioms that describe the relation between the basic programs
a and ǎ :

` φ→ [a]〈ǎ 〉φ ` φ→ [ǎ ]〈a〉φ

Any preference relation Pa can be turned into a pre-order by taking it reflexive tran-
sitive closure Pa

∗. The abbreviation for strong belief introduces the ≥a as names for
these pre-orders. The knowledge abbreviation introduces the ∼a as names for the
equivalences given by (Pa ∪ Pa )̌∗.

If the Pa are well-founded, MIN≤aP will be non-empty for non-empty P . The
canonical model construction for PDL yields finite models; since each relation on a
finite model is well-founded, there is no need to impose well-foundedness as a relational
condition.

This yields a very expressive complete and decidable PDL logic for belief revision,
to which we can add mechanisms for belief update and for belief change.

3 Belief Revision with Linked Preference Relations

The proto-preference relations that serve as the basis for construction of a preference
pre-order in Section 2 leave something to be desired. Compare an optometrist who
collects answers for a number of lenses she tries out on you: “Better or worse?”,
(change of lens), “Better or worse?” (change of lens), “Better or worse?”. . . . If you
reply “worse” after a change of x to y, and “worse” after a change from y to z, she
will most probably not bother to collect your reaction to a change from x to z. But
what if you answer “better” after the second swap? Then, if she is reasonable, she
will try to find out how x compares to z. It does make sense to impose this as a
requirement on preference relations.

There are several ways to do this. Recall that we did not impose a requirement
of transitivity on the basic plausibility relations. Here is a definition that does not
imply transitivity, but yields that the transitive closures of the basic plausibilities are
well-behaved.

R

R∗

R∗
R

R∗

R∗

Definition 1. A binary relation R is forward linked if the following holds:

∀x, y, z((xRy ∧ xR∗z) → (yR∗z ∨ zR∗y)).

R is linked if both R and Rˇ are forward linked.
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Note that this is different from the notion of weak connectedness (terminology of
[12]): a relation R is weakly connected if ∀x, y, z((xRy∧xRz) → (yRz∨y = z∨zRy)).

Theorem 1. R is forward linked iff R∗ is weakly connected.

Proof. The right to left direction is immediate. For the left to right direction, assume
R is forward linked. Let wR∗w1 and wR∗w2. Then there is an n ∈ N with wRnw1.
We prove the claim by induction on n. If n = 0 then w = w1 and w1R

∗w2, and we are
done. Otherwise, assume the claim holds for n. We have to show it holds for n + 1.
Suppose wRn+1w1. Then for some w′, wRw′Rnw1. By forward linking of R, either
w′R∗w2 or w2R

∗w′. In the first case, use the induction hypothesis to get w1R
∗w2 or

w2R
∗w1. In the second case, it follows from w2R

∗w′ and w′Rnw1 that w2R
∗w1.

Starting from relations that are linked, one can upgrade the method from the
previous section to construct ‘belief revision models’ in the style of Grove [13], Board
[8], and Baltag and Smets [3; 4] (who call them ‘multi-agent plausibility frames’).

It is well-known that the following principle characterizes weak connectedness of
Pa (cf. [12]):

[a]((φ ∧ [a]φ) → ψ) ∨ [a]((ψ ∧ [a]ψ) → φ).

The notion of forward linking is characterized by:

[a]((φ ∧ [a∗]φ) → ψ) ∨ [a∗]((ψ ∧ [a∗]ψ) → φ). (*)

Theorem 2. Principle (*) holds in a belief revision frame iff Pa is forward linked.

Proof. Let (W,P ) be a frame where Pa is forward linked, and let M = (W,P, V ) be
some model based on the frame. We show that (*) holds. Let w be a world in M.
Assume M 6|=w [a]((φ∧ [a∗]φ) → ψ). We have to show: M |=w [a∗]((ψ ∧ [a∗]ψ) → φ).
From the fact that M 6|=w [a]((φ ∧ [a∗]φ) → ψ), we get that there is a world w1 with
wPaw1 and M |=w1 φ ∧ [a∗]φ ∧ ¬ψ.

Let w2 be an arbitrary world with wP ∗
aw2. Then by forward linking of Pa, either

w1P
∗
aw2 or w2P

∗
aw1. In the first case, it follows from M |=w1 [a∗]φ that M |=w2 φ,

and therefore M |=w2 (ψ∧ [a∗]ψ) → φ. In the second case, it follows from M |=w1 ¬ψ
that M |=w2 ¬[a∗]ψ, and therefore M |=w2 (ψ ∧ [a∗]ψ) → φ. So in both cases,
M |=w2 (ψ ∧ [a∗]ψ) → φ, and since w2 was an arbitrary world with wP ∗

aw2, it follows
that M |=w [a∗]((ψ ∧ [a∗]ψ) → φ).

Next, assume a frame (W,P ) where Pa is not forward linked. We will construct a
model M = (W,P, V ) and an instance of (*) that does not hold. If Pa is not forward
linked, there are w,w1, w2 with wPaw1, wP ∗

aw2, and neither w1P
∗
aw2 nor w2P

∗
aw1.

Construct the valuation of M by setting p true in w1 and in all worlds w′ with w1P
∗
aw

′,
and false everywhere else, and setting q true in w2 and in all worlds w′′ with w2P

∗
aw

′′,
and false everywhere else. Note that since not w1P

∗
aw2, p will be false in w2, and

that since not w2P
∗
aw1, q will be false in w1. So we get M |=w1 p ∧ [a∗]p ∧ ¬q and

M |=w2 q ∧ [a∗]q ∧ ¬p. It follows that

M |=w 〈a〉(p ∧ [a∗]p ∧ ¬q) ∧ 〈a∗〉(q ∧ [a∗]q ∧ ¬p),
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i.e.,
M 6|=w [a]((p ∧ [a∗]p) → q) ∨ [a∗]((q ∧ [a∗]q) → p),

showing that this instance of (*) does not hold in M.

In the multi-agent case there is a further natural constraint. Consider a situation
where Alice and Bob have to decide on the chairperson of a program committee. Carol
is mediator. Alice says she prefers y to x. Bob counters by saying that he prefers z
to x. What should Carol do? Clearly, she should urge both of them to compare y and
z.

Translating this example to our logic of belief, we want to require that if x ≥a y
and x ≥b z, then either y ≥a z or z ≥a y and either y ≥b z or z ≥b y.

This motivates the following extension of the definition of linkedness to the multi-
agent case.

R

S∗

S∗ R

S∗

S∗

Definition 2. A set of binary relations R on a domain W is forward linked if for
all R,S in R, if xRy and xS∗z, then either yS∗z or zS∗y. R is backward linked
if the set {Rˇ | R ∈ R} is forward linked. R is linked if R is both forward and
backward linked.

It follows from Definition 2 that the set {R} is forward linked iff R is forward linked
according to Definition 1. So Definition 2 gives a natural extension of linking (and of
local connectedness) to the multi-agent case.

The following theorem shows that our definition satisfies our motivating require-
ment that if x ≥a y and x ≥b z then either y ≥a z or z ≥a y:

Theorem 3. If R and S are linked then for any x, y, z, if xR∗y and xS∗z then either
yR∗z or zR∗y.

Proof. Suppose xR∗y and xS∗z. We will prove that for any w on the path from x to
z, either wR∗y or yR∗w. This clearly holds for w = x. Suppose w is the successor of
w′ on the path, and the result holds for w′. Suppose w′R∗y. Since w′Sw the result
holds by forward linking of R and S. Suppose yR∗w′. w′Sw and w′R∗w′ so either
w′R∗w or wR∗w′. In the first case trivially yR∗w. In the second case the result holds
by backward linking of R.

If R and S are linked relations then common knowledge equals the union of strong
common belief and strong reverse common belief:

Theorem 4. If R and S are linked, then

(R ∪Rˇ∪ S ∪ S )̌∗ = (R ∪ S)∗ ∪ (Rˇ∪ S )̌∗.
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Proof. The inclusion from right to left is obvious. For the inclusion from left to right,
assume x(R∪Rˇ∪S∪S )̌∗y. Letting X and Y range over R and S, observe that each
X ◦ Y ∗̌ link can be replaced by either a Y ∗ or a Y ∗̌ link, and similarly for Xˇ◦ Y ∗

links, by linking of R and S. Continuing this process until all one-step links are of
the form R ∪ S or of the form Rˇ∪ S ,̌ this yields x(R ∪ S)∗y or x(Rˇ∪ S )̌∗y.

The theorem shows that linking of relations simplifies the notion of common knowl-
edge.

The modal characterization of relation linking is given by:

[a]((φ ∧ [b∗]φ) → ψ) ∨ [b∗]((ψ ∧ [b∗]ψ) → φ) (LINK)

Theorem 5. The set of LINK principles (with a, b ranging over the set of all agents)
holds in a belief revision model iff the basic plausibility relations in the model are
forward linked.

Proof. Analogous to the proof of Theorem 2.

4 Belief Update and Belief Change

For the definition of action models A and of the update product operation ⊗ that
combines an epistemic model and an action model, to produce an updated epistemic
model, we refer to [2]. In [7] it is shown how extending the PDL language with a
extra modality [A, e]φ does not change its expressive power. Interpretation of the
new modality: [A, e]φ is true in w in M if success of the update of M with action
model A to M⊗A implies that φ is true in (w, e) in M⊗A.

Here, we will focus on belief change rather than belief update. In [7], it was
proposed to handle factual change by propositional substitution. Relational substi-
tutions were proposed for belief change in [5], and it was shown in [10] that adding
relational substitutions for preference change to epistemic PDL makes no difference
for expressive power.

A plausibility substitution (or preference substitution) is a map from agents to
PROG expressions that can be represented by a finite set of bindings

{a1 7→ π1, . . . , an 7→ πn}

where the aj are agents, all different, and where the πi are PROG expressions. It is
assumed that each a that does not occur in the left hand side of a binding is mapped
to a. Call the set {a ∈ Ag | ρ(a) 6= a} the domain of ρ. If M = (W,P, V ) is a
preference model and ρ is a preference substitution, then Mρ is the result of changing
the preference map P of M to P ρ given by:

P ρ(a) :=
{
Pa for a not in the domain of ρ,
[[[ρ(a)]]]M for a in the domain of ρ.

Now extend our PDL language with a modality [ρ]φ for preference change, with the
following interpretation:

M, w |= [ρ]φ : ⇐⇒ Mρ, w |= φ.
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An important thing to note is that since there is there are constraints on the
proto-preferences Pa (they are linked), we need to ensure that the belief changing
substitutions satisfy these constraints. We leave the general problem of finding a
precise characterization of linking-preserving substitutions for future research. Here
we focus on a particular kind of belief change. Consider the suggestive upgrade ]aφ
discussed in Van Benthem and Liu [6]:

]aφ =def ?φ; a; ?φ ∪ ?¬φ; a; ?¬φ ∪ ?¬φ; a; ?φ.

This is a variation on what is called lexicographic upgrade in the belief revision
community (see e.g., [16]). The suggestive upgrade removes all relations from φ-
worlds to ¬φ-worlds. Clearly, belief revisions with suggestive upgrade do not preserve
linking of relations. For consider a case where wPaw1 and wP ∗

aw2 and w1P
∗
aw2, with

φ true in w1 but not in w and w2. Then suggestive update will remove the a-path
from w1 to w2:

w : ¬φ

w1 : φ

w2 : ¬φ

a

a∗

a∗

w : ¬φ

w1 : φ

w2 : ¬φ

a

a∗

However, if we revise the upgrade procedure so that it adds extra links instead of
removing them, as follows, we get a variation that preserves linking:

\aφ =def ?φ; a∗; ?φ ∪ ?¬φ; a∗; ?¬φ ∪ ?¬φ; (a∗ ∪ ǎ ∗); ?φ.

Thus, links from φ worlds x to ¬φ worlds y get reversed, and extra links to x get
added to ‘support’ the new link from y to x. Moreover, φ to φ links and ¬φ to ¬φ
links are strengthened to deal with the problem of detours through worlds that assign
a different truth value to φ.

We can prove the following.

Theorem 6. If M = (W,P, V ) is a belief revision model where Pa and Pb are linked,
and φ is a PDL formula, then [[[\aφ]]]M and Pb are also linked.

Proof. Write a for Pa, b for Pb, and \aφ for [[[\aφ]]]M. First note that for any worlds x
and y, if xa∗y then either x(\aφ)y or y(\aφ)x.

Suppose xby and x(\aφ)∗z. We will show that either wa∗y or ya∗w for all w on
the path from x to z. Firstly let w = x. Since xby and xa∗x, either xa∗y or ya∗x by
linking of a and b. Now let w′ be the predecessor of w on the path, so x(\aφ)∗w′ and
w′(\aφ)w. Suppose either ya∗w′ or w′a∗y. Since w′(\aφ)w, either w′a∗w or wa∗w′. If
ya∗w′ and w′a∗w or wa∗w′ and w′a∗y, then trivially ya∗w or wa∗y. Suppose w′a∗y
and w′a∗w. By forward linking of a and Theorem 1, wa∗y or ya∗w. Suppose ya∗w′
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and wa∗w′. By backward linking of a and Theorem 1, ya∗w or wa∗y. So then for any
w on the path wa∗y or ya∗w, so za∗y or ya∗z, so z(\aφ)y or y(\aφ)z.

Suppose x(\aφ)y and xb∗z. Then either xa∗y or ya∗x. In the first case the result
follows by Theorem 3. Suppose ya∗x. We will show that for any w on the path from
x to z, yb∗w or wb∗y. Firstly let w = x. ya∗x and yb∗y so by Theorem 3 the result
holds. Suppose w′ is the predecessor of w on the path and the result holds for w′.
Suppose yb∗w′. Then since w′bw, trivially yb∗w. Suppose w′b∗y. Then the result
holds by linkedness of b.

Now call a substitution where all bindings are of the form a 7→ \aφ a linked
substitution. Then we get a complete logic for belief change with linked substitutions,
by means of reduction axioms that ‘compile out’ the belief changes (see [10]):

Theorem 7. The logic of epistemic preference PDL with belief change modalities for
linked substitutions is complete.

Proof. The preference change effects of [ρ] can be captured by a set of reduction
axioms for [ρ] that commute with all sentential language constructs, and that handle
formulas of the form [ρ][π]φ by means of reduction axioms of the form

[ρ][π]φ ↔ [Fρ(π)][ρ]φ,

with Fρ given by:

Fρ(a) :=
{
ρ(a) if a in the domain of ρ,
a otherwise,

Fρ(?φ) := ?[ρ]φ,
Fρ(π1;π2) := Fρ(π1);Fρ(π2),
Fρ(π1 ∪ π2) := Fρ(π1) ∪ Fρ(π2),
Fρ(π∗) := (Fρ(π))∗.

It is easily checked that these reduction axioms are sound, and that for each formula of
the extended language the axioms yield an equivalent formula in which [ρ] occurs with
lower complexity, which means that the reduction axioms can be used to translate
formulas of the extended language to PDL formulas. Completeness then follows from
the completeness of PDL.

5 Analyzing Plenary Dutch Meetings

A plenary Dutch meeting (Dutch: ‘Vergadering’) is a simultaneous preference/belief
change event where the following happens. Assume an epistemic situation M with
actual world w, and assume proposition φ is on the agenda.

• If a majority prefers φ to ¬φ, i.e., if

{i ∈ Ag | M |=w [→i]φ} > {i ∈ Ag | M |=w [→i]¬φ}

then simultaneous belief change {i 7→ \iφ | i ∈ Ag} takes place.
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• If a majority prefers ¬φ to φ, i.e., if

{i ∈ Ag | M |=w [→i]φ} < {i ∈ Ag | M |=w [→i]¬φ}

then simultaneous belief change {i 7→ \i¬φ | i ∈ Ag} takes place.

• If there is no majority either way, nothing happens.

In fact, Dutch meetings are procedures for judgement aggregation [15]. Let us
return to our example of three judges a, b, c with a, b agreeing that p, and b, c agreeing
that q, so that both p and q command a majority, but p∧ q does not. Using our logic,
we can picture the situation as a preference model. We assume that every agent has
greater belief in worlds that match her beliefs in more propositions. Then we get the
following model:

pq pq̄

p̄q

b, c

a

a, b

c

a
b

c

So a has the greatest belief in the world where p and not q hold, but after that she
has more belief in a world where p and q both hold than in the world where q and not
p hold, because in the first world at least her belief in p is right. Similarly for c. For
b, she believes in the world where p and q hold, and values the other worlds equally
plausible.

In this model the following formulas hold:

[→a]p, [→b]p, [→b]q, [→c]q, [→a]¬(p ∧ q), [→c]¬(p ∧ q).

This shows that there are majority beliefs in p and in q, but there is also a majority
belief in ¬(p ∧ q). If the judges decide to have a Dutch meeting about p, the result
will be unanimous belief in p:

pq pq̄

p̄q

b, c

a

a, b, c a, b, c
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Now if the judges hold a subsequent Dutch meeting about q, the result will be unan-
imous belief in q:

pq pq̄

p̄q

a, b, c

a, b, c a, b, c

Now the judges unanimously believe in p ∧ q, so the defendant will be judged guilty.
However, if a Dutch meeting about p ∧ q was held in the first place, the result would
be belief in ¬(p ∧ q):

pq pq̄

p̄q

a, b, c

a, b, c
a

b

c

Clearly, in this case the defendant would be acquitted.
Experienced judges are of course familiar with this phenomenon. Procedural dis-

cussions about how to decompose a problem, and in which order to discuss the com-
ponent problems may seem beside the point of a legal issue, but they turn out to be
highly relevant for the outcome of the legal deliberations.

6 Further Issues

First and foremost on our research agenda is the problem of finding natural classes of
substitutions that preserve relation linking. Next, since our logic provides a general
mechanism for simultaneous belief change, it can be used to describe and analyse
topics in judgement aggregation, the effects of agenda setting, the effects of subgroups
meetings to create general belief, and many further issues of collective rationality.
Also, we would like to compare our logic to other proposals to give a modal analysis
of judgement aggregation, such as [1]. Putting our logic to work in practical social
choice analysis is further work.
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